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1 Introduction

In recent time Convolutional Neuronal Networks (CNN) became increasingly popular in

many Computer Vision applications. Camera based visual perception applications pro-

cess images with the help of CNN, to extract features into computer readable formats.

Without CNN this would not be possible, as they play a major role in extracting impor-

tant information from images via data-driven learning to handle different tasks. Unfortu-

nately this is achieved by trading high performance for transparency and interpretability

of the network. Approaches such as gradient Class Activation Mapping (grad-CAM)

[R. Selvaraju et al., 2017], help closing the transparency gap. Grad-CAM is able to high-

light the image areas that trigger a classification of a particular class label. However pixel

data images are usually not well suited for dealing with depth information because if

captured with a mono camera, they lack the spatial information to create a 3D metric

space. It is possible to encode depth data as pixel color data to create depth images. In

such a depth image each pixel contains the distance of each point to the camera center,

usually measured in millimeters. However this still does not represent a full 3D met-

ric space because the view is locked to the camera position and cannot be dynamically

changed. There exist approaches to create depth images via cameras in a stereoscopic

configuration and using depth estimation, like shown on Figure 1.1. While being an im-

provement it also suffers the same issue of not truly representing a full 3D environment

and are yet again being restricted to the location and view of the camera.

Figure 1.1: Creating a LiDAR like depth image using stereo cameras and depth estima-
tion. [Wang et al., 2019]



2 1 Introduction

Another option to represent depth information are so called point clouds1. Each point

is represented as X,Y,Z coordinates in space. These point clouds yield the advantage of

containing geometry information in a metric 3D space. Point clouds can easily be subject

to translation, rotation and every other kind of real time 3D transformation. This is par-

ticularly helpful as any results from the network are also in a metric 3D space and thus

all spatial information is preserved, unlike pixel data images. Point cloud data can be ob-

tained by using Light Detection and Ranging (LiDAR) applications, stereoscopic images

or structured light, which is used in the popular KinectTMsensor family. Despite these

advantages, point clouds were less popular in common Machine Learning applications,

compared to 2D image based applications.

Figure 1.2: Available network types of the Pointnet framework. [R. Qi et al., 2017]

This changed when Pointnet [R. Qi et al., 2017] first proposed a network structure for ob-

ject classification, semantic segmentation and part segmentation tasks using point clouds.

Despite its recent inception it has inspired many other researchers to work with point

clouds. Examples are Pointnet++ [Qi et al., 2017], Voxelnet [Zhou and Tuzel, 2018], Deep

Kd-Networks [Klokov and Lempitsky, 2017], Frustum PointNets [Qi et al., 2018] and

more. Pointnet currently displays over 1000 citations and counting. It has moved point

clouds into the spotlight for many new interesting research projects, this paper included.

The main contributions of this paper are as follows:

• A novel algorithm, that is able to highlight salient points, responsible for the classi-

fication result of a user defined target class label.

• A thorough explanation of the mathematical operations performed by our new ap-

proach and an ablation study to justify the design choices.

• An in depth discussion and test of our approach compared to a similar method that

can find salient points in point clouds, to prove the validity of our method and to

investigate the run-time performance of both algorithms.
1https://pointcloudlibrary.github.io/

https://pointcloudlibrary.github.io/
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1.1 Motivation

Convolutional Neuronal Networks (CNN) are so popular because of their versatility for a

wide range of problems that are too complicated to be solved with hand-crafted features.

Object classification is a particular popular task where CNN do a great job of solving the

problem quickly and with high accuracy. Current state-of-the-art image classification net-

works can often even qualitatively outperform humans while being able to process large

amounts of images very quickly. However a major issue of CNN is the aforementioned

lack of transparency. The important decision making parts of Neuronal Networks are

barely interpretable by humans because of the complexity and the usual huge amounts

of network parameters. This makes it difficult to get an explanation of the decisions taken

by the network, which is particularly dubious and even dangerous considering their in-

creasingly growing influence on decision making on ever more delicate subjects. A bad

decision could cause financial damage or, in the case of autonomous driving, even be

lethal to other traffic participants. Point cloud based networks are not spared either and

suffer from the very same issues even if their architecture differ from a CNN.

This lack of transparency is a major hindrance on trust in these new technologies, right-

fully so if their behaviour may prove uncontrollable in certain situations. It would be

nice to know which parts of an image or point cloud made the underlying network do a

certain decision, so both developers and users gain a human readable insight about the

inner workings of the network. For 2D image based networks there already exist various

visualization approaches, that help to alleviate this lack of transparency. However for

point clouds barely such visualization algorithms or frameworks exist at all. This leaves

point cloud base applications in a lacking spot, as such valuable insights are just as valu-

able for point clouds as they are for pixel images.

Therefor our approach aims to provide a tool to increase both the transparency and pro-

vide the ability to gain a human readable clue of which points drive the classification

decision making of a point cloud based classification network. It is inspired by the pixel

image based gradient Class Activation mapping grad-CAM2 [R. Selvaraju et al., 2017]

approach. As a starting point the Pointnet3 [R. Qi et al., 2017] network is used to extend

it with a grad-CAM like visualization for point clouds, that shows the regions of inter-

est from the perspective of the network for a particular class label. It is trained using

the modelnet40_ply_hdf5_20484 database which contains 40 objects with different

shapes represented as point cloud data. As the machine learning engine the Tensorflow5

v1.8.0 framework, with CUDA6 v9.0 and cudNN7 v7.3.1 is used.

2https://github.com/ramprs/grad-cam
3https://github.com/charlesq34/pointnet
4https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
5https://www.tensorflow.org/
6https://developer.nvidia.com/cuda-90-download-archive
7https://developer.nvidia.com/cudnn

https://github.com/ramprs/grad-cam
https://github.com/charlesq34/pointnet
https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
https://www.tensorflow.org/
https://developer.nvidia.com/cuda-90-download-archive
https://developer.nvidia.com/cudnn
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1.2 Thesis goal

This thesis pursues to achieve the following goals:

1. Investigate if the pixel image CNN based grad-CAM concept is also applicable to

point clouds in 3D space using Pointnet.

2. Create a human readable visual representation of important points for the network

via our novel algorithm named p-grad-CAM8.

3. Discuss the design choices that were made for p-grad-CAM8 during development.

4. Test the correctness of our implementation, by evaluating it from two perspectives:

• Testing against rotation: This shows if the accuracy of our approach is af-

fected by rotation or not. This is an important attribute because real world

data objects are usually not perfectly aligned. Our algorithm therefor must

not be affected in any way from randomly rotated objects in any direction.

• Ablation study: It must be proven that grad-CAM indeed is able to find salient

regions. In this test, points that were found important by grad-CAM are re-

moved. If the relevant points were indeed found, a noticeable drop in ac-

curacy would be expected. Further on it must be verified that our approach

also yields better accuracy and loss results compared to just removing random

points.

5. Compare our implementation with a state-of-the-art algorithm that also finds salient

regions and measure their runtimes and accuracy. With the accuracy being mea-

sured by the amount of total points removed per algorithm. The fewer points nec-

essary to make the network prediction deviate, the better.

8https://github.com/Fragjacker/Pointcloud-grad-CAM

https://github.com/Fragjacker/Pointcloud-grad-CAM


5

2 Fundamentals

Neuronal Networks in general, as complex as they may be in practice, boil down to fairly

simple mathematical concepts and operations. Such networks are often represented as

matrices that can assume thousands if not millions of entries, each entry representing a

single neuron of the network. Neurons are connected to each other via "synapses" that

convey signals from one Neuron to another. These synaptic connections may change

their topology, which are modelled via weight values stored in a matrix for each neu-

ron. These weights ultimately determine the behavior of the network and are subject to

change when a network is trained.

Every change of the neuron weights is modelled via a sequence of matrix multiplication

which are deliberately modelled to produce the desired results defined by the update

function. These matrices are the building blocks of so called layers that provide the ac-

tual functionality of the Neuronal Networks performing the machine learning tasks. The

basic idea of this layering of Neuronal Networks is to have some input layer that repre-

sent the user input data, the hidden layers in between that perform the actual machine

learning, using the input data and finally the output layer. The output layer is responsi-

ble to translate the data from the Neuronal Network back into a user readable result.

To achieve this, the dimensional complexity of the underlying hidden layer matrices

needs to be reduced in such fashion, that the desired information emerges from it. One

such method of dimensional reduction is called pooling. The idea behind pooling is to

use the most important values, chosen by some a priori metric, and "pool" them into a

single value to build a reduced matrix out of an initially larger one. Our approach makes

use of pooling as well, hence several relevant pooling methods are introduced and dis-

cussed in this chapter.

There is also a short introduction to CNN and Pointnet, which are relevant because their

concepts and algorithms are partly picked up and adapted by our approach as well. In

addition there is a brief overview of the relevant averaging methods. Averaging is used

by our proposed algorithm to compute a threshold value based on the input data to clas-

sify points into low and high scoring. This is important because our proposed algorithm

works by removing the important high scoring points until the prediction deviates from

the ground truth.
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2.1 Convolutional Neuronal Network (CNN)

In the field of deep learning, which is a subcategory of machine learning, the term con-

volutional neural network (CNN or ConvNet) defines a class of deep neural networks,

commonly used in the context of analyzing visual 2D pixel data images. As the name

suggests, CNN make use of the mathematical convolution operation. The architecture

of CNN usually consist of an input layer, several hidden layers and one output layer.

The hidden layers consist of multiple convolutional layers that convolve the input image

via multiplication or other kinds of dot-product operations. The input data for an CNN

usually consists of a tensor with order 3. In case of an image this would represent height,

width and 3 Red Green Blue (RGB) color channels per pixel. It is possible to expand the

order of the tensor to add more dimensions encoding additional data. Ultimately all ten-

sor inputs are handled similarly by the CNN. Input data is sequentially passed through

all layers starting with the input layer and ending with the output layer. In between exist

the actual processing layers. These could each be either a convolution, pooling, normal-

ization, fully connected or a loss layer. Albeit the convolutional layers are commonly just

addressed as convolutions, the actual performed operation is the application of a N × N
kernel, successively moved over all pixel values of an image, see Figure 2.1.

Figure 2.1: Illustration of applying a CNN convolution kernel to an image. All values
within the kernel frame are summed up into a single numerical value. It is
possible to weight certain pixel indices if the coefficients in the kernel are
changed into numbers other then 1. [Wu, 2017]

CNN technically are multi-layer perceptrons with fully connected layers. The term fully

connected means that every neuron from one layer is connected to each neuron of the

next layer, similar to a fully connected graph. This kind of neuronal network was origi-

nally inspired by the biological analogy of the visual cortex and its neuronal connection

layout. The advantage of a CNN compared to traditional image processing techniques,

is its ability to learn filters that had previously to be hand crafted. Therefor it requires a

lot less pre-processing of the input image sets, which makes it able to work with a wider

spectrum of image data and shorter runtimes, compared to traditional image processing

methods. For a much deeper and more technical introduction to CNN see [Wu, 2017].
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2.2 Pointnet

In the past, when researchers wanted to work with 3D point data they had to transform

it either to voxels (pixels with a volume) or sets of images. This had the disadvantage of

bloating the data sets in size and also caused side effect issues because information was

lost or distorted during the transformation into another data structure. It was a persistent

issue that hampered the potential of 3D point cloud data in neuronal networks. Point-

net [R. Qi et al., 2017] was amongst the first, if not the first novel network that directly

worked with point clouds, without any intermediate conversion, as input data. It came

with full support for object classification, part segmentation and scene semantic parsing

tasks. It did not only show the proof of concept for point cloud based neuronal networks

but also provided a highly efficient a network with high performance on par with state-

of-the-art. Pointnet natively accepts point clouds as input data and outputs either a class

label that characterize the input as a whole, or labels each point contained in a segmented

point cluster.

The architecture of Pointnet itself however is comparatively simple because in the ini-

tial stages of the network processing pipeline, each input point is handled identical, yet

independently. Each input point is defined at least by three coordinates (x, y, z), with

the option to expand it with additional dimensions that represent local normals or any

other desired local or global attribute. These point sets ∈ Rn come with the following

properties:

• Unordered. This means that any network using point clouds must be invariant to

!N possible permutations of the input data.

• Interacting. Points form meaningful structures in spatial space and networks must

be able to find local structures using nearby points.

• Transformation invariant. It requires that any network prediction must not be in-

fluenced by transformations such as translation or rotation.

The key-method that is necessary to make Pointnet work is the application of max pool-

ing, which is explained in the next section. What basically happens is that Pointnet learns

a collection of optimization criteria, which are able to localize important points that de-

fine the characteristic of the input and provide the reason for their selection. Ultimately

the output layers compose those learnt optimal criteria into the description vector that

classifies the entire point cloud object. The advantage of using point clouds directly, is

that it can be subject to rigid or affine transformations at any given time because each

point is transformed independently of each other and no information is lost due to inter-

mediate file format conversions into other data types. This alone also provides an easy

method to perform data augmentation because variations of point cloud data can be eas-

ily created by applying affine transformations to the input data before feeding it into the

network during the learning phase.
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2.3 Max Pooling

Figure 2.2: Max pooling reduces the feature vector values by picking the highest value.
[Hyun et al., 2019]

Max pooling is amongst the most common of pooling operations. It takes the highest

value from the sample range and returns it. It is the best approach to capture single very

high scoring values that denote synaptic connections of great importance.

2.4 Stride Pooling

Figure 2.3: Stride pooling reduces the values by picking always the same element at index
N. [Hyun et al., 2019]

Stride pooling chooses always the same index which is a pre defined constant index i.
This pooling method is rather uncommon because it is inflexible and requires manual

fine-tuning of i.
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2.5 Average Pooling

Figure 2.4: Average pooling reduces the feature vector entries by averaging them into one
value. [Hyun et al., 2019]

Average pooling calculates the arithmetic mean value over all sample values and returns

it. This approach is quite common but has the potential issue that it often produces

floating point numbers as results, which may or may not be desired. The average will

also not capture the few highest scoring values, if the majority of values are low.

2.6 Arithmetic mean value

The arithmetic mean is amongst the most common averaging methods. It is defined as:

vmean =
1
n

n

∑
i=1

ai =
a1 + a2 + · · ·+ an−1 + an

n
(2.1)

2.7 Median value

The median value is another commonly used averaging technique. It is defined as the

middle value of an ordered set. If the number of items in the set is even, the average of the

two values next to the imaginary center are used. For example let there be the following

list of values 14, 9, 2, 5. These values first need to be sorted which yields 2, 5, 9, 14. Since

the numbers of value is even there is no middle value in the list. The values 5 and 8 are

next to the center therefor the median would be the average of these values 5+9
2 = 7.

2.8 Midrange value

The midrange value is simply the arithmetic mean of the lowest and the highest value of

a given set of values.

vmid =
1
2
(

min(x) + max(x)
)

(2.2)
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3 Related Work

The lack of transparency is a generally common issue in neuronal networks as a whole,

which pretty much all networks suffer from. For example let us look at Graph Convo-

lutional Neuronal Network (GCNN)s [Kipf and Welling, 2016] which are a variation of

CNN which use node graphs instead of images for their tasks. Despite their difference

over the architecture of the used neuronal network, the issue of lacking transparency re-

mains the same. There exist several methods to increase transparency which are often

designed for CNN because to their huge popularity. However their foundation math-

ematical concepts are often generic in nature and therefor yield the possibility of being

applicable to other neuronal network types as well. However the question if they actually

do also yield good results in other neuronal network types as well remains unanswered.

The paper of [Pope et al., 2019] tackles these questions and shows how these concepts are

not only still valid and applicable for GCNN but also useful to increase their overall ex-

plainability. They were able to deliver the proof of concept for classification tasks, using

CAM and grad-CAM in visual scene graphs and molecular graphs. They provide a posi-

tive answer for their case to the question if grad-CAM can indeed be applied to a GCNN,

raising the confidence that this may be possible as well with 3D point clouds. In the fol-

lowing sections the most common methods to increase transparency and explainability

are briefly introduced, independant of their intended target network architecture.

3.1 Contrastive gradient-based Saliency Maps

The paper, proposed by [Simonyan et al., 2014], offers two main methods for visualiza-

tion, which were designed to be used with CNN. They are named class model visualiza-

tion and Image-Specific Class Saliency Visualisation. Both methods fall into the category

of Contrastive gradient-based Saliency Maps [Pope et al., 2019] and are relevant because

the base principles, which are employed in both methods, are the foundations for the

more sophisticated approaches discussed later in this chapter.

3.1.1 Class Model Visualization

This method generates a colored image that visualizes the class scoring model that has

been learned by the network. It represents the pixel shape templates for the convolution,

that are linked to a certain class label. The base idea is that if Sc(I) is the score of some

class c, calculated by the classification layer of the network for some input image I, then
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the goal is to find a L2 regularised Image, where the score Sc(I) is maximized:

arg max
I

Sc(I)− λ‖I‖2
2 (3.1)

Here λ is the L2 regularization parameter. The class model visualisation can then be

found using back-propagation similar to the process used to optimise the layer weights.

The main difference here is that the optimization uses the input image and leaves the

learned layer weights untouched. The resulting image of the class model can be seen on

Figure 3.1.

Figure 3.1: Example of learned class appearance model images by a CNN. [Simonyan
et al., 2014]

3.1.2 Image-Specific Class Saliency Visualisation

This approach works by computing the score Sc(I) via the gradient w of the class score

with respect to the input image, with the desire to rank the pixels regarding their in-

fluence on the score Sc(I0). However this time the Sc(I) score function is a non-linear

function of I. Fortunately it can be approximated via the first-order Taylor expansion:

Sc(I) ≈ wT I + b (3.2)

w =
∂Sc

∂I

∣∣∣∣
I0

(3.3)

The result is a greyscale image with bright areas denoting salient regions, see Figure 3.2

on the facing page. This idea of using gradient back-propagation is very commonly used

and was also picked up and refined by the grad-CAM approach, which will also be intro-

duced in this chapter. Unfortunately this approach was specifically designed to be used

in conjunction with CNN and is therefor, in it’s current form, not applicable as a solution

to be used with point clouds, since the architecture of the used networks are too different.

Albeit the concept of using gradients to compute score values itself, is universally appli-

cable in other networks. The grad-CAM and in conclusion our algorithm as well relies

on this concept.
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Figure 3.2: Contrastive gradients based Saliency Map, used to isolate the predicted class.
[Simonyan et al., 2014]

3.2 Excitation Backpropagation

This method, introduced by [Zhang et al., 2016], works by identifying the neurons that

are driving the current neuronal network task in a CNN. They collect the input stimuli

from the output combined with a top-down Winner-Take-All (WTA) method to find the

relevant neurons for a given data input. This combination of two methods is called Se-

lective Tuning model, which is essential for their method. With the help of the Selective

Tuning model, they are able to postulate a probabilistic WTA process, they call Excitation
Backpropagation. This idea of finding relevant neurons in the network is also commonly

used in many other approaches. One example is the critical routing paths method, intro-

duced in the next section, which seeks to find important neurons in the network, yet with

a different implementation. Another positive attribute is that Excitation Backpropagation
works solely with the neurons and their connections inside the network. This makes it

very viable for a portation to different networks types because it is generic and network

type independent. This is one reason why this concept is also commonly used in various

machine learning applications.

Figure 3.3: Salient regions found by excitation backpropagation. [Zhang et al., 2016]
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3.3 CAM and critical routing paths

The original idea for the Class Activation Mapping (CAM) was proposed by [Zhou et al.,

2016]. They achieved the visualization of class-discriminative regions in images, specif-

ically for a Convolutional Neuronal Network (CNN). The approach is based upon the

observation, that convolutional units inside of CNN naturally act as object detectors even

without supervision about the location of objects. This useful attribute is unfortunately

lost if these convolutional units are used with fully-connected layers in the network. This

issue can be avoided if fully-convolutional networks are used instead. That approach

also has the advantage of reducing the number of parameters of the network. The fully

convolutional Network in Network (NiN)[Zhou et al., 2016] for example also uses global

average pooling to prevent over-fitting during training. It turned out that another ad-

vantage of global average pooling is, that with a little tweaking, the network can retain

localization ability of the convolutional units until the last layer. This allows to easily

find important regions in images, see Figure 3.4. Unfortunately this entire approach is

tailored towards image based CNNs. A different method, suggested by [Wang et al.,

Figure 3.4: Application of CAM on a CNN to identify discriminative regions in images.
[Zhou et al., 2016]

2018], works by identifying nodes in a neuronal network, that are important for the de-

cision making process, see Figure 3.5 on the facing page. These critical nodes are defined

as important layer result outlets. As such if their contribution would be filtered out com-

pletely, the performance of the network would drop immensely. This is accomplished

by slightly changing the network via adding scalar control gates. These control gates are

put behind each layer to use their output for learning the optimal routing paths for all

individual data samples fed into the network. It is another interesting approach that does

not require retraining the network as well. This approach however is designed towards
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architectures used for image based Deep Neuronal Network (DNN) applications. It is

also not designed per-se to yield a visual representation of salient regions. Its purpose

is to identify adversarial image samples by using their novel approach. It would be in-

teresting however to see how much this approach could be adapted to perform similar

tasks with point clouds. This is not yet in the scope of this paper.

Figure 3.5: Critical data routing paths and the encoding feature of the routing paths.
[Wang et al., 2018]

3.4 grad-CAM

The work of [R. Selvaraju et al., 2017], which our approach was mainly inspired by, gen-

erates a visualization of discriminative regions, e.g. regions of importance for a certain

class label, in images by summing up the class score "weights" of all feature maps and

then filter negative scores. This successively generates gradients over all involved layers.

The resulting heat-map only shows regions that activate a user defined class. Regions

with a red color denote higher scores for a given class, whereas blue regions denote lower

scores, see Figure 3.6 on the next page. Another advantage of this approach, is that even

though it was originally designed for CNN, it could be possibly adapted to be used with

point cloud data, due to the generic nature of the approach.

Another advantage of this approach is, that the network does not need to be retrained

in order to fetch the relevant score weights because they are imbued inside the feature

maps, which are retained via the gradients. We are particularly interested in this quality

of the approach and seek to combine it with the Pointnet, see Figure 3.7, network sug-

gested by [R. Qi et al., 2017] in order to create a similar heat-map but for point cloud

applications. However since Pointnet does not contain feature maps but a feature vec-
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Figure 3.6: Computation of the gradient Class Activation Mapping (grad-CAM). [R. Sel-
varaju et al., 2017]

ture, that is passed through the network, it is required to adjust the grad-CAM approach

to fit the specifications of the Pointnet architecture.

Pointnet was chosen because it provides methods and algorithms to perform deep learn-

ing on unordered point sets. It is very robust and yields very high performance that

reaches up to state of the art quality or better.

Figure 3.7: Relevant Pointnet architecture: The object classification network takes n
points from a point cloud as input and performs input and feature transfor-
mations. Finally it aggregates the point features via max pooling. The output
is classification scores for k classes. [R. Qi et al., 2017]

For our approach we use the basic idea of the grad-CAM approach by [R. Selvaraju et al.,

2017] and combine it with the Pointnet [R. Qi et al., 2017] network, to build our own im-

plementation that yields similar qualities as the original grad-CAM method but for point

clouds. However as the two networks are different in their architecture, this needs to be

accounted. Whereas the original grad-CAM uses feature maps to obtain their weights,

Pointnet does not have such feature maps but uses feature vectors instead. This is due

the nature of the point cloud which are just N points in space, represented as X, Y, Z
coordinates in spatial 3D space. That is a handy attribute because the entire relevant in-
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formation of the input data can be encoded in a single vector that contains the coordinates

for every point existing in space. No further analysis or treatment, like convolution, is

required to isolate the relevant information from the input data, compared to pixel data

images.

3.5 Saliency Maps

A similar fashioned concept to build Saliency Maps for point clouds, introduced by

[Zheng et al., 2018], works by computing the loss for each point in the point cloud. Our

approach in comparison is basically "asking" the network for the scores of all points si-

multaneously, whereas saliency maps probe the reaction of the network removing the

points causing the highest prediction loss. They then use the resulting point clouds, to

verify the correctness of their approach, as adversarial samples. (see Figure 3.8). Another

Figure 3.8: Dropping the highest score ranked points identified by the Saliency Map
changes the prediction outcome. [Zheng et al., 2018]

difference in our approach compared to theirs is that they use point shifting instead of

dropping points. This goes by the intuition that the outwards located points encode the

shape information of the object. Therefor moving those points inwards should have sim-

ilar results on the classification results as the dropping of points (see Figure 3.9 on the

next page). Another advantage this approach yields is the complete avoidance of chang-

ing tensors during the computation and evaluation of the salience maps, since all the

tensors keep their shapes as no points are removed and only change their position.

Based on this point shifting method they are able to approximate the loss contribution for

each point by the gradient of the loss, monitoring the change of the prediction loss of the

manipulated point cloud objects. In each step of their algorithm the n-highest ranking,

with n being number specified a priori by the user, points are removed. This successively

yields a loss-ranking of the original unchanged point cloud, which can be used to paint

each point to reflect its importance, see Figure 3.10.
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Figure 3.9: Achieve similar results as point dropping by shifting the points into the spher-
ical coordinate center of the point cloud. [Zheng et al., 2018]

Figure 3.10: Visualization of the Saliency Map, similar to our point cloud grad-CAM ap-
proach, colored by their significance in the score ranking. [Zheng et al., 2018]
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Since we pursue a similar goal, it would be interesting to see how our approach com-

pares to the Saliency Maps method. This similarity of goals and the usage of the same

Pointnet network, which is used by our approach as well, makes it a prime candidate for

a comparison of our results with theirs. To achieve this a similar approach, using adver-

sarial samples to attempt deviating the prediction of the network away from the ground

truth, is pursued. Since our approach seeks to find the points of interest for the network,

the premise of our tests would be that the prediction should change in a similar way as

the salience approach does, by removing points with high importance score rankings. If

our approach does indeed correctly find important points, it we would expected that our

approach yields comparable visual results to the ones produced by the Saliency Maps

approach, see Figure 3.11 below.

Figure 3.11: Dropping the points with the highest scores. Left image shows the original
prediction before the point removal. The right image shows the changed
prediction after the removal of the highest ranked points. [Zheng et al., 2018]
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4 Approach

The goal of this approach is, to apply the concept of grad-CAM, described in [R. Selvaraju

et al., 2017], to the point cloud data based Pointnet network from [R. Qi et al., 2017]. This

novel algorithm shall be named Point cloud gradient Class Activation Mapping (p-grad-

CAM) to reflect its origin. Since a close as possible replication of the original grad-CAM

concept is desired, it is of virtue for this this new algorithm to obtain the score values for

all N points of the point cloud. This is necessary to create a point cloud equivalent of

feature map back-propagation. Fortunately all important feature and input transforms

which make up the contributions of individual points, are embedded in the feature vec-

tor. It can be obtained by extracting the N× 1024 feature vector, right before it is fed to the

max pooling operation (See Figure 4.1 below). This is important because the feature vec-

tor gets reduced after the max pooling operation, losing dimensions and therefor poten-

tially valuable information. After obtaining the score values, the influence of unwanted

Fetch feature vector before maxpooling to keep 
the initial dimension [N x 1024] with N = batch 
size. Since this is a read only operation, it requires 
no retraining of the network.

Figure 4.1: Extraction of the feature vector before the maxpooling operation in the Point-
net object classification network architecture. [R. Qi et al., 2017]

class labels are filtered out in the class activation vector of shape [1, 40], by multiplying it

with a one hot vector. The desired label of interest must be set a priori by the user. It is an

integer value that corresponds to line numbers of the available shapes, specified inside

the shape_names.txt file, which is supplied by the modelnet40_ply_hdf5_20481

data base. In the next step the gradient of the score is computed for the class c, yc of

the extracted feature vector, with respect to the filtered target class activation vector Ak
i ,

i.e. ∂yc

∂Ak
i
. The resulting tensor is of dimension [N, 1024]. To obtain the score tensor, that

contains the score for each input point of point cloud set N, similar to the grad-CAM

1https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
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approach, pooling is applied which yields a tensor of dimension N. The relevant pooling

methods are explained in more detail in section 5.2.1 on page 30. The results of the ap-

plied operations yield the condensed final score for each point of the point cloud object:

wc =

Max Pooling︷ ︸︸ ︷
max

( ∂yc

∂Ak︸︷︷︸
Gradients

)
: i ∈ [1, 1024] (4.1)

With the score weights available it is now possible to weight the contribution of each

point, from the extracted feature vector, towards the desired class activation label only.

To achieve this, the original unaltered feature vector, of shape [N, 1024], is multiplied

with the average pooled score tensor wc of shape [1, N]. In the following step, all score

contribution values are summed up pN,1 . . . pN,1024 for each row of the feature vector and

multiplied by the result of the corresponding score wc for each point. This is done to

have a single value for each point, that represents its cumulative score contribution in the

scene which can then be weighted using the results of wc. To do this the feature vector

is multiplied with the score, so that only the relevant feature vector contributions for the

current class activation label remain. Now since the dimensions of the score vector do

not match the feature vector ones, it needs first to be transposed and vertically expanded

by copying the row values into 1024 element big columns. The resulting matrix contains

the values of interest on its main diagonal, which are extracted into a new score vector:

M(pN , wc
N) =


p1,1 . . . p1,1024

...
. . .

...

pN,1 . . . pN,1024


︸ ︷︷ ︸

Feature vector [N,1024]

·


wc

1 . . . wc
N

...
. . .

...

wc
1 . . . wc

N


︸ ︷︷ ︸
Score tensor [1024,N]

=


wc

1 ·
1024

∑
i

p1,i . . . wc
N ·

1024

∑
i

p1,i

...
. . .

...

wc
1 ·

1024

∑
i

pN,i . . . wc
N ·

1024

∑
i

pN,i


︸ ︷︷ ︸

Score matrix [N,N]

(4.2)

=


wc

1 ·
1024

∑
i

p1,i . . . wc
N ·

1024

∑
i

p1,i

...
. . .

...

wc
1 ·

1024

∑
i

pN,i . . . wc
N ·

1024

∑
i

pN,i


︸ ︷︷ ︸

Extract main diagonal values [N,N]

7→


wc

1 ·
1024

∑
i

p1,i

...

wc
N ·

1024

∑
i

pN,i


︸ ︷︷ ︸

Score values [1,N]

= T(pN , wc
N) (4.3)

The final score value vector now contains the corresponding score of each point in the

point cloud with respect to the chosen class label of interest. In the final step unwanted

negative values are removed, by applying a Rectangular Linear Unit (ReLU) on the ten-

sor. Doing this, removes any scores, that are not related to the selected class label and



4.1 Point coloration 23

therefor do not influence the decision making of the network positively. This score ten-

sor is then used to color the point cloud points in a similar heat-map like fashion as in

the grad-CAM approach. Points with a red color indicate a high score while points with

a green color indicate low scores. Black points indicate scores that are zero, this means

that there were no gradients flowing back from the network. The design choices for this

approach will be tested and discussed in more detail in Chapter 5.2 on page 30 via an

ablation study.

4.1 Point coloration

Since the approach to compute the score weights yields arbitrary numerical values, it

is of virtue to find a way to transform this information into usable color value ranges.

The Open3d2 library for Python provides the point cloud class that handles rendering

and coloration of points. The color information is represented as Red Green Blue (RGB)

information, which must assume floating point values between one and zero. To trans-

late the score weights into Open3d compliant color values, the maximum score value,

found in the gradient, is used to colorize the points by using the following normalization

formulas:

red =
T(pN , wc

N)

max
(
T(p, wc)

) green = 1− T(pN , wc
N)

max
(
T(p, wc)

) : red, green ∈ R[0, 1] (4.4)

Here T(pN , wc
N) is the current score value for the current point and max

(
T(p, wc)

)
is the

highest found score value of the entire score vector. These formulas are used to achieve

a linear color value mapping for the two color channels red and green, with value ranges

between zero and one. A red coloration denotes a low score and green shows high score

values. Points with zero scores, which thus don’t contribute to the networks decision

making, are colored black. Currently there is the issue that huge outlier values dominate

lower values, see Figure 4.2, because if max
(
T(p, wc)

)
is much bigger then T(pN , wc

N)

the majority of points will be of green color. To fix this a threshold is applied to all non

zero values which serves as a ceiling for all scores. This results in a more appealing

color gradient, as smaller values are also considered more important now, as shown on

Figure 4.3 on the next page.

4.2 Application and verification

It is possible to apply our approach to any kind of point cloud neuronal classification net-

work, as long as it allows for extraction of the feature vector in a similar way as Pointnet

does. Any more complex systems which use point clouds for computer vision classifi-

cation task may benefit from this, including robotics, autonomous driving or any other

2http://www.open3d.org

http://www.open3d.org
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Figure 4.2: Plot of un-truncated (Blue) and truncated (Orange) gradient score values for
Piano object with 2048 points. The average truncation threshold is shown in
red.

Figure 4.3: Comparison of gradient visualization, for Piano object, with (right picture)
and without average value truncation (left picture). Black pixels denote zero
scores and thus are not important for classification of the selected label at all.
Importance of points range from green (less important) to red (very impor-
tant) for decision making of the network.
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kind of point cloud based neuronal network classification application. P-grad-CAM can

be used in classification tasks to find those points in the point cloud, that are of highest

importance from the perspective of the network, contributing the most towards the clas-

sification decision. Not only does this alone yield a deeper insight upon the rationale of

the network itself, it also allows to create specialized point sets to allow a deeper investi-

gation of our approach.

To verify the effectiveness of p-grad-CAM a two step test process is enacted. In the first

step the network will be tested against rotations in random directions, using the original

unprocessed point cloud. This is necessary to establish a ground truth, which allows for

comparison with the test results. In the second step a new test set of points is built, us-

ing the salient points that were computed by the p-grad-CAM algorithm. In the first test

set, all zero-score points are removed. In the second test set all values beyond a certain

threshold are removed. These sets will then be inverted and only the zero-score points

are kept etc. The resulting test sets are then each fed back into the network to monitor the

change of the networks accuracy, loss and the classification prediction. All sets are then

compared to the accuracy, loss and prediction of test sets, where equally many randomly

chosen points were removed. The results will be plotted to display the networks perfor-

mance for each point set variation.

This approach allows to get a direct feedback on the correctness of our approach. The

premise is that the network accuracy is reliant on the existence of these important points

for a correct prediction. So by removing the important points, a drop in accuracy should

occur. The opposite should be true for removing the zero score points, the prediction

accuracy should not change at all. If these premises can hold against a test set of ran-

domly removed points, then it was successfully proven, that the important points for the

decision making of the network have indeed been found.

4.3 Assembling the p-grad-CAM algorithm

With the base idea of the approach outlined, the draft of the p-grad-CAM algorithm can

now be set up. The base idea is that every point with a weight greater then zero and over

a certain threshold is removed from the point cloud. The residual point cloud object is

then successively fed back into the network until the prediction deviates from the ground

truth. This yields the draft for the final algorithm as shown on Listing 1 on the following

page. This final algorithm can then be applied to find the salient regions of the input

point cloud with respect to an user chosen class label. It is a self evaluating fire-and-

forget algorithm that requires no further intervention of the user during runtime. The

chosen points are colored after their importance ranking as described in the previous

Sections. The result of the algorithm, using the maxpooled greater then zero threshold

for the thresholdMode parameter, is shown on Figure 4.4 on the next page.
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Algorithm 1: Point cloud gradient Class Activation Mapping (p-grad-CAM)
Data: pointclouds_pl, labels_pl, sess, poolingMode, thresholdMode,

numDeletePoints
Result: Heatmap visualization of important/unimportant points.

1 initialization;
2 while ground truth == prediction do
3 pointWeights← computeHeatGradient(pointclouds_pl, labels_pl);
4 pointclouds_pl, importantPoints← delete_above_threshold( pointWeights,

pointclouds_pl, thresholdMode );
5 weightArray.extend( importantPoints );
6 for i to range(BATCH_SIZE) do // evaluate for prediction change
7 rotPC← rotate_point_cloud_XYZ(pointclouds_pl);
8 prediction, loss← sess.run(rotPC, labels_pl);
9 prediction← np.argmax( prediction, 1 );

10 correct← np.sum( prediction == labels_pl );
11 total_correct += correct;
12 total_seen += 1;
13 loss_sum += loss * BATCH_SIZE;
14 accuracy = total_correct / float( total_seen );
15 end
16 end
17 draw_residualPointcloud(pointclouds_pl);
18 draw_pointcloudHeatmap(pointclouds_pl, weightArray);

Figure 4.4: Heat map plot of an airplane after 7 iterations removing every value greater
then zero. A total of 1685 out of 2048 points has been removed before the accu-
racy dropped to zero and the prediction changed. These 1685 important points
were collected over each iteration, with about ∼200-300 points removed each
iteration and finally drawn to screen.
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5 Point cloud gradient Class Activation
Mapping (p-grad-CAM)

In this section a crude first prototype of the p-grad-CAM algorithm is applied to Pointnet

using the modelnet40_ply_hdf5_2048 database. It is being used to find and visualize

the salient regions for a particular class label. The visualization is achieved by coloring

each point in the point cloud using the score values T(p, wc), calculated from the ex-

tracted feature vector from the deep network, which are then transformed into usable

color values. It is also necessary for the user to specify the desired class label before

running the algorithm, as it currently defaults to label 1 (airplane). The class label is

an integer value that represents a verbose label string from the shape_names.txt file,

which is included in the modelnet40_ply_hdf5_2048 database. The number corre-

sponds to the line in the shape_names.txt file where the particular label of desire is

located at. For example if we were interested in the label "person", which is located at

line 25, one would enter the number 25 for the variable testLabel. The gradients will

now be computed with respect to that particular class label. The results of the prototype

algorithm can be seen on Figure 5.1 on the following page.

The first thing that strikes the eye, when looking closer to the result, is the large amount

of black points. These black points indicate score weights with value zero and thus had

no relevance for the network classification decision. This implies, that the network would

have made the same classification decision even if those points did not exist. The other

interesting result is that the red important points are rather scarce, compared to the total

amount of points. When looking at the plot on Figure 5.2, which shows of the score val-

ues for each point, this becomes even more visible. From a total amount of 2048 points

there were 61 points that were greater then the red average threshold and about 8 values,

which were significantly bigger in value than all others.

The same phenomenon of few very high outlying values, that dominate the other val-

ues by orders of magnitude, was observed in other cases too. When looking at the dis-

tribution of important red pixels it appears that they accumulate on the wingtips and

the front region of the airplane. It is amazing how they appear to naturally gather in

regions that would be considered as a good feature in terms of computer vision. Those

are regions that would be also subject of interest for a 2D feature point extraction algo-

rithm using CNN. Which is peculiar since no CNN or 2D feature extraction algorithm

was applied here, as everything is based solely on (x, y, z) coordinate points in 3D spatial
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space. Considering all these observations, this raises two interesting questions that will

be investigated in more detail at the next Section:

1. Does the removal of the black zero score points impact the accuracy and prediction

of the network negatively or will it have no impact at all?

2. Does the removal of the high scoring points indeed affect the accuracy of the deci-

sion in a negative fashion or not at all?

Figure 5.1: Point cloud gradient Class Activation Mapping algorithm prototype applied
on modelnet40_ply_hdf5_2048 using the class label 1 (airplane).

5.1 Using p-grad-CAM to build test sets

With the help of the test sets that were described in the previous section, it is now pos-

sible to perform an in-depth testing of p-grad-CAM. These test sets can be selectively

created to test for certain premises of behavior that the algorithm should show. Since the

importance of points is now known we can specifically remove points that are important

or unimportant for the network classification decision making. Those modified point

clouds are then successively fed back into the same network for as long as the prediction

equals the ground truth. To test the validity of p-grad-CAM, special test sets have been

constructed, to answer the prominent questions on the previous page. The first test set

will have every point removed, that has scores greater then zero. The results, using the

point score heat map as illustrated on Figure 5.1, are shown in Figure 5.3 on the facing

page.

The difference is very subtle but if compared to Figure 5.1 all colored points were indeed

removed. This is especially visible on the wingtips and the white holes in the front of the

plane where many non zero score points were located.
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Figure 5.2: Score values of the p-grad-CAM algorithm prototype for each of the 2048
points using the class label 1 (aircraft).

Figure 5.3: Comparison between two airplane point clouds, where all scores greater zero
were removed and only scores equal zero stay (left image) and one where all
scores equal zero were removed with only scores greater than zero that stay
(right image).
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For the second test set, all points with score values equal to zero were removed. Only

points with scores greater then zero were kept. This yields the most drastic difference

when compared to Figure 5.1. However despite the majority of points being removed, it

is remarkable how the reduced point cloud visually still resembles an airplane. Another

important question that now needs to be answered is which kind of threshold should be

used to select important points and which kind of pooling method should p-grad-CAM

use. Because there exist many possible candidates, it requires a design choice study to

figure out, which threshold or pooling method yields the qualitative best result. This

design choice study will be conducted next.

5.2 Design choice study preparation

In the following sections, the design choices of both our proposed p-grad-CAM algorithm

and the point coloration approach, will be discussed. In particular the p-grad-CAM pool-

ing method, important for the score calculation and the visualization threshold method,

used to filter out unimportant points, are subject for a deeper inspection. Each of them

will be compared to similar commonly used methods and measured for potential increase

of visual fidelity and accuracy. To gain a meaningful metric to determine which pooling

or threshold method fits the best, different sets of point cloud objects are generated using

each proposed method candidate and run the p-grad-CAM with them to measure their

impact on the network accuracy. The threshold and pooling method which yields the

highest accuracy is then chosen for the final implementation of the p-grad-CAM algo-

rithm. First the possible pooling candidates are subject for investigation, followed by a

deeper look at which threshold method fits the best.

5.2.1 p-grad-CAM pooling method candidates

Pooling operations play an important role in deep networks. They help reducing the

size of feature maps or respectively feature vectors. This allows for training and testing

with a reduced strain on computation power because it reduces the complexity of the

network. It helps by reducing the receptive field for each neuron, which allows them to

cover a larger portion of the input. This improves the overall perceptive ability of the

network. Another helpful property is the reduction of the negative influence on results

by noise and distortion. Pooling naturally flattens values into a more representative state

and remove outliers and noise. Essentially pooling improves the networks perceptive

power while reducing the strain on computational resources. It is an important part of

any modern day deep network but is also very situational. This means that the com-

monly used pooling methods are not the "one size fits all" kind and thus require testing

and evaluation to figure out which method fits best for the each individual network.

The pooling methods, which will be taken into consideration for testing, are average,

max and stride pooling. There actually exist much more methods like universal pooling



5.2 Design choice study preparation 31

[Lee et al., 2016], Mixed average-max pooling, gated pooling, tree pooling [Hyun et al.,

2019] etc. However they are not considered for the design choice study because most

of them require to be trained alongside the network, which defeats the purpose of our

approach working on an existing network, without any retraining necessary. The inves-

tigated pooling methods are stride, average and max pooling since they are either easy to

implement or even have their own inbuilt functions in Tensorflow. The first pooling vari-

ant that will be looked at is max pooling, followed by the not so popular stride pooling

and finally average pooling. Stride pooling, despite it being uncommon, was used here

because it does not require any retraining or change of the network architecture to work

and was considerably easy to implement.

Max Pooling

In this approach all values from each row of the gradient tensor are fed into the max

operator, to reduce the tensor from shape [N,1024] to [N]:

wc =

Max Pooling︷ ︸︸ ︷
maxN(

∂yc

∂Ai︸︷︷︸
Gradients

) : i ∈ [1, 1024], N ∈ [1, num_points] (5.1)

This is achieved in Tensorflow via the reduce_max() function. The max pool operation

is more in line with the Pointnet architecture, since it also uses a max pooling operation to

reduce the feature vector for further processing (see Figure 4.1 on page 21). The resulting

score vector, showing the scores for each point of the test object, is shown on Figure 5.6

on page 34. It is interesting to see that from the three suggested approaches, max pooling

yields overall higher score values. The next best competitor, average pooling, yields

similar visual results, the score values however are weaker in amplitude.

Stride Pooling

This method choses always the number from index i in the score tensor:

wc =

Stride Pooling︷ ︸︸ ︷
fsp(

∂yc

∂Ai︸︷︷︸
Gradients

) : i ∈ [1, 1024] (5.2)

This is the most simple and computationally least expensive operation since it is little

more then a simple read operation. This approach has no dedicated Tensorflow function

hence it had to be implemented manually as tensorflow.squeeze(tensorflow.

map_fn(lambda x: x[i:i+1], maxgradients)) with i ∈ [0, num_points]. The

x[i:i+1] statement however requires the manual adjustment for the stride pooling in-

dex i for each run of program. Unfortunately it requires a lot of fine tuning to find some
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i that actually yields any valuable information. Figure 5.4 below shows the score ten-

sor, after some trial and error for the stride index, where exactly one point got any score

information at all and all other points scores were zero. The reason for this is that the

dynamic distribution of the score values is simply ignored since always the same score

is taken into consideration. Therefor potentially valuable information will not be taken

into consideration to compute the scores for all points.

0 500 1000 1500 2000
Points

0

5

10

15

20

Sc
or

e

Stride pooling score weights for airplane object

Figure 5.4: Score value plot of a stride pooled p-grad-CAM.

In conclusion the stride pooling approach is not suited for the p-grad-CAM algorithm. It

simply does not fit the requirement for the algorithm to require as few human interven-

tion and manual value evaluation as possible, yet yielding good results.

Average Pooling

This approach calculates the arithmetic mean over all 1024 values per neuron for each

point in the point cloud. The score vector function then looks as follows:

wc =

Average Pooling︷ ︸︸ ︷
1

1024

1024

∑
i

∂yc

∂Ai︸︷︷︸
gradients

(5.3)

This pooling operation is also used in the original grad-CAM [R. Selvaraju et al., 2017]

approach in order to reduce the feature vector down to single score value per neuron. It

can be applied in Tensorflow via the reduce_mean() function. The result score value
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plot, using average pooling, for each point can be seen on Figure 5.5. When compared

to the max pooled variant it apparently yields values with lesser amplitude. Also some

points that were rather non important in the max pooled variant are suddenly very im-

portant. This is particularly peculiar and requires further investigation if either average

or max pooling yield the best results with respect to the Pointnet architecture, which will

be conducted in later chapters.
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Figure 5.5: Score value plot of the average pooled p-grad-CAM for the Airplane object
(2048 points).

5.2.2 Visualization thresholding method candidates

To visualize the network scores, each point in the point cloud is colored in such a fash-

ion, that it is both appealing to the eyes and yields relevant information. Unfortunately

having score values that are greater then the other score values by one or two orders of

magnitude is no rarity. Since the coloration of the points uses the highest found score

value, those huge outlier values drastically skew the coloration result. Instead of contin-

uous gradient, only the few points of high score values are colored red (quite important),

while the majority of lower value points are colored green (quite unimportant). To rem-

edy this, a threshold is used to clip huge score values to even out the coloration, this

results in a better distribution range of colors, see Figure 4.3 on page 24. There are a lot

of possible methods to calculate such a threshold value to yield a better coloration of the

heat map. The most common ones in the following will be subject of deeper investiga-

tion. Each thresholding method will be tested with both the average and max pooled

variant of our p-grad-CAM algorithm in order to determine which approach yields the
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Figure 5.6: Score value plot of the max pooled p-grad-CAM for the Airplane object (2048
points).

Figure 5.7: Comparing the visual result of the heat map for the max pooled (left image)
and average pooled (right image) p-grad-CAM.
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best visual result. In Chapter 6 on page 39 the findings from this chapter will be used to

generate test sets to determine if these results can be backed by empirical data.

Arithmetic mean

The arithmetic mean is calculated by summing up the score of each point and divide it

through the total amount of points. The result is a floating point number which deter-

mines the ceiling for the highest allowed score value. This threshold is only used for

point coloration to remove the huge impact of outlier values upon it.
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Figure 5.8: Airplane score value plot of arithmetic mean averaged p-grad-CAM.

Figure 5.9: Airplane heat map for arithmetic mean thresholded score matrix.
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Median value

The median approach chooses the value, situated in the middle of all score values after

they have been sorted. The threshold is again used for the coloration of the points to

remove the huge impact of outlier values upon the point colorization. The results on the

impact of this method are shown below.
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Figure 5.10: Airplane score value plot of median averaged p-grad-CAM.

Figure 5.11: Airplane heat map for median thresholded score matrix.
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Mid-range value

For the mid range method the single highest and the lowest score is summed up and

divided by two. From all methods, mid range yields the highest threshold which favors

few values with high scores over the majority of low scores. This threshold works the

best when intending to select the most important points for removal but not so well for

coloring the points. The reason is that high score value points once again dominate the

lower scores. This phenomenon can also be observed on Figure 5.13.
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Figure 5.12: Airplane score value plot of mid-range averaged p-grad-CAM.

Figure 5.13: Airplane heat map for mid-range thresholded score matrix.
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6 Evaluation

In this chapter the knowledge from the previous chapter is used to specifically test the

correctness and performance of the Point cloud gradient Class Activation Mapping (p-

grad-CAM) algorithm. There will be two major tests that the network will undergo. The

first test uses the shapes from the modelnet40_ply_hdf5_2048 data set and randomly

rotates them around the XYZ axis. We specifically came up with this test after it turned

out that the original Pointnet network code only rotated the shapes around the Y-axis for

training data augmentation. The test with XYZ-axis rotated data, which the network was

originally not trained for, is important to see if any changes to the prediction accuracy

occur. In that case it would be required that the network is retrained with XYZ rotated

input data.

The second test is directly derived from the desire to verify the correctness of the p-

grad-CAM approach. To clarify if our approach is indeed able to find the relevant areas

of interest, a specific test set of point cloud data is built with varying amounts of points,

that will be dropped and then evaluated for their impact on the networks prediction ac-

curacy. These test sets are created in such a way, that only those points are removed, that

were identified by our approach as important or unimportant for the decision making of

the network. The premise of the test is, that with the removal of important points a drop

in the prediction accuracy and ultimately a wrong prediction would be expected. This

is a logical conclusion since the points that had previously driven the network towards

a specific decision are now gone. The inversion of this premise is also of interest to look

at. It would would be expected that no drop in prediction accuracy should occur at all,

if only points that were completely unimportant for the networks classification decision

are removed. Both tests will be conducted in the following sections.

6.1 Testing against XYZ rotation

A very peculiar find surfaced during a deeper look over the original Pointnet code, which

performs data augmentation via rotating a point cloud in a random direction. It turned

out, that it rotates point cloud objects only around the Y-Axis. This became evident when

looking closely over line 16 in Listing 7.1 on page 73 and line 15 in Listing 7.2 on

page 73, where there is only one Y-axis rotation matrix present in both functions. This

appears to be an oversight at best or a mistake at worst. This potential issue can be easily

rectified by adding the missing rotation matrices to make it capable of random rotation
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around the XYZ-Axis. This however means that the network needs to be retrained in or-

der for the improved rotation data augmentation code to be captured by the network. To

confirm that this is indeed a necessity, the original unchanged Pointnet is tested, which

was trained only for Y-Axis rotation. This should reliably verify if XYZ-Axis rotation

does indeed yield worse results which makes the Y-Axis only rotation indeed be an issue

that requires fixing. For this purpose, during the networks evaluation stage, a batch of

XYZ-Rotated point cloud objects will be passed to the network to see if there occured

any significant change of accuracy, loss or the prediction. The results can be observed in

Table 6.1 below.

Original network handling different rotation methods
Rotation method Average accuracy Mean loss
Y-Axis Rotation 1.0 2.1928470232524 · 10−5

XYZ-Axis Rotation 0.252 5.45134687423706
Table 6.1: Change of the average accuracy and mean loss of XYZ-Axis and Y-Axis rotated

airplane point cloud object consecutively averaged over 1000 iterations. Using
the original unchanged network.

The accuracy for an XYZ rotated airplane drops down to ∼ 25% from 100% with the

network classifying it wrongly as stairs. This phenomenon occurs using the original un-

changed Pointnet network, trained with the Y-Axis rotation code. Therefor a fix is indeed

necessary, see Listing 7.3 on page 74 for details, so that XYZ rotated data could next be

used to generate new training data to retrain Pointnet against XYZ-Rotation, even though

it was originally only trained for Y-Axis rotations. This should increase the robustness for

any potential real world data, which is rarely rotated solely around the Y-Axis. The re-

sults of the newly retrained network for XYZ-Axis rotation are shown on Table 6.2 below.

Retrained fixed network handling different rotation methods
Rotation method Average accuracy Mean loss
Y-Axis Rotation 1.0 0.000107754705823027
XYZ-Axis Rotation 1.0 0.000229689321713522

Table 6.2: Change of the average accuracy and mean loss of XYZ-Axis and Y-Axis rotated
airplane point cloud object, consecutively averaged over 1000 iterations. Using
the new fixed and retrained network.

The change in both the accuracy and the loss of the improved network are dramatic. Not

only did the original accuracy for the Y-Axis rotation stay the same but the accuracy for

XYZ-Axis rotation achieves the same result now as well. Their loss functions however are

not absolutely identical, which is shown on Table 6.2. Even though both losses are suffi-

ciently low now, the loss for the XYZ rotated point cloud is still slightly greater compared

to point clouds that were rotated only around the Y-Axis. Apparently the reduction of

two degrees of freedom on only Y-Axis rotated objects causes a slightly lower loss. The
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gained results so far are however good enough to be used for the actual ablation study,

which will be conducted in the next section.

6.2 Ablation study

This test idea is directly built upon the information, provided by our p-grad-CAM algo-

rithm and the resulting weights for each point of the point cloud object. Since the points

of importance are now known, it is possible to precisely manipulate the point cloud object

to verify the premise of our approach; finding the points that the network finds impor-

tant for its classification decision. To do this, various test sets are created where points

have been deliberately dropped based upon the values of their respective score weights

T(p, wc). These test sets will be built to test both average and max pooling to procure

the weights for each point. These points will then be selected for dropping, by applying

a arithmetic mean (average), median, midrange threshold. On top of that there are two

extra tests, which remove all points with scores greater than zero or just drop random

points. This is done to filter more important points over less important ones. The result-

ing point clouds are then fed back into the network and evaluated for their accuracy, loss

and prediction changes. If the points of importance were indeed found, there should be

a measurable drop in accuracy, raise of the loss and change of the prediction from correct

to incorrect. The following sections will look in particular at the verification of this claim.

6.2.1 Removing important points

In this test only important points, i.e. having a score weight T(p, wc) greater than zero

and greater then a certain threshold, are removed. Internal tests have shown, that not

all important points are found in a single run of our point cloud grad-CAM approach.

This means that there exist more points of importance in the point cloud, yet only a small

subset of critical points drive the networks decision, unless all of these critical points

are removed. A similar observation has been reported by [Zheng et al., 2018]. To ac-

count for this, the p-grad-CAM algorithm will be applied repeatedly over consecutively

shrinking point sets, where in each iteration all found points of importance are removed

and the result be used for the next iteration, until enough points were removed to make

the prediction deviate from the ground truth. The arithmetic mean, median and max

range threshold methods, introduced in Section 5.2.2 on page 33, are used for choosing

the points to be dropped. For each point removed by our algorithm there are equally

many randomly chosen points removed, to investigate for their impact on the accuracy,

loss and prediction of the network to quantify their impact. This should also yield the

answer to the question over which threshold method works the best and if our algorithm

actually performs better then randomly removing points.

To achieve this, every possible combination of pooling and threshold method needs to be



42 6 Evaluation

investigated. There are two pooling methods being average and maxpooling, five point

selection threshold methods with random, greater-then-zero, arithmetic mean, median

and mid range plus two tests for important and unimportant points to be removed, that

need to be take into consideration. This totals to 20 test sets per point cloud shape. With

the total amount of 40 available shapes this would require 800 test runs to account for

all possible shapes. For the sake of simplicity these tests were only conducted using the

airplane, bed and bench shapes to have a first impression of possible emerging trends.

Each of the tests will be ran on our point cloud grad-CAM approach using a test set of

500 instances of the same point cloud object, randomly rotated around the XYZ axis and

the results averaged into a single result. Since the important points are removed in the

test set, the best method would be expeacted to be the first one to drop significantly in

accuracy, while simultaneously reaching high loss values, compared to the other meth-

ods. The results of our efforts are shown on Figure 6.1 and Figure 6.2 on the next page.

The accuracy plot, shown in Figure 6.1, confirms the interesting observation mentioned

earlier, that deleting the most important points does not immediately impact accuracy.

If they did, there should have been a visible drop in accuracy happening from the first

iteration on but that isn’t the case. In conclusion this means that there exists a subset of

important points that supersede each other and once the points with the highest impor-

tance weight are removed, points with a prior low weight suddenly become important

and still provide a solid prediction accuracy. However after about 3-5 iterations the first

drops in accuracy can be observed, with the greater-than-zero threshold being the first

one to drop. The second best thresholding method appears to be the maxpooled median

which yields over all better results then average pooling.

This makes the greater-than-zero threshold currently the best one out of all the approaches

in total, since we were looking for a method that would be the first to drop in accuracy.

This observation goes in line with the loss plot in Figure 6.2 where the non zero threshold

method is the first one with a visible increase of loss as well. These are desirable results

which conform with our initial premise of a low accuracy and high loss, which means

that important points were indeed found and removed. Another peculiar observation is

the requirement of a considerable amount of iterations before visible drops in accuracy

and loss have occurred. A significant drop of these metrics was expected to happen much

earlier. However with the greater-than-zero threshold method taking the win in this ex-

periment, it would be interesting to see if it still performs just as good with the inversion

of this test premise, removing unimportant points instead of the important points, which

will be investigated in Section 6.2.2 on page 46.
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Figure 6.1: Airplane accuracy plot for the removal of important points for each pooling
variant (maxpooled vs average-pooled) and each threshold method (random,
greater-than-zero, arithmetic mean (average), median and mid range). Each
iteration is the average value calculated over 500 batches of the same point
cloud object. Once eligible points were removed the respective result point
cloud is fed back into the next iteration.
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Figure 6.2: Airplane loss plot for the removal of important points for each pooling variant
and each threshold method using 500 batches for each iteration.
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Figure 6.3: Bed accuracy plot for the removal of important points for each pooling variant
and each threshold method with 500 batches for every iteration.
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Figure 6.4: Bed loss plot for the removal of important points for each pooling variant and
each threshold method with 500 batches in every iteration.
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Figure 6.5: Bench accuracy plot for the removal of important points for each pooling vari-
ant and each threshold method with 500 batches per iteration.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

0

2

4

6

8

10

12

14

16

Lo
ss

bench removing important points loss
bench important point removal plot

Maxpooled average removed
Maxpooled median removed
Maxpooled midrange removed
Maxpooled Random removed
Maxpooled Non Zeros removed
Average pooled average removed
Average pooled median removed
Average pooled midrange removed
Average pooled Random removed
Average pooled Non Zeros removed

Figure 6.6: Bench loss plot for the removal of important points for each pooling variant
and each threshold method with 500 batches used for every iteration.
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6.2.2 Removing unimportant points

In the following test sets only the unimportant points will be removed. In order to de-

termine which points are unimportant, the p-grad-CAM algorithm is applied once again.

All point scores T(p, wc) that are below a predefined threshold are considered unimpor-

tant and will be dropped. To calculate the thresholds we use similar equal-zero, random,

average, median and mid range methods as in the previous section as well as average

and maxpooling, to compute the accuracy and loss.

The resulting residual point clouds are then fed back into the network, to be consecu-

tively evaluated for their accuracy, loss and prediction changes. Since only low scoring

unimportant points are being removed, this time no major drop of accuracy and loss re-

spectively would be expected. This should be true because unimportant points should

not drive the network decision making at all. However this would only be the case if our

algorithm was indeed able to correctly identify the unimportant points and not falsely

delete important points as well in the process. Therefor incorrect methods, deleting false

positive points, would be expected to see an accuracy drop and respectively a raise of

loss over the course of the evaluation.

For a first test the airplane, bed and bench point cloud objects were chosen again in order

to have a comparison between the previous tests, that were removing important points.

So far they indeed confirm the good results shown on the previous section.

The current result plots of the accuracy and loss for the airplane, bed and bench object

can be seen on Figure 6.7,Figure 6.8,Figure 6.9,Figure 6.10,Figure 6.11 and Figure 6.12 on

page 49. It shows some very interesting results, as the majority of threshold approaches

drop almost immediately in accuracy down to zero. This means that these approaches

have deleted not only unimportant points but a fair number of important points as well.

Only the maxpooled equal-zero weight removal shows absolutely no drop in accuracy

and therefor no raise in loss at all, the same equal-zero but average pooled method how-

ever does drop in accuracy. This means as a consequence that removing those points

with weights of zero using the maxpooling approach for the gradient calculation, yields

the highest precision on removing the unimportant points, while leaving the important

points untouched. This also confirms the in the previous section observed better perfor-

mance of maxpooling versus average pooling. Even though this was not a given result, it

is not that much of a surprise considering that the original network used maxpooling too.

This reinforces the maxpooled equal-zero weight removal approach as a prime candidate

to be chosen for the final algorithm. However in order to finalize this choice, a greater

set of measurements and a comparison to a state-of-the-art method is required to get a

statistically more meaningful decision base, which is done in Section 6.3 on page 50.
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Figure 6.7: Airplane accuracy plot for the removal of unimportant points for each pooling
variant (maxpooled vs average-pooled) and each threshold method (random,
zero, arithmetic mean (average), median and mid range). Each iteration is the
average value calculated over 500 batches of the same point cloud object. Once
eligible points were removed the respective result point cloud is fed back into
the next iteration.
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Figure 6.8: Airplane loss plot for the removal of unimportant points for each pooling vari-
ant and each threshold method. Each iteration is the mean of 500 batches.
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Figure 6.9: Bed accuracy plot for the removal of unimportant points for each pooling vari-
ant and each threshold method with 500 batches.
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Figure 6.10: Bed loss plot for the removal of unimportant points for each pooling variant
and each threshold method with 500 batches.
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Figure 6.11: Bench accuracy plot for the removal of unimportant points for each pooling
variant and each threshold method with 500 batches.
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Figure 6.12: Bench loss plot for the removal of unimportant points for each pooling vari-
ant and each threshold method with 500 batches.
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6.3 Comparing p-grad-CAM to Saliency Maps

As a next step we need to compare the resulting visualisations of our p-grad-CAM algo-

rithm with the visual representations of the Saliency Maps [Zheng et al., 2018]. To gain a

quality metric we let both algorithms run until the prediction accuracy plummets below

0.5 and starts deviating from the ground truth. The resulting visualization shows the

points that had to be dropped until the prediction deviated, with each point colored by

their respective score weight, which can be observed on Figure 6.13.

Figure 6.13: Comparison of our p-grad-CAM heat map (left image) plot with the same
airplane point cloud object but with the saliency map algorithm applied to it
(right image).

This result is indeed peculiar as it shows that the non zero threshold approach removes

more then the minimal amount of points in order to change the prediction of the network.

This means that even though the non zero approach is the fastest to drop in accuracy, it

is also the method, that yields the least accurate heat map. Even though it does capture

the critical points that drive the decision making, it also removes too many other less

important points, which is unfortunate and rules this method out for the final algorithm.

This requires us to find a new thresholding candidate, so instead of removing every point

with a weight greater then zero, the point drop strategy is changed to only remove few

points with high scores, to see if the algorithm provides a more accurate result. The best

threshold method for this is surprisingly the mid range method, which showed the latest

occurring accuracy drop in our measurements. This means that the p-grad-CAM algo-

rithm will now also require more iterations before it concludes but now hopefully with a

more accurate visualization of the important regions compared to the non zero threshold.

Reason for this is that a lower number of points in each iteration is selected and dropped.

Therefor it takes more iterations and in consequence more runtime until all important

points were removed. This new approach also takes better account of the observation,

that points supersede each other in their importance scoring for the network. Meaning

that once the high score ranking points were removed, the previously low scoring points
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suddenly became more important for the network. This way the algorithm slowly works

through all the critical points without dropping too many less important points, which

should give a more precise visualization of the salient regions. The results of this new

visualization using the mid range threshold are displayed on Figure 6.14, Figure 6.16,

Figure 6.18 and Figure 6.20 over the following pages. For better comparability between

the two algorithms, the accuracy with respect to the remaining points has been plotted,

see Figure 6.15, Figure 6.17,Figure 6.19 and Figure 6.21 on page 55.

These plots show the main difference between the two algorithms, being that our al-

gorithm removes a dynamic amount of points and thus needs less iterations to finish but

seemingly also removes slightly more points then the Saliency Maps method in the pro-

cess. The Saliency Maps algorithm works by always removing a pre-defined constant

amount of points per iteration and the numbers of iterations itself. This requires hand

tweaking the values for the iterations and points removed per iteration. In this example

we tuned the saliency map to remove one point per iteration and then recompute the

gradient based on the changed point cloud. The number of necessary iterations was then

found by trying an arbitrary start value and then slowly adjust it until the prediction

deviated. Other configurations would also be possible like removing 20 points per iter-

ation. However the latter yields a lower accuracy on the results because the gradient is

updated only once per iteration. This means that 20 points are dropped without taking

the impact of the removal of each point into account. This yields a significant difference

in the outcome of the algorithm, see Figure 6.22 on page 55.

Figure 6.14: Airplane saliency map comparison between p-grad-CAM (left image) and
Saliency Maps (right image). Here p-grad-CAM dropped 1250 out of 2048
while Saliency Maps dropped 690 points, before the prediction deviated.
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Figure 6.15: Prediction accuracy of the airplane point cloud object with high scoring
points consecutively dropped until the prediction deviated.

Figure 6.16: Car object saliency map comparison between p-grad-CAM (left image) and
Saliency Maps [Zheng et al., 2018] (right image). Our approach dropped
671 out of 2048 points before the prediction deviated from the ground truth.
The saliency approach needed roughly the half with 345 points before their
prediction did not match the ground truth anymore.
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Figure 6.17: Prediction accuracy of the car point cloud object with respect to the remain-
ing points after each iteration for each used algorithm.

Figure 6.18: Cone saliency map comparison between p-grad-CAM (left image) and
Saliency Maps [Zheng et al., 2018] (right image). Our approach dropped
326 out of 2048 points before the prediction deviated from the ground truth.
The saliency only needed 59 points before their prediction deviated from the
ground truth.
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Figure 6.19: Prediction accuracy plot for the cone object, which shows the amount of re-
maining points, after the alorithms have terminated because the prediction
deviated from the ground truth.

Figure 6.20: Guitar object saliency map comparison between p-grad-CAM (left image)
and Saliency Maps [Zheng et al., 2018] (right image). Our approach dropped
810 out of 2048 points before the prediction deviated from the ground truth.
The saliency approach again needed less with only 440 points before their
prediction deviated too.
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Figure 6.21: Prediction accuracy for the guitar point cloud object with respect to the re-
maining points after each iteration of the algorithms.

Figure 6.22: Guitar object comparison of the saliency algorithm removing 1 point per it-
eration (top left image) to 20 points per iteration (top right image). Both
algorithms remove 440 points in total. Notice how the 20 points per iteration
looks very similar to the result of our p-grad-CAM algorithm (bottom right)
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6.4 Performance analysis

The comparisons, shown in the previous Section, however have a major issue. The

Saliency Maps algorithm requires the amount of points, that should be dropped and

the amount of necessary iterations, to be set a-priori by the user before starting the algo-

rithm. Therefor Saliency Maps, in its current form, does not qualify for any bulk anal-

ysis of the entire stock of 40 available shapes from the modelnet40_ply_hdf5_2048

database. The previous figures were all hand-crafted samples with a manually tuned

Saliency Maps algorithm, via trial and error, to produce the best visualization under the

minimal necessary amount of points to be removed.

However to still gain a meaningful comparison, it would be necessary to run both al-

gorithms on all 40 shapes available from the database, without having to tweak values

manually for each shape. This is only possible if the Saliency Maps approach would

work similar to our p-grad-CAM algorithm, self evaluating the removal of points with

respect to the impact on prediction accuracy. To achieve this we have slightly changed the

Saliency Maps algorithm code so that it removes one point per iteration and then eval-

uates the changed point cloud for prediction accuracy drop. This enables the Saliency

Maps algorithm to be used without any manual tweaking of variables, since the num-

ber of points removed is constant 1 and the number of iterations depends on the devi-

ation of the prediction. For better clarity we named this modified algorithm Adaptive

Saliency Maps (ASM). By using this altered algorithm, unsupervised automated bulk

processing of all 40 shapes available from the modelnet40_ply_hdf5_2048 database

becomes possible. In the following we collected the amount of points removed and the

required total algorithm run times for both the p-grad-CAM and ASM algorithm over

all 40 available shapes. The results can be observed on Figure 6.23, Figure 6.24, Fig-

ure 6.25, Figure 6.26, Figure 6.27, Figure 6.28, Figure 6.29 and Table 6.3 on page 64. It is

particularly interesting to see that the ASM test results further confirm the performance

observations of the hand-crafted samples using the original Saliency Maps algorithm.

It also shows that the ASM algorithm achieves a similar accuracy performance as the

original, which required tweaking values manually in a trial-and-error fashion, yet now

being much less time intensive. The results from Table 6.3 on page 64 also show how

the p-grad-CAM algorithm roughly requires in average about 638
364 ≈ 1.75 times more

points to be removed before the prediction changes compared to ASM. This observation

is congruent with the observations, where p-grad-CAM colors noticeable more points as

important then ASM does. This means that, by inversion of the premise, our approach

is about 638−364
638 · 100 ≈ 43% less accurate then the ASM approach, in regard of finding

the minimum amount of points necessary for a prediction change. It has to be mentioned

though, that the p-grad-CAM approach still contains the majority of the critical points

that ASM had as well, plus some additional less important points that did neither ap-

pear in the ASM nor the original Saliency Maps approach either. One result which is also

striking the eye is that the flower_pot,night_stand,person,stairs,stool and
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wardrobe had zero points removed for both algorithms. This indicates the there was

not even a single iteration executed because the prediction was never correct in the first

place. This was confirmed when we looked at the offending shapes using just the original

Pointnet and the prediction was still wrong. Pinpointing the exact reason for this could

be subject for future research.

Another remarkable result is the required run time of the p-grad-CAM approach com-

pared to the Adaptive Saliency Maps algorithm, which roughly yields a speedup of
263s
115s ≈ 2.287, see Table 6.3 on page 64 for details. So even though the ASM approach yields

a more accurate result, p-grad-CAM requires less time to finish, due to our thresholding

system which removes more points per iteration compared to ASM, see Figure 6.23,Fig-

ure 6.24,Figure 6.25,Figure 6.26,Figure 6.27 and Figure 6.23. This is not surprising since

removing more points results in less iterations to be required before the algorithm could

terminate. With the high computational cost of the evaluation, since the network has to

be queried a hundred times per iteration for a reliable averaged prediction result, less

iterations directly translate into less run time. Therefor in conclusion the p-grad-CAM

approach, in its current form, provides a good compromise between accuracy and run

time, proving that the grad-CAM [R. Selvaraju et al., 2017] concept is also applicable in

the realm of 3D point clouds.
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Figure 6.23: Change on the total remaining amount of points removed for each iteration
for each of the 40 available point cloud objects, respectively for both the p-
grad-CAM and ASM algorithm. All objects start with 2048 points and suc-
cessively have some points removed until the prediction changes. For better
readability the shapes have been split into sets of 5 objects for each algorithm
which are shown on the following pages.
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Figure 6.24: Change on the total remaining amount of points for each iteration of p-grad-
CAM, with shapes 1-10 of all 40 point cloud object highlighted via coloriza-
tion. All objects start with 2048 points and have p-grad-CAM remove points
until the prediction changes.
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Figure 6.25: Change on the total remaining amount of points for each iteration of p-grad-
CAM, with shapes 10-20 of all 40 point cloud object highlighted via coloriza-
tion. All objects start with 2048 points and have p-grad-CAM remove points
until the prediction changes.
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Figure 6.26: Change on the total remaining amount of points for each iteration of p-grad-
CAM, with shapes 20-30 of all 40 point cloud object highlighted via coloriza-
tion. All objects start with 2048 points and have p-grad-CAM remove points
until the prediction changes.
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Figure 6.27: Change on the total remaining amount of points for each iteration of p-grad-
CAM, with shapes 30-40 of all 40 point cloud object highlighted via coloriza-
tion. All objects start with 2048 points and have p-grad-CAM remove points
until the prediction changes.
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Figure 6.28: Total amount of removed points to make the prediction deviate from the
ground truth for each of the 40 shapes from the modelnet40_ply_hdf5_2048
database for both the p-grad-CAM and the ASM algorithm. All shapes ini-
tially contained 2048 points.
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Measured average algorithm performance
Used algorithms Average points removed Average Runtime
p-grad-CAM 638 115s
ASM 364 263s

Table 6.3: Average amount of points removed and average run time over all of the 40
shapes from the modelnet40_ply_hdf5_2048 database for both the p-grad-
CAM and the ASM algorithm. In conclusion p-grad-CAM is 638−364

638 · 100 ≈
43% less accurate but also 263s

115s ≈ 2.287 times as fast as ASM on average.
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7 Summary

In the previous chapters the base idea of the Point cloud gradient Class Activation Map-

ping (p-grad-CAM) was introduced. The mathematical foundations of the underlying

operations to retrieve the importance score weights T(p, wc) were discussed in a detailed

design choice study. The initial approach also included room for uncertainty on which

pooling or thresholding method to chose. These issues were examined in an ablation

study, to determine which candidates ultimately qualified to be adapted for the final al-

gorithm.

A possible weakness of Pointnet was then exposed when it became evident that Pointnet

rotated point clouds only around the Y-Axis to augment the data set. This observation

was backed by accuracy measurements of XYZ-Axis rotated point cloud objects which

showed a significant drop in accuracy. This problem was fixed by our custom written

rotation function. This required us to retrain the network to address this change in the

database augmentation which showed significant improvements on accuracy. The results

were then used to test the correctness of Point cloud gradient Class Activation Mapping

(p-grad-CAM) against test sets of randomly removed points, to see if our approach actu-

ally yields better-then-random results and can actually compete with a similar approach

called Adaptive Saliency Maps, which is a variation of Saliency Maps. In the very first

tests of Point cloud gradient Class Activation Mapping (p-grad-CAM) the points with

a greater-than-zero score removal approach looked the most promising regarding the

speed upon the p-grad-CAM algorithm terminated. However at this point there was no

significant quality metric for the algorithm available. As our method wasn’t compared

to another approach so far.

This changed once our p-grad-CAM algorithm was actually compared to the ASM method

which differed drastically from our initial results, where the initially chosen greater-than-

zero threshold method was used. After testing more threshold options it became evident

that the mid range threshold yielded the best results. This was not actually surprising as

it favors the most the removal of few important points, over many unimportant points

of all tested threshold methods and thus gives a more accurate result upon which points

are important for the network and which are not. Having all the test results available,

it was now possible to assemble the final version of the p-grad-CAM algorithm, for the

final bulk performance testing. The conducted tests then showed that the p-grad-CAM

algorithm removes more points compared to the ASM approach but also needs less time

to terminate. Whereas ASM is more accurate by having to remove less points before the

prediction deviated but also required more time to finish. The original Saliency Maps ap-
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proach had a very good performance runtime wise but required fine tuning the amount

of points that should be removed a-priori. This makes trial-and-error procedures neces-

sary to find the minimum amount of points that need to be removed in order to change

the network prediction. This in turn offset by the initial gain in runtime because a lot

of time is lost finding the best parameter configuration manually. Both the p-grad-CAM

and the ASM approach have the advantage that they self-evaluate the changed point

cloud for accuracy in each iteration and terminate once the prediction has deviated and

the accuracy is below 0.5 in value.

7.1 Results

The p-grad-CAM algorithm results, shown in the previous chapters, yield a very close

similarity over the areas of importance chosen by ASM. Still the ASM approach requires

less points than the p-grad-CAM to be removed to provoke a false classification result of

the network. This could not even be remedied in our algorithm by changing the point se-

lection strategy to removing single points instead of multiple points, chosen by a thresh-

old. In conclusion this means that p-grad-CAM yields a less accurate mapping of the

networks attention and the critical points that actually drive the decision process, com-

pared to the ASM algorithm. With p-grad-CAM it appears there exists more of a subset

relation to ASM, where the minimum amount of critical points found by p-grad-CAM,

is a subset of the amount of points detected by ASM. Another remarkable observation

is that points "obscure" the importance of other points. This means that points with a

previously lower importance score, suddenly had much higher scores values, once some

points with high scores were removed. Another surprising result is that the mid range

approach yielded the most accurate result here with the closest matching visual represen-

tation compared to ASM. Even though it was not the favourite pick from our first tests,

where other methods initially appeared more promising but turned out to remove too

many points in later tests. This is not very surprising as the mid range threshold favors

removing few points with high point weight scores, which is pretty similar to what ASM

does. Another issue that appeared in our tests was that, even if the original Saliency

Maps approach required less points to change the prediction from correct to wrong, it

had the downside of requiring the amount of points, that should be removed and the to-

tal amount of iterations themselves, to be set a-priori by the user. This inevitably requires

trial-and-error methods to find the minimum amount of points and iterations to make

the prediction change and therefor having captured the points of importance. This ren-

dered the Saliency Maps approach to be unsuited for unsupervised bulk processing of all

shapes, however such mass analysis of shapes was required to gain meaningful results.

These issues were fixed by a slight rewrite of the Saliency Maps algorithm, to allow for

automatic evaluation. This new variant was named Adaptive Saliency Maps (ASM) to

address its difference compared to the original algorithm.
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7.2 Discussion

The p-grad-CAM algorithm works by removing N points with score values higher then

a pre-defined threshold and then evaluates the resulting residual point cloud for its accu-

racy and prediction in every iteration until the prediction of the network deviates from

the ground truth. This yields the advantage that no major intervention of the user is re-

quired, to find a Class Activation Mapping (CAM) that captures the salient regions for

a given class label. This is an improvement over the original Saliency Maps which re-

quired user intervention to manually tweak the parameters, that determined the amount

of points removed per iteration and the total number of iterations themselves. However

due to the nature of using a threshold, instead of computing the importance for all points

and then removing only the highest scoring point, means that there is always the poten-

tial of more points being removed then the bare minimum. The reason for this is that

each change of the point cloud may have an impact on the score values of the remain-

ing points. Points that had one iteration before high values could suddenly have either

lower scores are get dominated by another point with a much higher value making the

point suddenly fall below the threshold. In our tests it turned out that using the thresh-

old method did indeed yield a 33% worse accuracy compared to computing the scores

individually for each point. However this also came at the cost of a 46.79 times worse

runtime. So the threshold design choice is ultimately a compromise between runtime

performance and accuracy. The airplane mid-range thresholded p-grad-CAM algorithm

for example needed approximately 1 minute to finish its calculations and display the

results to screen. Ideally our approach would remove the highest ranking point and re-

compute the weights for all points to take a possible weight change of the removed point

into account. However this ideal algorithm often didn’t even conclude after more then

15 minutes of runtime in our tests. The culprit of this bad performance can be traced

back to the Tensorflow sess.run() command. This effectively makes the evaluation

phase of our algorithm, where the changed point cloud is fed back to the network in or-

der to retrieve the accuracy, the main performance sink of p-grad-CAM. These fairly long

runtimes for both algorithms also makes them both unsuited for any kind of real time ap-

plication. However this is not that much of an issue considering that both p-grad-CAM

and ASM are intended for the purpose of "debugging" a network to visualize the respon-

sible parts of a point cloud shape for the current classification result of the network. So if

average runtime is the main concern for the application, then the p-grad-CAM would be

a good choice. The ASM algorithm would be better suited where the average accuracy of

the visualization is the preferred attribute over runtime performance.

7.3 Conclusion

In this paper a 3D point cloud based version of the original pixel image gradient-based

visual saliency region localisation grad-CAM [R. Selvaraju et al., 2017] is implemented
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to gain a better insight upon the critical points of importance for the reasoning of the

decision making process of Pointnet. To verify the correctness of the visualisation gen-

erated by the p-grad-CAM algorithm, it was compared to the performance of the Adap-

tive Saliency Maps (ASM) method, which is a variant of the Saliency Maps [R. Qi et al.,

2017] approach, measured in the number of points removed and runtime per algorithm.

Through ablative testing it was also possible to show the significance of our approach

compared to just randomly removing points from the point cloud.

Various possible design options were tested against each other to justify the choices made

in this paper that ultimately lead to the final implementation of the p-grad-CAM algo-

rithm. By finally setting the threshold to the mid range method, it was possible to get the

best accuracy versus performance compromise that made grad-CAM both terminate in

reasonable time and yield a result that is visually very similar to the results produced by

the ASM method. This has shown that the grad-CAM base idea is also applicable to the

realm of 3D point clouds applications and produces comparable results to a state-of-the-

art method such as Saliency Maps.

7.4 Future work

The Point cloud gradient Class Activation Mapping (p-grad-CAM) algorithm in its cur-

rent form however still shows room for improvements. Especially the performance is

still lacking when compared to the ASM algorithm. It has a much better run time per it-

eration than p-grad-CAM, which could be a possible opportunity to investigate the exact

reason behind this phenomenon. The visualisation could as well be subject for improve-

ment because during all conducted tests, p-grad-CAM always required more points to

be dropped before the prediction changed, compared to ASM. This issue was mainly at-

tributed to the way we chose the point drop candidates by applying a threshold instead

of evaluating each point individually. However in our tests it turned out, that even if

each point was evaluated individually without applying any kind of thresholding by

choosing only the highest scoring point like ASM does, then the p-grad-CAM algorithm

still produced an almost identical visualization comparable to the results that were us-

ing thresholds. This change of p-grad-CAM also came with a dramatically increased run

time which were orders of magnitude worse then the variant using thresholds to chose

the highest scoring points, Figure 7.1 on the next page shows the results of our findings.

Via profiling the involved code it was possible to trace the reason for this bad perfor-

mance back to the sess.run() command where the changed point cloud is evaluated

for both the accuracy and to retrieve the feature vector in order to compute the weights

for each point. It would be interesting to know if performance improvements are possible

by streamlining that function or using newer versions of Tensorflow.
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Figure 7.1: Comparison of the cone point cloud object removing one point per iteration
for both the ASM (left image) and our p-grad-CAM algorithm (right image).
The ideal p-grad-CAM algorithm, computing scores for each point individu-
ally, removed 219 points and terminated after 1411.393 seconds which is about
23.52 minutes. The ASM approach removed 91 points and terminated after
69.184 seconds. When using the p-grad-CAM with the mid range threshold
our algorithm removes 326 points and terminates after 24.798 seconds. So by
being 326−219

326 · 100 ≈ 33% less accurate with the mid range threshold than
the ideal algorithm, we achieve a speedup of Stime = 1411.393s

24.798s ≈ 46.79 for the
runtime performance.
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Appendice

Code listings

1 import numpy as np

2 def rotate_point_cloud(batch_data):

3 """ Randomly rotate the point clouds to augument the dataset

4 rotation is per shape based along up direction

5 Input:

6 BxNx3 array, original batch of point clouds

7 Return:

8 BxNx3 array, rotated batch of point clouds

9 """

10 rotated_data = np.zeros(batch_data.shape, dtype=np.float32)

11 for k in range(batch_data.shape[0]):

12 rotation_angle = np.random.uniform() * 2 * np.pi

13 cosval = np.cos(rotation_angle)

14 sinval = np.sin(rotation_angle)

15 rotation_matrix = np.array([[cosval, 0, sinval],

16 [0, 1, 0],

17 [-sinval, 0, cosval]])

18 shape_pc = batch_data[k, ...]

19 rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)),

20 rotation_matrix)

21 return rotated_data

Listing 7.1: Pointnet data augmentation via random rotation around the Y-Axis.

1 import numpy as np

2 def rotate_point_cloud_by_angle(batch_data, rotation_angle):

3 """ Rotate the point cloud along up direction with certain angle.

4 Input:

5 BxNx3 array, original batch of point clouds

6 Return:

7 BxNx3 array, rotated batch of point clouds

8 """

9 rotated_data = np.zeros(batch_data.shape, dtype=np.float32)

10 for k in range(batch_data.shape[0]):

11 #rotation_angle = np.random.uniform() * 2 * np.pi

12 cosval = np.cos(rotation_angle)
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13 sinval = np.sin(rotation_angle)

14 rotation_matrix = np.array([[cosval, 0, sinval],

15 [0, 1, 0],

16 [-sinval, 0, cosval]])

17 shape_pc = batch_data[k, ...]

18 rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)),

19 rotation_matrix)

20 return rotated_data

Listing 7.2: Pointnet data augmentation via a rotation of rotation_angle around the

Y-Axis.

1 import numpy as np

2 def rotate_point_cloud_XYZ(batch_data):

3 rotated_data = np.zeros(batch_data.shape, dtype=np.float32)

4 for k in range(batch_data.shape[0]):

5 rotation_angle_X = np.random.uniform() * 2 * np.pi

6 rotation_angle_Y = np.random.uniform() * 2 * np.pi

7 rotation_angle_Z = np.random.uniform() * 2 * np.pi

8 cosval_X = np.cos(rotation_angle_X)

9 sinval_X = np.sin(rotation_angle_X)

10 cosval_Y = np.cos(rotation_angle_Y)

11 sinval_Y = np.sin(rotation_angle_Y)

12 cosval_Z = np.cos(rotation_angle_Z)

13 sinval_Z = np.sin(rotation_angle_Z)

14 #--Rotate around the X-Axis

15 rotation_matrix_X = np.array([[1, 0, 0],

16 [0, cosval_X, -sinval_X],

17 [0, sinval_X, cosval_X]])

18 #--Rotate around the Y-Axis

19 rotation_matrix_Y = np.array([[cosval_Y, 0, sinval_Y],

20 [0, 1, 0],

21 [-sinval_Y, 0, cosval_Y]])

22 #--Rotate around the Z-Axis

23 rotation_matrix_Z = np.array([[cosval_Z, -sinval_Z, 0],

24 [sinval_Z, cosval_Z, 0],

25 [0, 0, 1]])

26 rotated_data[k, ...] = np.dot(batch_data[k, ...].reshape(

27 (-1, 3)), rotation_matrix_X)

28 rotated_data[k, ...] = np.dot(rotated_data[k, ...].reshape(

29 (-1, 3)), rotation_matrix_Y)

30 rotated_data[k, ...] = np.dot(rotated_data[k, ...].reshape(

31 (-1, 3)), rotation_matrix_Z)

32 return rotated_data

Listing 7.3: Improved data augmentation via rotation around the XYZ-Axis.
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