From 3bfb45de164032b63022fac4e61742b0423ee035 Mon Sep 17 00:00:00 2001 From: "Navid C. Constantinou" Date: Sat, 26 Dec 2020 17:20:10 +1100 Subject: [PATCH] change BarotropicQG -> SingleLayerQG --- docs/src/modules/barotropicqgql.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/src/modules/barotropicqgql.md b/docs/src/modules/barotropicqgql.md index 867c57fd..ec09c99e 100644 --- a/docs/src/modules/barotropicqgql.md +++ b/docs/src/modules/barotropicqgql.md @@ -14,7 +14,7 @@ where overline above denotes a zonal mean, $\overline{\phi}(y, t) = \int \phi(x, - Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2014). [Emergence and equilibration of jets in beta-plane turbulence: applications of Stochastic Structural Stability Theory.](http://doi.org/10.1175/JAS-D-13-076.1) *J. Atmos. Sci.*, **71 (5)**, 1818-1842. -As in the [BarotropicQG module](barotropicqg.md), the flow is obtained through a streamfunction $\psi$ as $(u, v) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is +As in the [SingleLayerQG module](singlelayerqg.md), the flow is obtained through a streamfunction $\psi$ as $(u, v) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is $$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x v - \partial_y u)}_{\text{relative vorticity}} +