# Example input file from a case in Bower et al. (2021) # 3 Earth oceans of H # C/H = 0.1 wt % # Note that initial volatile pressures are known to adhere to # the equilibrium chemistry constraints since they were pre-computed # by an external script # time stepping # number of macro steps -nstepsmacro 10 # macro step size in years -dtmacro 1000 # tolerances -ts_sundials_atol 1.0e-10 -ts_sundials_rtol 1.0e-10 # mesh # number of basic nodes #-n 500 # reduced mesh size for simple testing -n 100 -MASS_COORDINATES -activate_poststep -activate_rollback -tsurf_poststep_change 1050 # all units are SI unless indicated otherwise # primary scaling parameters # - these are used to non-dimensionalise (scale) the numerical problem # and do not represent the physical quantities that are actually # used (physical parameters are listed below) -radius0 63710000.0 # Earth radius -entropy0 2993.025100070677 # overturn of liquidus in Stixrude et al. (2009) -time0 1.0E5 -pressure0 10.0E5 -volatile0 1.0E-6 # energy fluxes and sources to include # [0] is off # [1] is on -CONDUCTION 1 # conduction -CONVECTION 1 # convection -MIXING 1 # mixing (latent heat transport) -SEPARATION 1 # gravitational separation of solid and melt phase -HTIDAL 0 # tidal heating (not currently implemented) # output directory -outputDirectory output -phase_names melt,solid -melt_TYPE 1 -melt_alpha_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/thermal_exp_melt.dat -melt_cp_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/heat_capacity_melt.dat -melt_dTdPs_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/adiabat_temp_grad_melt.dat -melt_rho_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/density_melt.dat -melt_temp_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/temperature_melt.dat -melt_log10visc 2.0 -melt_cond 4.0 # conductivity of melt -melt_phase_boundary_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/liquidus_A11_H13.dat -solid_TYPE 1 -solid_alpha_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/thermal_exp_solid.dat -solid_cp_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/heat_capacity_solid.dat -solid_dTdPs_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/adiabat_temp_grad_solid.dat -solid_rho_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/density_solid.dat -solid_temp_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/temperature_solid.dat -solid_log10visc 22.0 -solid_cond 4.0 # conductivity of solid -solid_phase_boundary_filename_rel_to_src lookup_data/1TPa-dK09-elec-free/solidus_A11_H13.dat # initial condition # [1] is set dS/dr to constant everywhere # [2] is restart from file -IC_INTERIOR 1 #-ic_interior_filename output/dSdr_b_aug_0.m -ic_adiabat_entropy 2600.0 -ic_dsdr -1.0E-5 # set surface and core entropy (-1 is a flag to ignore, positive values are used) -ic_surface_entropy -1 -ic_core_entropy -1 # mixing length # [1] is conventional, i.e. distance from the nearest boundary # which is either the surface or core-mantle boundary # [2] is constant, i.e. 1/4 x mantle depth, which is the mean # of conventional theory. This can help to prevent a rigid # lid from forming at the surface # [3] is conventional as [1] above, but additionally allows you to # specify a mid-mantle interface -mixing_length 2 #-mixing_length_layer_radius 0.0 # non-dimensional radius # physical parameters # radius of the planet -radius 6371000.0 # Earth radius # static pressure profile derived from Adams-Williamson equation of state # these parameters are from fitting PREM in the lower mantle (for Earth) -adams_williamson_rhos 4078.95095544 # surface density -adams_williamson_beta 1.1115348931000002e-07 # beta parameter -gravity -10.0 # gravity # eddy diffusivity # if negative, this value is adopted (units m^2/s) # if positive, this value is used to scale the internally calculated eddy diffusivity -eddy_diffusivity_thermal 1.0 -eddy_diffusivity_chemical 1.0 # material properties -grain 1.0E-1 # grain size (m) # smoothing of material properties across liquidus and solidus # units of melt fraction (non-dimensional) -matprop_smooth_width 1.0E-2 # viscosity -phi_critical 0.4 # transition melt fraction (non-dimensional) -phi_width 0.15 # transition width (non-dimensional) # core-mantle boundary condition # [1] core-cooling # [2] heat flux (prescribe value using core_bc_value) # [3] entropy -CORE_BC 1 -core_bc_value 0.0 # core parameters for CORE_BC=1 -coresize 0.55 # fractional radius of core-mantle boundary -rho_core 10738.332568062382 # core density -cp_core 880.0 # core heat capacity # surface boundary condition # [1] grey-body, i.e. sigma*emiss*(T^4-Teqm^4), with constant emissivity # [2] steam atmosphere parameterisation (Zahnle et al., 1988) # [3] self-consistent volatile evolution (Bower et al., 2019, Bower et al., 2021) # [4] heat flux (prescribe value using surface_bc_value) # [5] entropy -SURFACE_BC 3 -surface_bc_value 0.0 # if SURFACE_BC=1 or 2, the following constant emissivity is used -emissivity0 1.0 # equilibrium temperature of the planet -teqm 273.0 # parameterise the upper thermal boundary layer, where # dT = param_utbl_const * [Surface temperature]**3.0 # this is useful for high melt fraction dynamics where the ultra-thin thermal boundary layer # (often only a few cms thick) cannot be resolved by the choice of mesh -PARAM_UTBL 0 # flag to turn on parameterisation -param_utbl_const 1.0E-7 # value of parameterisation #-IC_ATMOSPHERE 3 -IC_ATMOSPHERE 1 # atmosphere reference pressure (Pa) -P0 101325.0 # Pa (= 1 atm) # Define the volatiles -volatile_names H2O -H2O_SOLUBILITY 1 -H2O_initial_total_abundance 5000.0 -H2O_kdist 0.0 -H2O_kabs 0.01 -H2O_henry 1.6886562705299146 -H2O_henry_pow 2.0 -H2O_molar_mass 0.01801528 # kg/mol # IW buffer -OXYGEN_FUGACITY 7 # note that an offset of 0.5 is also the default, following # Sossi et al., 2020 -OXYGEN_FUGACITY_offset 0.5