Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| //! Streaming decompression functionality. | |
| use super::*; | |
| use shared::{HUFFMAN_LENGTH_ORDER, update_adler32}; | |
| use std::{cmp, ptr, slice}; | |
| use self::output_buffer::OutputBuffer; | |
| pub const TINFL_LZ_DICT_SIZE: usize = 32_768; | |
| /// A struct containing huffman code lengths and the huffman code tree used by the decompressor. | |
| #[repr(C)] | |
| struct HuffmanTable { | |
| /// Length of the code at each index. | |
| pub code_size: [u8; MAX_HUFF_SYMBOLS_0], | |
| /// Fast lookup table for shorter huffman codes. | |
| /// | |
| /// See `HuffmanTable::fast_lookup`. | |
| pub look_up: [i16; FAST_LOOKUP_SIZE as usize], | |
| /// Full huffman tree. | |
| /// | |
| /// Positive values are edge nodes/symbols, negative values are | |
| /// parent nodes/references to other nodes. | |
| pub tree: [i16; MAX_HUFF_TREE_SIZE], | |
| } | |
| impl HuffmanTable { | |
| fn new() -> HuffmanTable { | |
| HuffmanTable { | |
| code_size: [0; MAX_HUFF_SYMBOLS_0], | |
| look_up: [0; FAST_LOOKUP_SIZE as usize], | |
| tree: [0; MAX_HUFF_TREE_SIZE], | |
| } | |
| } | |
| /// Look for a symbol in the fast lookup table. | |
| /// The symbol is stored in the lower 9 bits, the length in the next 6. | |
| /// If the returned value is negative, the code wasn't found in the | |
| /// fast lookup table and the full tree has to be traversed to find the code. | |
| #[inline] | |
| fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 { | |
| self.look_up[(bit_buf & (FAST_LOOKUP_SIZE - 1) as BitBuffer) as usize] | |
| } | |
| /// Get the symbol and the code length from the huffman tree. | |
| #[inline] | |
| fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u32) -> (i32, u32) { | |
| let mut symbol = fast_symbol; | |
| // We step through the tree until we encounter a positive value, which indicates a | |
| // symbol. | |
| loop { | |
| // symbol here indicates the position of the left (0) node, if the next bit is 1 | |
| // we add 1 to the lookup position to get the right node. | |
| symbol = self.tree[(!symbol + ((bit_buf >> code_len) & 1) as i32) as usize] as i32; | |
| code_len += 1; | |
| if symbol >= 0 { | |
| break; | |
| } | |
| } | |
| (symbol, code_len) | |
| } | |
| #[inline] | |
| /// Look up a symbol and code length from the bits in the provided bit buffer. | |
| /// | |
| /// Returns Some(symbol, length) on success, | |
| /// None if the length is 0. | |
| /// | |
| /// It's possible we could avoid checking for 0 if we can guarantee a sane table. | |
| /// TODO: Check if a smaller type for code_len helps performance. | |
| fn lookup(&self, bit_buf: BitBuffer) -> Option<(i32, u32)> { | |
| let symbol = self.fast_lookup(bit_buf).into(); | |
| if symbol >= 0 { | |
| if (symbol >> 9) as u32 != 0 { | |
| Some((symbol, (symbol >> 9) as u32)) | |
| } else { | |
| // Zero-length code. | |
| None | |
| } | |
| } else { | |
| // We didn't get a symbol from the fast lookup table, so check the tree instead. | |
| Some(self.tree_lookup(symbol.into(), bit_buf, FAST_LOOKUP_BITS.into())) | |
| } | |
| } | |
| } | |
| /// The number of huffman tables used. | |
| const MAX_HUFF_TABLES: usize = 3; | |
| /// The length of the first (literal/length) huffman table. | |
| const MAX_HUFF_SYMBOLS_0: usize = 288; | |
| /// The length of the second (distance) huffman table. | |
| const MAX_HUFF_SYMBOLS_1: usize = 32; | |
| /// The length of the last (huffman code length) huffman table. | |
| const _MAX_HUFF_SYMBOLS_2: usize = 19; | |
| /// The maximum length of a code that can be looked up in the fast lookup table. | |
| const FAST_LOOKUP_BITS: u8 = 10; | |
| /// The size of the fast lookup table. | |
| const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS; | |
| const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2; | |
| const LITLEN_TABLE: usize = 0; | |
| const DIST_TABLE: usize = 1; | |
| const HUFFLEN_TABLE: usize = 2; | |
| pub mod inflate_flags { | |
| /// Should we try to parse a zlib header? | |
| pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1; | |
| /// There is more input that hasn't been given to the decompressor yet. | |
| pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2; | |
| /// The output buffer should not wrap around. | |
| pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4; | |
| /// Should we calculate the adler32 checksum of the output data? | |
| pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8; | |
| } | |
| use self::inflate_flags::*; | |
| const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4]; | |
| #[cfg(target_pointer_width = "64")] | |
| type BitBuffer = u64; | |
| #[cfg(not(target_pointer_width = "64"))] | |
| type BitBuffer = u32; | |
| /// Main decompression struct. | |
| /// | |
| /// This is repr(C) to be usable in the C API. | |
| #[repr(C)] | |
| #[allow(bad_style)] | |
| pub struct DecompressorOxide { | |
| /// Current state of the decompressor. | |
| state: core::State, | |
| /// Number of bits in the bit buffer. | |
| num_bits: u32, | |
| /// Zlib CMF | |
| z_header0: u32, | |
| /// Zlib FLG | |
| z_header1: u32, | |
| /// Adler32 checksum from the zlib header. | |
| z_adler32: u32, | |
| /// 1 if the current block is the last block, 0 otherwise. | |
| finish: u32, | |
| /// The type of the current block. | |
| block_type: u32, | |
| /// 1 if the adler32 value should be checked. | |
| check_adler32: u32, | |
| /// Last match distance. | |
| dist: u32, | |
| /// Variable used for match length, symbols, and a number of other things. | |
| counter: u32, | |
| /// Number of extra bits for the last length or distance code. | |
| num_extra: u32, | |
| /// Number of entries in each huffman table. | |
| table_sizes: [u32; MAX_HUFF_TABLES], | |
| /// Buffer of input data. | |
| bit_buf: BitBuffer, | |
| /// Position in the output buffer. | |
| dist_from_out_buf_start: usize, | |
| /// Huffman tables. | |
| tables: [HuffmanTable; MAX_HUFF_TABLES], | |
| /// Raw block header. | |
| raw_header: [u8; 4], | |
| /// Huffman length codes. | |
| len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], | |
| } | |
| impl DecompressorOxide { | |
| /// Create a new tinfl_decompressor with all fields set to 0. | |
| pub fn new() -> DecompressorOxide { | |
| DecompressorOxide::default() | |
| } | |
| /// Create a new tinfl_decompressor with all fields set to 0. | |
| pub fn default() -> DecompressorOxide { | |
| DecompressorOxide { | |
| state: core::State::Start, | |
| num_bits: 0, | |
| z_header0: 0, | |
| z_header1: 0, | |
| z_adler32: 0, | |
| finish: 0, | |
| block_type: 0, | |
| check_adler32: 0, | |
| dist: 0, | |
| counter: 0, | |
| num_extra: 0, | |
| table_sizes: [0; MAX_HUFF_TABLES], | |
| bit_buf: 0, | |
| dist_from_out_buf_start: 0, | |
| // TODO:(oyvindln) Check that copies here are optimized out in release mode. | |
| tables: [HuffmanTable::new(), HuffmanTable::new(), HuffmanTable::new()], | |
| raw_header: [0; 4], | |
| len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], | |
| } | |
| } | |
| /// Set the current state to `Start`. | |
| #[inline] | |
| pub fn init(&mut self) { | |
| self.state = core::State::Start; | |
| } | |
| /// Create a new decompressor with only the state field initialized. | |
| /// | |
| /// This is how it's created in miniz. Unsafe due to uninitialized values. | |
| #[inline] | |
| pub unsafe fn with_init_state_only() -> DecompressorOxide { | |
| let mut decomp: DecompressorOxide = mem::uninitialized(); | |
| decomp.state = core::State::Start; | |
| decomp | |
| } | |
| /// Returns the adler32 checksum of the currently decompressed data. | |
| #[inline] | |
| pub fn adler32(&self) -> Option<u32> { | |
| if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 { | |
| Some(self.check_adler32) | |
| } else { | |
| None | |
| } | |
| } | |
| } | |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] | |
| #[repr(C)] | |
| enum State { | |
| Start = 0, | |
| ReadZlibCmf, | |
| ReadZlibFlg, | |
| ReadBlockHeader, | |
| BlockTypeNoCompression, | |
| RawHeader, | |
| RawMemcpy1, | |
| RawMemcpy2, | |
| ReadTableSizes, | |
| ReadHufflenTableCodeSize, | |
| ReadLitlenDistTablesCodeSize, | |
| ReadExtraBitsCodeSize, | |
| DecodeLitlen, | |
| WriteSymbol, | |
| ReadExtraBitsLitlen, | |
| DecodeDistance, | |
| ReadExtraBitsDistance, | |
| RawReadFirstByte, | |
| RawStoreFirstByte, | |
| WriteLenBytesToEnd, | |
| BlockDone, | |
| HuffDecodeOuterLoop1, | |
| HuffDecodeOuterLoop2, | |
| ReadAdler32, | |
| DoneForever, | |
| // Failure states. | |
| BlockTypeUnexpected, | |
| BadCodeSizeSum, | |
| BadTotalSymbols, | |
| BadZlibHeader, | |
| DistanceOutOfBounds, | |
| BadRawLength, | |
| BadCodeSizeDistPrevLookup, | |
| InvalidLitlen, | |
| InvalidDist, | |
| InvalidCodeLen, | |
| } | |
| impl State { | |
| fn is_failure(&self) -> bool { | |
| match *self { | |
| BlockTypeUnexpected => true, | |
| BadCodeSizeSum => true, | |
| BadTotalSymbols => true, | |
| BadZlibHeader => true, | |
| DistanceOutOfBounds => true, | |
| BadRawLength => true, | |
| BadCodeSizeDistPrevLookup => true, | |
| InvalidLitlen => true, | |
| InvalidDist => true, | |
| _ => false, | |
| } | |
| } | |
| #[inline] | |
| fn begin(&mut self, new_state: State) { | |
| *self = new_state; | |
| } | |
| } | |
| use self::State::*; | |
| // Not sure why miniz uses 32-bit values for these, maybe alignment/cache again? | |
| // # Optimization | |
| // We add a extra value at the end and make the tables 32 elements long | |
| // so we can use a mask to avoid bounds checks. | |
| // The invalid values are set to something high enough to avoid underflowing | |
| // the match length. | |
| /// Base length for each length code. | |
| /// | |
| /// The base is used together with the value of the extra bits to decode the actual | |
| /// length/distance values in a match. | |
| #[cfg_attr(rustfmt, rustfmt_skip)] | |
| const LENGTH_BASE: [u16; 32] = [ | |
| 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
| 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512 | |
| ]; | |
| /// Number of extra bits for each length code. | |
| #[cfg_attr(rustfmt, rustfmt_skip)] | |
| const LENGTH_EXTRA: [u8; 32] = [ | |
| 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
| 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0 | |
| ]; | |
| /// Base length for each distance code. | |
| #[cfg_attr(rustfmt, rustfmt_skip)] | |
| const DIST_BASE: [u16; 32] = [ | |
| 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, | |
| 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, | |
| 2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577, 32_768, 32_768 | |
| ]; | |
| /// Number of extra bits for each distance code. | |
| #[cfg_attr(rustfmt, rustfmt_skip)] | |
| const DIST_EXTRA: [u8; 32] = [ | |
| 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
| 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13 | |
| ]; | |
| /// The mask used when indexing the base/extra arrays. | |
| const BASE_EXTRA_MASK: usize = 32 - 1; | |
| /// Sets the value of all the elements of the slice to `val`. | |
| #[inline] | |
| fn memset<T: Copy>(slice: &mut [T], val: T) { | |
| for x in slice { | |
| *x = val | |
| } | |
| } | |
| /// Read an le u16 value from the slice iterator. | |
| /// | |
| /// # Panics | |
| /// Panics if there are less than two bytes left. | |
| #[inline] | |
| fn read_u16_le(iter: &mut slice::Iter<u8>) -> u16 { | |
| let ret = { | |
| let two_bytes = &iter.as_ref()[0..2]; | |
| // # Unsafe | |
| // | |
| // The slice was just bounds checked to be 2 bytes long. | |
| unsafe { ptr::read_unaligned(two_bytes.as_ptr() as *const u16) } | |
| }; | |
| iter.nth(1); | |
| u16::from_le(ret) | |
| } | |
| /// Read an le u32 value from the slice iterator. | |
| /// | |
| /// # Panics | |
| /// Panics if there are less than four bytes left. | |
| #[inline(always)] | |
| #[cfg(target_pointer_width = "64")] | |
| fn read_u32_le(iter: &mut slice::Iter<u8>) -> u32 { | |
| let ret = { | |
| let four_bytes = &iter.as_ref()[..4]; | |
| // # Unsafe | |
| // | |
| // The slice was just bounds checked to be 4 bytes long. | |
| unsafe { ptr::read_unaligned(four_bytes.as_ptr() as *const u32) } | |
| }; | |
| iter.nth(3); | |
| u32::from_le(ret) | |
| } | |
| /// Ensure that there is data in the bit buffer. | |
| /// | |
| /// On 64-bit platform, we use a 64-bit value so this will | |
| /// result in there being at least 32 bits in the bit buffer. | |
| /// This function assumes that there is at least 4 bytes left in the input buffer. | |
| #[inline(always)] | |
| #[cfg(target_pointer_width = "64")] | |
| fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) { | |
| // Read four bytes into the buffer at once. | |
| if l.num_bits < 30 { | |
| l.bit_buf |= (read_u32_le(in_iter) as BitBuffer) << l.num_bits; | |
| l.num_bits += 32; | |
| } | |
| } | |
| /// Same as previous, but for non-64-bit platforms. | |
| /// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer. | |
| #[inline(always)] | |
| #[cfg(not(target_pointer_width = "64"))] | |
| fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) { | |
| // If the buffer is 32-bit wide, read 2 bytes instead. | |
| if l.num_bits < 15 { | |
| l.bit_buf |= (read_u16_le(in_iter) as BitBuffer) << l.num_bits; | |
| l.num_bits += 16; | |
| } | |
| } | |
| #[inline] | |
| fn _transfer_unaligned_u64(buf: &mut &mut [u8], from: isize, to: isize) { | |
| unsafe { | |
| let mut data = ptr::read_unaligned((*buf).as_ptr().offset(from) as *const u32); | |
| ptr::write_unaligned((*buf).as_mut_ptr().offset(to) as *mut u32, data); | |
| data = ptr::read_unaligned((*buf).as_ptr().offset(from + 4) as *const u32); | |
| ptr::write_unaligned((*buf).as_mut_ptr().offset(to + 4) as *mut u32, data); | |
| }; | |
| } | |
| /// Check that the zlib header is correct and that there is enough space in the buffer | |
| /// for the window size specified in the header. | |
| /// | |
| /// See https://tools.ietf.org/html/rfc1950 | |
| #[inline] | |
| fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action { | |
| let mut failed = | |
| // cmf + flg should be divisible by 31. | |
| (((cmf * 256) + flg) % 31 != 0) || | |
| // If this flag is set, a dictionary was used for this zlib compressed data. | |
| // This is currently not supported by miniz or miniz-oxide | |
| ((flg & 0b0010_0000) != 0) || | |
| // Compression method. Only 8(DEFLATE) is defined by the standard. | |
| ((cmf & 15) != 8); | |
| let window_size = 1 << ((cmf >> 4) + 8); | |
| if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 { | |
| // Bail if the buffer is wrapping and the window size is larger than the buffer. | |
| failed |= (mask + 1) < window_size; | |
| } | |
| // Zlib doesn't allow window sizes above 32 * 1024. | |
| failed |= window_size > 32_768; | |
| if failed { | |
| Action::Jump(BadZlibHeader) | |
| } else { | |
| Action::Jump(ReadBlockHeader) | |
| } | |
| } | |
| enum Action { | |
| None, | |
| Jump(State), | |
| End(TINFLStatus), | |
| } | |
| /// Try to decode the next huffman code, and puts it in the counter field of the decompressor | |
| /// if successful. | |
| /// | |
| /// # Returns | |
| /// The specified action returned from `f` on success, | |
| /// `Action::End` if there are not enough data left to decode a symbol. | |
| fn decode_huffman_code<F>( | |
| r: &mut DecompressorOxide, | |
| l: &mut LocalVars, | |
| table: usize, | |
| flags: u32, | |
| in_iter: &mut slice::Iter<u8>, | |
| f: F, | |
| ) -> Action | |
| where | |
| F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action, | |
| { | |
| // As the huffman codes can be up to 15 bits long we need at least 15 bits | |
| // ready in the bit buffer to start decoding the next huffman code. | |
| if l.num_bits < 15 { | |
| // First, make sure there is enough data in the bit buffer to decode a huffman code. | |
| if in_iter.len() < 2 { | |
| // If there is less than 2 bytes left in the input buffer, we try to look up | |
| // the huffman code with what's available, and return if that doesn't succeed. | |
| // Original explanation in miniz: | |
| // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes | |
| // * remaining in the input buffer falls below 2. */ | |
| // /* It reads just enough bytes from the input stream that are needed to decode | |
| // * the next Huffman code (and absolutely no more). It works by trying to fully | |
| // * decode a */ | |
| // /* Huffman code by using whatever bits are currently present in the bit buffer. | |
| // * If this fails, it reads another byte, and tries again until it succeeds or | |
| // * until the */ | |
| // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ | |
| loop { | |
| let mut temp = r.tables[table].fast_lookup(l.bit_buf) as i32; | |
| if temp >= 0 { | |
| let code_len = (temp >> 9) as u32; | |
| if (code_len != 0) && (l.num_bits >= code_len) { | |
| break; | |
| } | |
| } else if l.num_bits > FAST_LOOKUP_BITS.into() { | |
| let mut code_len = FAST_LOOKUP_BITS as u32; | |
| loop { | |
| temp = r.tables[table] | |
| .tree[(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize] as i32; | |
| code_len += 1; | |
| if temp >= 0 || l.num_bits < code_len + 1 { | |
| break; | |
| } | |
| } | |
| if temp >= 0 { | |
| break; | |
| } | |
| } | |
| // TODO: miniz jumps straight to here after getting here again after failing to read | |
| // a byte. | |
| // Doing that lets miniz avoid re-doing the lookup that that was done in the | |
| // previous call. | |
| let mut byte = 0; | |
| if let a @ Action::End(_) = | |
| read_byte(in_iter, flags, |b| { | |
| byte = b; | |
| Action::None | |
| }) | |
| { | |
| return a; | |
| }; | |
| // Do this outside closure for now to avoid borrowing r. | |
| l.bit_buf |= (byte as BitBuffer) << l.num_bits; | |
| l.num_bits += 8; | |
| if l.num_bits >= 15 { | |
| break; | |
| } | |
| } | |
| } else { | |
| // There is enough data in the input buffer, so read the next two bytes | |
| // and add them to the bit buffer. | |
| // Unwrapping here is fine since we just checked that there are at least two | |
| // bytes left. | |
| l.bit_buf |= (read_u16_le(in_iter) as BitBuffer) << l.num_bits; | |
| l.num_bits += 16; | |
| } | |
| } | |
| // We now have at least 15 bits in the input buffer. | |
| let mut symbol = r.tables[table].fast_lookup(l.bit_buf) as i32; | |
| let code_len; | |
| // If the symbol was found in the fast lookup table. | |
| if symbol >= 0 { | |
| // Get the length value from the top bits. | |
| // As we shift down the sign bit, converting to an unsigned value | |
| // shouldn't overflow. | |
| code_len = (symbol >> 9) as u32; | |
| // Mask out the length value. | |
| symbol &= 511; | |
| } else { | |
| let res = r.tables[table].tree_lookup(symbol, l.bit_buf, FAST_LOOKUP_BITS as u32); | |
| symbol = res.0; | |
| code_len = res.1 as u32; | |
| }; | |
| if code_len == 0 { | |
| return Action::Jump(InvalidCodeLen); | |
| } | |
| l.bit_buf >>= code_len as u32; | |
| l.num_bits -= code_len; | |
| f(r, l, symbol) | |
| } | |
| #[inline] | |
| fn read_byte<F>(in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action | |
| where | |
| F: FnOnce(u8) -> Action, | |
| { | |
| match in_iter.next() { | |
| None => end_of_input(flags), | |
| Some(&byte) => f(byte), | |
| } | |
| } | |
| // TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always)) | |
| #[inline] | |
| fn read_bits<F>( | |
| l: &mut LocalVars, | |
| amount: u32, | |
| in_iter: &mut slice::Iter<u8>, | |
| flags: u32, | |
| f: F, | |
| ) -> Action | |
| where | |
| F: FnOnce(&mut LocalVars, BitBuffer) -> Action, | |
| { | |
| while l.num_bits < amount { | |
| match read_byte(in_iter, flags, |byte| { | |
| l.bit_buf |= (byte as BitBuffer) << l.num_bits; | |
| l.num_bits += 8; | |
| Action::None | |
| }) { | |
| Action::None => (), | |
| action => return action, | |
| } | |
| } | |
| let bits = l.bit_buf & ((1 << amount) - 1); | |
| l.bit_buf >>= amount; | |
| l.num_bits -= amount; | |
| f(l, bits) | |
| } | |
| #[inline] | |
| fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action | |
| where | |
| F: FnOnce(&mut LocalVars) -> Action, | |
| { | |
| let num_bits = l.num_bits & 7; | |
| read_bits(l, num_bits, in_iter, flags, |l, _| f(l)) | |
| } | |
| #[inline] | |
| fn end_of_input(flags: u32) -> Action { | |
| Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 { | |
| TINFLStatus::NeedsMoreInput | |
| } else { | |
| TINFLStatus::FailedCannotMakeProgress | |
| }) | |
| } | |
| #[inline] | |
| fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 { | |
| let res = cmp::min(l.num_bits >> 3, max); | |
| l.num_bits -= res << 3; | |
| res | |
| } | |
| fn start_static_table(r: &mut DecompressorOxide) { | |
| r.table_sizes[LITLEN_TABLE] = 288; | |
| r.table_sizes[DIST_TABLE] = 32; | |
| memset(&mut r.tables[LITLEN_TABLE].code_size[0..144], 8); | |
| memset(&mut r.tables[LITLEN_TABLE].code_size[144..256], 9); | |
| memset(&mut r.tables[LITLEN_TABLE].code_size[256..280], 7); | |
| memset(&mut r.tables[LITLEN_TABLE].code_size[280..288], 8); | |
| memset(&mut r.tables[DIST_TABLE].code_size[0..32], 5); | |
| } | |
| fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Action { | |
| loop { | |
| let table = &mut r.tables[r.block_type as usize]; | |
| let table_size = r.table_sizes[r.block_type as usize] as usize; | |
| let mut total_symbols = [0u32; 16]; | |
| let mut next_code = [0u32; 17]; | |
| memset(&mut table.look_up[..], 0); | |
| memset(&mut table.tree[..], 0); | |
| for &code_size in &table.code_size[..table_size] { | |
| total_symbols[code_size as usize] += 1; | |
| } | |
| let mut used_symbols = 0; | |
| let mut total = 0; | |
| for i in 1..16 { | |
| used_symbols += total_symbols[i]; | |
| total += total_symbols[i]; | |
| total <<= 1; | |
| next_code[i + 1] = total; | |
| } | |
| if total != 65_536 && used_symbols > 1 { | |
| return Action::Jump(BadTotalSymbols); | |
| } | |
| let mut tree_next = -1; | |
| for symbol_index in 0..table_size { | |
| let mut rev_code = 0; | |
| let code_size = table.code_size[symbol_index]; | |
| if code_size == 0 { | |
| continue; | |
| } | |
| let mut cur_code = next_code[code_size as usize]; | |
| next_code[code_size as usize] += 1; | |
| for _ in 0..code_size { | |
| rev_code = (rev_code << 1) | (cur_code & 1); | |
| cur_code >>= 1; | |
| } | |
| if code_size <= FAST_LOOKUP_BITS { | |
| let k = ((code_size as i16) << 9) | symbol_index as i16; | |
| while rev_code < FAST_LOOKUP_SIZE { | |
| table.look_up[rev_code as usize] = k; | |
| rev_code += 1 << code_size; | |
| } | |
| continue; | |
| } | |
| let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize]; | |
| if tree_cur == 0 { | |
| table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next as | |
| i16; | |
| tree_cur = tree_next; | |
| tree_next -= 2; | |
| } | |
| rev_code >>= FAST_LOOKUP_BITS - 1; | |
| for _ in FAST_LOOKUP_BITS + 1..code_size { | |
| rev_code >>= 1; | |
| tree_cur -= (rev_code & 1) as i16; | |
| if table.tree[(-tree_cur - 1) as usize] == 0 { | |
| table.tree[(-tree_cur - 1) as usize] = tree_next as i16; | |
| tree_cur = tree_next; | |
| tree_next -= 2; | |
| } else { | |
| tree_cur = table.tree[(-tree_cur - 1) as usize]; | |
| } | |
| } | |
| rev_code >>= 1; | |
| tree_cur -= (rev_code & 1) as i16; | |
| table.tree[(-tree_cur - 1) as usize] = symbol_index as i16; | |
| } | |
| if r.block_type == 2 { | |
| l.counter = 0; | |
| return Action::Jump(ReadLitlenDistTablesCodeSize); | |
| } | |
| if r.block_type == 0 { | |
| break; | |
| } | |
| r.block_type -= 1; | |
| } | |
| l.counter = 0; | |
| Action::Jump(DecodeLitlen) | |
| } | |
| // A helper macro for generating the state machine. | |
| // | |
| // As Rust doesn't have fallthrough on matches, we have to return to the match statement | |
| // and jump for each state change. (Which would ideally be optimized away, but often isn't.) | |
| macro_rules! generate_state { | |
| ($state: ident, $state_machine: tt, $f: expr) => { | |
| loop { | |
| match $f { | |
| Action::None => continue, | |
| Action::Jump(new_state) => { | |
| $state = new_state; | |
| continue $state_machine; | |
| }, | |
| Action::End(result) => break $state_machine result, | |
| } | |
| } | |
| }; | |
| } | |
| #[derive(Copy, Clone)] | |
| struct LocalVars { | |
| pub bit_buf: BitBuffer, | |
| pub num_bits: u32, | |
| pub dist: u32, | |
| pub counter: u32, | |
| pub num_extra: u32, | |
| pub dist_from_out_buf_start: usize, | |
| } | |
| #[inline] | |
| fn transfer( | |
| out_slice: &mut [u8], | |
| mut source_pos: usize, | |
| mut out_pos: usize, | |
| match_len: usize, | |
| out_buf_size_mask: usize, | |
| ) { | |
| debug_assert!(out_pos + match_len <= out_slice.len()); | |
| for _ in 0..match_len >> 2 { | |
| out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; | |
| out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; | |
| out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; | |
| out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask]; | |
| source_pos += 4; | |
| out_pos += 4; | |
| } | |
| match match_len & 3 { | |
| 0 => (), | |
| 1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask], | |
| 2 => { | |
| out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; | |
| out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; | |
| }, | |
| 3 => { | |
| out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; | |
| out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; | |
| out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; | |
| }, | |
| _ => unreachable!(), | |
| } | |
| } | |
| /// Presumes that there is at least match_len bytes in output left. | |
| #[inline] | |
| fn apply_match( | |
| out_slice: &mut [u8], | |
| out_pos: usize, | |
| dist: usize, | |
| match_len: usize, | |
| out_buf_size_mask: usize, | |
| ) { | |
| debug_assert!(out_pos + match_len <= out_slice.len()); | |
| let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask; | |
| if match_len == 3 { | |
| // Fast path for match len 3. | |
| out_slice[out_pos] = out_slice[source_pos]; | |
| out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; | |
| out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; | |
| return; | |
| } | |
| if cfg!(not(any(target_arch = "x86", target_arch = "x86_64"))) { | |
| // We are not on x86 so copy manually. | |
| transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); | |
| return; | |
| } | |
| if source_pos >= out_pos && (source_pos - out_pos) < match_len { | |
| transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); | |
| } else if match_len <= dist && source_pos + match_len < out_slice.len() { | |
| // Destination and source segments does not intersect and source does not wrap. | |
| if source_pos < out_pos { | |
| let (from_slice, to_slice) = out_slice.split_at_mut(out_pos); | |
| to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]); | |
| } else { | |
| let (to_slice, from_slice) = out_slice.split_at_mut(source_pos); | |
| to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]); | |
| } | |
| } else { | |
| transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); | |
| } | |
| } | |
| /// Fast inner decompression loop which is run while there is at least | |
| /// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer | |
| /// (The maximum one match would need + 1). | |
| /// | |
| /// This was inspired by a similar optimization in zlib, which uses this info to do | |
| /// faster unchecked copies of multiple bytes at a time. | |
| /// Currently we don't do this here, but this function does avoid having to jump through the | |
| /// big match loop on each state change(as rust does not have fallthrough or gotos at the moment), | |
| /// and already improves decompression speed a fair bit. | |
| fn decompress_fast( | |
| r: &mut DecompressorOxide, | |
| mut in_iter: &mut slice::Iter<u8>, | |
| out_buf: &mut OutputBuffer, | |
| flags: u32, | |
| local_vars: &mut LocalVars, | |
| out_buf_size_mask: usize, | |
| ) -> (TINFLStatus, State) { | |
| // Make a local copy of the most used variables, to avoid having to update and read from values | |
| // in a random memory location and to encourage more register use. | |
| let mut l = *local_vars; | |
| let mut state; | |
| let status: TINFLStatus = 'o: loop { | |
| state = State::DecodeLitlen; | |
| 'litlen: loop { | |
| // This function assumes that there is at least 259 bytes left in the output buffer, | |
| // and that there is at least 14 bytes left in the input buffer. 14 input bytes: | |
| // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist) | |
| // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes | |
| // We need the one extra byte as we may write one length and one full match | |
| // before checking again. | |
| if out_buf.bytes_left() < 259 || in_iter.len() < 14 { | |
| state = State::DecodeLitlen; | |
| break 'o TINFLStatus::Done; | |
| } | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { | |
| l.counter = symbol as u32; | |
| l.bit_buf >>= code_len; | |
| l.num_bits -= code_len; | |
| if (l.counter & 256) != 0 { | |
| // The symbol is not a literal. | |
| break; | |
| } else { | |
| // If we have a 32-bit buffer we need to read another two bytes now | |
| // to have enough bits to keep going. | |
| if cfg!(not(target_pointer_width = "64")) { | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| } | |
| if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { | |
| l.bit_buf >>= code_len; | |
| l.num_bits -= code_len; | |
| // The previous symbol was a literal, so write it directly and check | |
| // the next one. | |
| out_buf.write_byte(l.counter as u8); | |
| if (symbol & 256) != 0 { | |
| l.counter = symbol as u32; | |
| // The symbol is a length value. | |
| break; | |
| } else { | |
| // The symbol is a literal, so write it directly and continue. | |
| out_buf.write_byte(symbol as u8); | |
| } | |
| } else { | |
| state.begin(InvalidCodeLen); | |
| break 'o TINFLStatus::Failed; | |
| } | |
| } | |
| } else { | |
| state.begin(InvalidCodeLen); | |
| break 'o TINFLStatus::Failed; | |
| } | |
| } | |
| // Mask the top bits since they may contain length info. | |
| l.counter &= 511; | |
| if l.counter == 256 { | |
| // We hit the end of block symbol. | |
| state.begin(BlockDone); | |
| break 'o TINFLStatus::Done; | |
| } else if l.counter > 285 { | |
| // Invalid code. | |
| // We already verified earlier that the code is > 256. | |
| state.begin(InvalidLitlen); | |
| break 'o TINFLStatus::Failed; | |
| } else { | |
| // The symbol was a length code. | |
| // # Optimization | |
| // Mask the value to avoid bounds checks | |
| // We could use get_unchecked later if can statically verify that | |
| // this will never go out of bounds. | |
| l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32; | |
| l.counter = LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32; | |
| // Length and distance codes have a number of extra bits depending on | |
| // the base, which together with the base gives us the exact value. | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| if l.num_extra != 0 { | |
| let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); | |
| l.bit_buf >>= l.num_extra; | |
| l.num_bits -= l.num_extra; | |
| l.counter += extra_bits as u32; | |
| } | |
| // We found a length code, so a distance code should follow. | |
| if cfg!(not(target_pointer_width = "64")) { | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| } | |
| if let Some((mut symbol, code_len)) = r.tables[DIST_TABLE].lookup(l.bit_buf) { | |
| symbol &= 511; | |
| l.bit_buf >>= code_len; | |
| l.num_bits -= code_len; | |
| if symbol > 29 { | |
| state.begin(InvalidDist); | |
| break 'o TINFLStatus::Failed; | |
| } | |
| l.num_extra = DIST_EXTRA[symbol as usize] as u32; | |
| l.dist = DIST_BASE[symbol as usize] as u32; | |
| } else { | |
| state.begin(InvalidCodeLen); | |
| break 'o TINFLStatus::Failed; | |
| } | |
| if l.num_extra != 0 { | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); | |
| l.bit_buf >>= l.num_extra; | |
| l.num_bits -= l.num_extra; | |
| l.dist += extra_bits as u32; | |
| } | |
| l.dist_from_out_buf_start = out_buf.position(); | |
| if l.dist as usize > l.dist_from_out_buf_start && | |
| (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) | |
| { | |
| // We encountered a distance that refers a position before | |
| // the start of the decoded data, so we can't continue. | |
| state.begin(DistanceOutOfBounds); | |
| break TINFLStatus::Failed; | |
| } | |
| apply_match( | |
| out_buf.get_mut(), | |
| l.dist_from_out_buf_start, | |
| l.dist as usize, | |
| l.counter as usize, | |
| out_buf_size_mask, | |
| ); | |
| out_buf.set_position(l.dist_from_out_buf_start + l.counter as usize); | |
| } | |
| }; | |
| *local_vars = l; | |
| (status, state) | |
| } | |
| /// Main decompression function. Keeps decompressing data from `in_buf` until the in_buf is emtpy, | |
| /// out_cur is full, the end of the deflate stream is hit, or there is an error in the deflate | |
| /// stream. | |
| /// | |
| /// # Arguments | |
| /// | |
| /// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will | |
| /// start at the first byte of this buffer. | |
| /// | |
| /// `out_cur` is a mutable cursor into the buffer that will store the decompressed data, and that | |
| /// stores previously decompressed data if any. | |
| /// * The position of the output cursor indicates where in the output buffer slice writing should | |
| /// start. | |
| /// * The decompression function normally needs access to 32KiB of the previously decompressed data | |
| ///(or to the beginning of the decompressed data if less than 32KiB has been decompressed.) | |
| /// - If this data is not available, decompression may fail. | |
| /// - Some deflate compressors allow specifying a window size which limits match distances to | |
| /// less than this, or alternatively an RLE mode where matches will only refer to the previous byte | |
| /// and thus allows a smaller output buffer. The window size can be specified in the zlib | |
| /// header structure, however, the header data should not be relied on to be correct. | |
| /// | |
| /// `flags` | |
| /// Flags to indicate settings and status to the decompression function. | |
| /// * The `TINFL_FLAG_HAS_MORE_INPUT` has to be specified if more compressed data is to be provided | |
| /// in a subsequent call to this function. | |
| /// * See the the [`inflate_flags`](inflate_flags/index.html) module for details on other flags. | |
| /// | |
| /// # Returns | |
| /// returns a tuple containing the status of the compressor, the number of input bytes read, and the | |
| /// number of bytes output to `out_cur`. | |
| /// Updates the position of `out_cur` to point to the next free spot in the output buffer. | |
| /// | |
| /// This function shouldn't panic pending any bugs. | |
| pub fn decompress( | |
| r: &mut DecompressorOxide, | |
| in_buf: &[u8], | |
| out_cur: &mut Cursor<&mut [u8]>, | |
| flags: u32, | |
| ) -> (TINFLStatus, usize, usize) { | |
| let res = decompress_inner(r, in_buf, out_cur, flags); | |
| let new_pos = out_cur.position() + res.2 as u64; | |
| out_cur.set_position(new_pos); | |
| res | |
| } | |
| #[inline] | |
| fn decompress_inner( | |
| r: &mut DecompressorOxide, | |
| in_buf: &[u8], | |
| out_cur: &mut Cursor<&mut [u8]>, | |
| flags: u32, | |
| ) -> (TINFLStatus, usize, usize) { | |
| let out_buf_start_pos = out_cur.position() as usize; | |
| let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 { | |
| usize::max_value() | |
| } else { | |
| // In the case of zero len, any attempt to write would produce HasMoreOutput, | |
| // so to gracefully process the case of there really being no output, | |
| // set the mask to all zeros. | |
| out_cur.get_ref().len().saturating_sub(1) | |
| }; | |
| // Ensure the output buffer's size is a power of 2, unless the output buffer | |
| // is large enough to hold the entire output file (in which case it doesn't | |
| // matter). | |
| // Also make sure that the output buffer position is not past the end of the output buffer. | |
| if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || | |
| out_cur.position() > out_cur.get_ref().len() as u64 { | |
| return (TINFLStatus::BadParam, 0, 0); | |
| } | |
| let mut in_iter = in_buf.iter(); | |
| let mut state = r.state; | |
| let mut out_buf = OutputBuffer::from_slice_and_pos(out_cur.get_mut(), out_buf_start_pos); | |
| // TODO: Borrow instead of Copy | |
| let mut l = LocalVars { | |
| bit_buf: r.bit_buf, | |
| num_bits: r.num_bits, | |
| dist: r.dist, | |
| counter: r.counter, | |
| num_extra: r.num_extra, | |
| dist_from_out_buf_start: r.dist_from_out_buf_start, | |
| }; | |
| let mut status = 'state_machine: loop { | |
| match state { | |
| Start => generate_state!(state, 'state_machine, { | |
| l.bit_buf = 0; | |
| l.num_bits = 0; | |
| l.dist = 0; | |
| l.counter = 0; | |
| l.num_extra = 0; | |
| r.z_header0 = 0; | |
| r.z_header1 = 0; | |
| r.z_adler32 = 1; | |
| r.check_adler32 = 1; | |
| if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { | |
| Action::Jump(State::ReadZlibCmf) | |
| } else { | |
| Action::Jump(State::ReadBlockHeader) | |
| } | |
| }), | |
| ReadZlibCmf => generate_state!(state, 'state_machine, { | |
| read_byte(&mut in_iter, flags, |cmf| { | |
| r.z_header0 = cmf as u32; | |
| Action::Jump(State::ReadZlibFlg) | |
| }) | |
| }), | |
| ReadZlibFlg => generate_state!(state, 'state_machine, { | |
| read_byte(&mut in_iter, flags, |flg| { | |
| r.z_header1 = flg as u32; | |
| validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask) | |
| }) | |
| }), | |
| // Read the block header and jump to the relevant section depending on the block type. | |
| ReadBlockHeader => generate_state!(state, 'state_machine, { | |
| read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { | |
| r.finish = (bits & 1) as u32; | |
| r.block_type = (bits >> 1) as u32 & 3; | |
| match r.block_type { | |
| 0 => Action::Jump(BlockTypeNoCompression), | |
| 1 => { | |
| start_static_table(r); | |
| init_tree(r, l) | |
| }, | |
| 2 => { | |
| l.counter = 0; | |
| Action::Jump(ReadTableSizes) | |
| }, | |
| 3 => Action::Jump(BlockTypeUnexpected), | |
| _ => unreachable!() | |
| } | |
| }) | |
| }), | |
| // Raw/Stored/uncompressed block. | |
| BlockTypeNoCompression => generate_state!(state, 'state_machine, { | |
| pad_to_bytes(&mut l, &mut in_iter, flags, |l| { | |
| l.counter = 0; | |
| Action::Jump(RawHeader) | |
| }) | |
| }), | |
| // Check that the raw block header is correct. | |
| RawHeader => generate_state!(state, 'state_machine, { | |
| if l.counter < 4 { | |
| // Read block length and block length check. | |
| if l.num_bits != 0 { | |
| read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { | |
| r.raw_header[l.counter as usize] = bits as u8; | |
| l.counter += 1; | |
| Action::None | |
| }) | |
| } else { | |
| read_byte(&mut in_iter, flags, |byte| { | |
| r.raw_header[l.counter as usize] = byte; | |
| l.counter += 1; | |
| Action::None | |
| }) | |
| } | |
| } else { | |
| // Check if the length value of a raw block is correct. | |
| // The 2 first (2-byte) words in a raw header are the length and the | |
| // ones complement of the length. | |
| let length = r.raw_header[0] as u16 | ((r.raw_header[1] as u16) << 8); | |
| let check = r.raw_header[2] as u16 | ((r.raw_header[3] as u16) << 8); | |
| let valid = length == !check; | |
| l.counter = length.into(); | |
| if !valid { | |
| Action::Jump(BadRawLength) | |
| } else if l.counter == 0 { | |
| // Empty raw block. Sometimes used for synchronization. | |
| Action::Jump(BlockDone) | |
| } else if l.num_bits != 0 { | |
| // There is some data in the bit buffer, so we need to write that first. | |
| Action::Jump(RawReadFirstByte) | |
| } else { | |
| // The bit buffer is empty, so memcpy the rest of the uncompressed data from | |
| // the block. | |
| Action::Jump(RawMemcpy1) | |
| } | |
| } | |
| }), | |
| // Read the byte from the bit buffer. | |
| RawReadFirstByte => generate_state!(state, 'state_machine, { | |
| read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { | |
| l.dist = bits as u32; | |
| Action::Jump(RawStoreFirstByte) | |
| }) | |
| }), | |
| // Write the byte we just read to the output buffer. | |
| RawStoreFirstByte => generate_state!(state, 'state_machine, { | |
| if out_buf.bytes_left() == 0 { | |
| Action::End(TINFLStatus::HasMoreOutput) | |
| } else { | |
| out_buf.write_byte(l.dist as u8); | |
| l.counter -= 1; | |
| if l.counter == 0 || l.num_bits == 0 { | |
| Action::Jump(RawMemcpy1) | |
| } else { | |
| // There is still some data left in the bit buffer that needs to be output. | |
| // TODO: Changed this to jump to `RawReadfirstbyte` rather than | |
| // `RawStoreFirstByte` as that seemed to be the correct path, but this | |
| // needs testing. | |
| Action::Jump(RawReadFirstByte) | |
| } | |
| } | |
| }), | |
| RawMemcpy1 => generate_state!(state, 'state_machine, { | |
| if l.counter == 0 { | |
| Action::Jump(BlockDone) | |
| } else if out_buf.bytes_left() == 0 { | |
| Action::End(TINFLStatus::HasMoreOutput) | |
| } else { | |
| Action::Jump(RawMemcpy2) | |
| } | |
| }), | |
| RawMemcpy2 => generate_state!(state, 'state_machine, { | |
| if in_iter.len() > 0 { | |
| // Copy as many raw bytes as possible from the input to the output using memcpy. | |
| // Raw block lengths are limited to 64 * 1024, so casting through usize and u32 | |
| // is not an issue. | |
| let space_left = out_buf.bytes_left(); | |
| let bytes_to_copy = cmp::min(cmp::min( | |
| space_left, | |
| in_iter.len()), | |
| l.counter as usize | |
| ); | |
| out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]); | |
| (&mut in_iter).nth(bytes_to_copy - 1); | |
| l.counter -= bytes_to_copy as u32; | |
| Action::Jump(RawMemcpy1) | |
| } else { | |
| end_of_input(flags) | |
| } | |
| }), | |
| // Read how many huffman codes/symbols are used for each table. | |
| ReadTableSizes => generate_state!(state, 'state_machine, { | |
| if l.counter < 3 { | |
| let num_bits = [5, 5, 4][l.counter as usize]; | |
| read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| { | |
| r.table_sizes[l.counter as usize] = | |
| bits as u32 + MIN_TABLE_SIZES[l.counter as usize] as u32; | |
| l.counter += 1; | |
| Action::None | |
| }) | |
| } else { | |
| memset(&mut r.tables[HUFFLEN_TABLE].code_size[..], 0); | |
| l.counter = 0; | |
| Action::Jump(ReadHufflenTableCodeSize) | |
| } | |
| }), | |
| // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used | |
| // to decode the lengths of the main tables. | |
| ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, { | |
| if l.counter < r.table_sizes[HUFFLEN_TABLE] { | |
| read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { | |
| // These lengths are not stored in a normal ascending order, but rather one | |
| // specified by the deflate specification intended to put the most used | |
| // values at the front as trailing zero lengths do not have to be stored. | |
| r.tables[HUFFLEN_TABLE] | |
| .code_size[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] = | |
| bits as u8; | |
| l.counter += 1; | |
| Action::None | |
| }) | |
| } else { | |
| r.table_sizes[HUFFLEN_TABLE] = 19; | |
| init_tree(r, &mut l) | |
| } | |
| }), | |
| ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, { | |
| if l.counter < r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] { | |
| decode_huffman_code( | |
| r, &mut l, HUFFLEN_TABLE, | |
| flags, &mut in_iter, |r, l, symbol| { | |
| l.dist = symbol as u32; | |
| if l.dist < 16 { | |
| r.len_codes[l.counter as usize] = l.dist as u8; | |
| l.counter += 1; | |
| Action::None | |
| } else if l.dist == 16 && l.counter == 0 { | |
| Action::Jump(BadCodeSizeDistPrevLookup) | |
| } else { | |
| l.num_extra = [2, 3, 7][l.dist as usize - 16]; | |
| Action::Jump(ReadExtraBitsCodeSize) | |
| } | |
| } | |
| ) | |
| } else if l.counter != r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] { | |
| Action::Jump(BadCodeSizeSum) | |
| } else { | |
| r.tables[LITLEN_TABLE].code_size[..r.table_sizes[LITLEN_TABLE] as usize] | |
| .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]); | |
| let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize; | |
| let dist_table_end = (r.table_sizes[LITLEN_TABLE] + | |
| r.table_sizes[DIST_TABLE]) as usize; | |
| r.tables[DIST_TABLE].code_size[..r.table_sizes[DIST_TABLE] as usize] | |
| .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]); | |
| r.block_type -= 1; | |
| init_tree(r, &mut l) | |
| } | |
| }), | |
| ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, { | |
| let num_extra = l.num_extra; | |
| read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| { | |
| // Mask to avoid a bounds check. | |
| extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3]; | |
| let val = if l.dist == 16 { | |
| r.len_codes[l.counter as usize - 1] | |
| } else { | |
| 0 | |
| }; | |
| memset( | |
| &mut r.len_codes[ | |
| l.counter as usize..l.counter as usize + extra_bits as usize | |
| ], | |
| val, | |
| ); | |
| l.counter += extra_bits as u32; | |
| Action::Jump(ReadLitlenDistTablesCodeSize) | |
| }) | |
| }), | |
| DecodeLitlen => generate_state!(state, 'state_machine, { | |
| if in_iter.len() < 4 || out_buf.bytes_left() < 2 { | |
| // See if we can decode a literal with the data we have left. | |
| // Jumps to next state (WriteSymbol) if successful. | |
| decode_huffman_code( | |
| r, | |
| &mut l, | |
| LITLEN_TABLE, | |
| flags, | |
| &mut in_iter, | |
| |_r, l, symbol| { | |
| l.counter = symbol as u32; | |
| Action::Jump(WriteSymbol) | |
| }, | |
| ) | |
| } else if | |
| // If there is enough space, use the fast inner decompression | |
| // function. | |
| out_buf.bytes_left() >= 259 && | |
| in_iter.len() >= 14 | |
| { | |
| let (status, new_state) = decompress_fast( | |
| r, | |
| &mut in_iter, | |
| &mut out_buf, | |
| flags, | |
| &mut l, | |
| out_buf_size_mask, | |
| ); | |
| state = new_state; | |
| if status == TINFLStatus::Done { | |
| Action::Jump(new_state) | |
| } else { | |
| Action::End(status) | |
| } | |
| } else { | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { | |
| l.counter = symbol as u32; | |
| l.bit_buf >>= code_len; | |
| l.num_bits -= code_len; | |
| if (l.counter & 256) != 0 { | |
| // The symbol is not a literal. | |
| Action::Jump(HuffDecodeOuterLoop1) | |
| } else { | |
| // If we have a 32-bit buffer we need to read another two bytes now | |
| // to have enough bits to keep going. | |
| if cfg!(not(target_pointer_width = "64")) { | |
| fill_bit_buffer(&mut l, &mut in_iter); | |
| } | |
| if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { | |
| l.bit_buf >>= code_len; | |
| l.num_bits -= code_len; | |
| // The previous symbol was a literal, so write it directly and check | |
| // the next one. | |
| out_buf.write_byte(l.counter as u8); | |
| if (symbol & 256) != 0 { | |
| l.counter = symbol as u32; | |
| // The symbol is a length value. | |
| Action::Jump(HuffDecodeOuterLoop1) | |
| } else { | |
| // The symbol is a literal, so write it directly and continue. | |
| out_buf.write_byte(symbol as u8); | |
| Action::None | |
| } | |
| } else { | |
| Action::Jump(InvalidCodeLen) | |
| } | |
| } | |
| } else { | |
| Action::Jump(InvalidCodeLen) | |
| } | |
| } | |
| }), | |
| WriteSymbol => generate_state!(state, 'state_machine, { | |
| if l.counter >= 256 { | |
| Action::Jump(HuffDecodeOuterLoop1) | |
| } else if out_buf.bytes_left() > 0 { | |
| out_buf.write_byte(l.counter as u8); | |
| Action::Jump(DecodeLitlen) | |
| } else { | |
| Action::End(TINFLStatus::HasMoreOutput) | |
| } | |
| }), | |
| HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, { | |
| // Mask the top bits since they may contain length info. | |
| l.counter &= 511; | |
| if l.counter == 256 { | |
| // We hit the end of block symbol. | |
| Action::Jump(BlockDone) | |
| } else if l.counter > 285 { | |
| // Invalid code. | |
| // We already verified earlier that the code is > 256. | |
| Action::Jump(InvalidLitlen) | |
| } else { | |
| // # Optimization | |
| // Mask the value to avoid bounds checks | |
| // We could use get_unchecked later if can statically verify that | |
| // this will never go out of bounds. | |
| l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32; | |
| l.counter = LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK] as u32; | |
| // Length and distance codes have a number of extra bits depending on | |
| // the base, which together with the base gives us the exact value. | |
| if l.num_extra != 0 { | |
| Action::Jump(ReadExtraBitsLitlen) | |
| } else { | |
| Action::Jump(DecodeDistance) | |
| } | |
| } | |
| }), | |
| ReadExtraBitsLitlen => generate_state!(state, 'state_machine, { | |
| let num_extra = l.num_extra; | |
| read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { | |
| l.counter += extra_bits as u32; | |
| Action::Jump(DecodeDistance) | |
| }) | |
| }), | |
| DecodeDistance => generate_state!(state, 'state_machine, { | |
| // Try to read a huffman code from the input buffer and look up what | |
| // length code the decoded symbol refers to. | |
| decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| { | |
| if symbol > 29 { | |
| // Invalid distance code. | |
| return Action::Jump(InvalidDist) | |
| } | |
| // # Optimization | |
| // Mask the value to avoid bounds checks | |
| // We could use get_unchecked later if can statically verify that | |
| // this will never go out of bounds. | |
| l.num_extra = DIST_EXTRA[symbol as usize & BASE_EXTRA_MASK] as u32; | |
| l.dist = DIST_BASE[symbol as usize & BASE_EXTRA_MASK] as u32; | |
| if l.num_extra != 0 { | |
| // ReadEXTRA_BITS_DISTACNE | |
| Action::Jump(ReadExtraBitsDistance) | |
| } else { | |
| Action::Jump(HuffDecodeOuterLoop2) | |
| } | |
| }) | |
| }), | |
| ReadExtraBitsDistance => generate_state!(state, 'state_machine, { | |
| let num_extra = l.num_extra; | |
| read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { | |
| l.dist += extra_bits as u32; | |
| Action::Jump(HuffDecodeOuterLoop2) | |
| }) | |
| }), | |
| HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, { | |
| l.dist_from_out_buf_start = out_buf.position(); | |
| if l.dist as usize > l.dist_from_out_buf_start && | |
| (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) | |
| { | |
| // We encountered a distance that refers a position before | |
| // the start of the decoded data, so we can't continue. | |
| Action::Jump(DistanceOutOfBounds) | |
| } else { | |
| let mut out_pos = out_buf.position(); | |
| let mut source_pos = l.dist_from_out_buf_start | |
| .wrapping_sub(l.dist as usize) & out_buf_size_mask; | |
| let out_len = out_buf.get_ref().len() as usize; | |
| let match_end_pos = out_buf.position() + l.counter as usize; | |
| if match_end_pos > out_len || | |
| // miniz doesn't do this check here. Not sure how it makes sure | |
| // that this case doesn't happen. | |
| (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize) | |
| { | |
| // Not enough space for all of the data in the output buffer, | |
| // so copy what we have space for. | |
| if l.counter == 0 { | |
| Action::Jump(DecodeLitlen) | |
| } else { | |
| Action::Jump(WriteLenBytesToEnd) | |
| } | |
| } else { | |
| apply_match( | |
| out_buf.get_mut(), | |
| out_pos, | |
| l.dist as usize, | |
| l.counter as usize, | |
| out_buf_size_mask | |
| ); | |
| out_buf.set_position(out_pos + l.counter as usize); | |
| Action::Jump(DecodeLitlen) | |
| } | |
| } | |
| }), | |
| WriteLenBytesToEnd => generate_state!(state, 'state_machine, { | |
| if out_buf.bytes_left() > 0 { | |
| let source_pos = l.dist_from_out_buf_start | |
| .wrapping_sub(l.dist as usize) & out_buf_size_mask; | |
| let out_pos = out_buf.position(); | |
| let len = cmp::min(out_buf.bytes_left(), l.counter as usize); | |
| transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask); | |
| l.dist_from_out_buf_start += len; | |
| out_buf.set_position(out_pos + len); | |
| l.counter -= len as u32; | |
| if l.counter == 0 { | |
| Action::Jump(DecodeLitlen) | |
| } else { | |
| Action::None | |
| } | |
| } else { | |
| Action::End(TINFLStatus::HasMoreOutput) | |
| } | |
| }), | |
| BlockDone => generate_state!(state, 'state_machine, { | |
| // End once we've read the last block. | |
| if r.finish != 0 { | |
| pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None); | |
| let in_consumed = in_buf.len() - in_iter.len(); | |
| let undo = undo_bytes(&mut l, in_consumed as u32) as usize; | |
| in_iter = in_buf[in_consumed - undo..].iter(); | |
| l.bit_buf &= (((1 as BitBuffer) << l.num_bits) - 1) as BitBuffer; | |
| debug_assert_eq!(l.num_bits, 0); | |
| if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { | |
| l.counter = 0; | |
| Action::Jump(ReadAdler32) | |
| } else { | |
| Action::Jump(DoneForever) | |
| } | |
| } else { | |
| Action::Jump(ReadBlockHeader) | |
| } | |
| }), | |
| ReadAdler32 => generate_state!(state, 'state_machine, { | |
| if l.counter < 4 { | |
| if l.num_bits != 0 { | |
| read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { | |
| r.z_adler32 <<= 8; | |
| r.z_adler32 |= bits as u32; | |
| l.counter += 1; | |
| Action::None | |
| }) | |
| } else { | |
| read_byte(&mut in_iter, flags, |byte| { | |
| r.z_adler32 <<= 8; | |
| r.z_adler32 |= byte as u32; | |
| l.counter += 1; | |
| Action::None | |
| }) | |
| } | |
| } else { | |
| Action::Jump(DoneForever) | |
| } | |
| }), | |
| // We are done. | |
| DoneForever => break TINFLStatus::Done, | |
| // Anything else indicates failure. | |
| // BadZlibHeader | BadRawLength | BlockTypeUnexpected | DistanceOutOfBounds | | |
| // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen | | |
| // InvalidDist | InvalidCodeLen | |
| _ => break TINFLStatus::Failed, | |
| }; | |
| }; | |
| let in_undo = if status != TINFLStatus::NeedsMoreInput && | |
| status != TINFLStatus::FailedCannotMakeProgress | |
| { | |
| undo_bytes(&mut l, (in_buf.len() - in_iter.len()) as u32) as usize | |
| } else { | |
| 0 | |
| }; | |
| r.state = state.into(); | |
| r.bit_buf = l.bit_buf; | |
| r.num_bits = l.num_bits; | |
| r.dist = l.dist; | |
| r.counter = l.counter; | |
| r.num_extra = l.num_extra; | |
| r.dist_from_out_buf_start = l.dist_from_out_buf_start; | |
| r.bit_buf &= (((1 as BitBuffer) << r.num_bits) - 1) as BitBuffer; | |
| // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if | |
| // requested. | |
| let need_adler = flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0; | |
| if need_adler && status as i32 >= 0 { | |
| let out_buf_pos = out_buf.position(); | |
| r.check_adler32 = update_adler32( | |
| r.check_adler32, | |
| &out_buf.get_ref()[out_buf_start_pos..out_buf_pos], | |
| ); | |
| // disabled so that random input from fuzzer would not be rejected early, | |
| // before it has a chance to reach interesting parts of code | |
| if !cfg!(fuzzing) { | |
| // Once we are done, check if the checksum matches with the one provided in the zlib header. | |
| if status == TINFLStatus::Done && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 && | |
| r.check_adler32 != r.z_adler32 | |
| { | |
| status = TINFLStatus::Adler32Mismatch; | |
| } | |
| } | |
| } | |
| // NOTE: Status here and in miniz_tester doesn't seem to match. | |
| ( | |
| status, | |
| in_buf.len() - in_iter.len() - in_undo, | |
| out_buf.position() - out_buf_start_pos, | |
| ) | |
| } | |
| #[cfg(test)] | |
| mod test { | |
| use super::*; | |
| //use std::io::Cursor; | |
| //TODO: Fix these. | |
| fn tinfl_decompress_oxide<'i>( | |
| r: &mut DecompressorOxide, | |
| input_buffer: &'i [u8], | |
| output_buffer: &mut [u8], | |
| flags: u32, | |
| ) -> (TINFLStatus, &'i [u8], usize) { | |
| let (status, in_pos, out_pos) = | |
| decompress(r, input_buffer, &mut Cursor::new(output_buffer), flags); | |
| (status, &input_buffer[in_pos..], out_pos) | |
| } | |
| #[test] | |
| fn decompress_zlib() { | |
| let encoded = [ | |
| 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, | |
| 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, | |
| ]; | |
| let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER; | |
| let mut b = DecompressorOxide::new(); | |
| const LEN: usize = 32; | |
| let mut b_buf = vec![0; LEN]; | |
| // This should fail with the out buffer being to small. | |
| let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags); | |
| assert_eq!(b_status.0, TINFLStatus::Failed); | |
| let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; | |
| b = DecompressorOxide::new(); | |
| // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail. | |
| let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags); | |
| assert_eq!(b_buf[..b_status.2], b"Hello, zlib!"[..]); | |
| assert_eq!(b_status.0, TINFLStatus::Done); | |
| } | |
| #[test] | |
| fn raw_block() { | |
| const LEN: usize = 64; | |
| let text = b"Hello, zlib!"; | |
| let encoded = { | |
| let len = text.len(); | |
| let notlen = !len; | |
| let mut encoded = | |
| vec![1, len as u8, (len >> 8) as u8, notlen as u8, (notlen >> 8) as u8]; | |
| encoded.extend_from_slice(&text[..]); | |
| encoded | |
| }; | |
| //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER | | |
| let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; | |
| let mut b = DecompressorOxide::new(); | |
| let mut b_buf = vec![0; LEN]; | |
| let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags); | |
| assert_eq!(b_buf[..b_status.2], text[..]); | |
| assert_eq!(b_status.0, TINFLStatus::Done); | |
| } | |
| fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) { | |
| let ret = table.lookup(bit_buf).unwrap(); | |
| (ret.0 & 511, ret.1) | |
| } | |
| #[test] | |
| fn fixed_table_lookup() { | |
| let mut d = DecompressorOxide::new(); | |
| d.block_type = 1; | |
| start_static_table(&mut d); | |
| let mut l = LocalVars { | |
| bit_buf: d.bit_buf, | |
| num_bits: d.num_bits, | |
| dist: d.dist, | |
| counter: d.counter, | |
| num_extra: d.num_extra, | |
| dist_from_out_buf_start: d.dist_from_out_buf_start, | |
| }; | |
| init_tree(&mut d, &mut l); | |
| let llt = &d.tables[LITLEN_TABLE]; | |
| let dt = &d.tables[DIST_TABLE]; | |
| assert_eq!(masked_lookup(llt, 0b00001100), (0, 8)); | |
| assert_eq!(masked_lookup(llt, 0b00011110), (72, 8)); | |
| assert_eq!(masked_lookup(llt, 0b01011110), (74, 8)); | |
| assert_eq!(masked_lookup(llt, 0b11111101), (143, 8)); | |
| assert_eq!(masked_lookup(llt, 0b000010011), (144, 9)); | |
| assert_eq!(masked_lookup(llt, 0b111111111), (255, 9)); | |
| assert_eq!(masked_lookup(llt, 0b00000000), (256, 7)); | |
| assert_eq!(masked_lookup(llt, 0b1110100), (279, 7)); | |
| assert_eq!(masked_lookup(llt, 0b00000011), (280, 8)); | |
| assert_eq!(masked_lookup(llt, 0b11100011), (287, 8)); | |
| assert_eq!(masked_lookup(dt, 0), (0, 5)); | |
| assert_eq!(masked_lookup(dt, 20), (5, 5)); | |
| } | |
| fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) { | |
| let mut r = unsafe { DecompressorOxide::with_init_state_only() }; | |
| let mut output_buf = vec![0; 1024 * 32]; | |
| let mut out_cursor = Cursor::new(output_buf.as_mut_slice()); | |
| let flags = if zlib { | |
| inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER | |
| } else { | |
| 0 | |
| } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | TINFL_FLAG_HAS_MORE_INPUT; | |
| let (d_status, _in_bytes, _out_bytes) = | |
| decompress(&mut r, input, &mut out_cursor, flags); | |
| assert_eq!(expected_status, d_status); | |
| assert_eq!(expected_state, r.state); | |
| } | |
| #[test] | |
| fn bogus_input() { | |
| use self::check_result as cr; | |
| const F: TINFLStatus = TINFLStatus::Failed; | |
| const OK: TINFLStatus = TINFLStatus::Done; | |
| // Bad CM. | |
| cr(&[0x77, 0x85], F, State::BadZlibHeader, true); | |
| // Bad window size (but check is correct). | |
| cr(&[0x88, 0x98], F, State::BadZlibHeader, true); | |
| // Bad check bits. | |
| cr(&[0x78, 0x98], F, State::BadZlibHeader, true); | |
| // Too many code lengths. (From inflate library issues) | |
| cr( | |
| b"M\xff\xffM*\xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM", | |
| F, | |
| State::BadTotalSymbols, | |
| false, | |
| ); | |
| // Bad CLEN (also from inflate library issues) | |
| cr( | |
| b"\xdd\xff\xff*M\x94ffffffffff", | |
| F, | |
| State::BadTotalSymbols, | |
| false, | |
| ); | |
| // Port of inflate coverage tests from zlib-ng | |
| // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c | |
| let c = |a, b, c| cr(a, b, c, false); | |
| // Invalid uncompressed/raw block length. | |
| c(&[0,0,0,0,0], F, State::BadRawLength); | |
| // Ok empty uncompressed block. | |
| c(&[3, 0], OK, State::DoneForever); | |
| // Invalid block type. | |
| c(&[6], F, State::BlockTypeUnexpected); | |
| // Ok uncompressed block. | |
| c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever); | |
| // Too many litlens, we handle this later than zlib, so this test won't | |
| // give the same result. | |
| // c(&[0xfc, 0, 0], F, State::BadTotalSymbols); | |
| // Invalid set of code lengths - TODO Check if this is the correct error for this. | |
| c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols); | |
| // Invalid repeat in list of code lengths. | |
| // (Try to repeat a non-existant code.) | |
| c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup); | |
| // Missing end of block code (should we have a separate error for this?) - fails on futher input | |
| // c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols); | |
| // Invalid set of literals/lengths | |
| c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0], F, State::BadTotalSymbols); | |
| // Invalid set of distances _ needsmoreinput | |
| // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols); | |
| // Invalid distance code | |
| c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist); | |
| // Distance refers to position before the start | |
| c(&[0x0c, 0xc0 ,0x81 ,0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], F, State::DistanceOutOfBounds); | |
| // Trailer | |
| // Bad gzip trailer checksum GZip header not handled by miniz_oxide | |
| //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) | |
| // Bad gzip trailer length | |
| //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) | |
| } | |
| #[test] | |
| fn empty_output_buffer_non_wrapping() { | |
| let encoded = [ | |
| 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, | |
| 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, | |
| ]; | |
| let flags = TINFL_FLAG_COMPUTE_ADLER32 | | |
| TINFL_FLAG_PARSE_ZLIB_HEADER | | |
| TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; | |
| let mut r = DecompressorOxide::new(); | |
| let mut output_buf = vec![]; | |
| let mut out_cursor = Cursor::new(output_buf.as_mut_slice()); | |
| // Check that we handle an empty buffer properly and not panicking. | |
| // https://github.com/Frommi/miniz_oxide/issues/23 | |
| let res = decompress(&mut r, &encoded, &mut out_cursor, flags); | |
| assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0)); | |
| } | |
| #[test] | |
| fn empty_output_buffer_wrapping() { | |
| let encoded = [ | |
| 0x73, 0x49, 0x4d, 0xcb, | |
| 0x49, 0x2c, 0x49, 0x55, | |
| 0x00, 0x11, 0x00 | |
| ]; | |
| let flags = TINFL_FLAG_COMPUTE_ADLER32; | |
| let mut r = DecompressorOxide::new(); | |
| let mut output_buf = vec![]; | |
| let mut out_cursor = Cursor::new(output_buf.as_mut_slice()); | |
| // Check that we handle an empty buffer properly and not panicking. | |
| // https://github.com/Frommi/miniz_oxide/issues/23 | |
| let res = decompress(&mut r, &encoded, &mut out_cursor, flags); | |
| assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0)); | |
| } | |
| } |