

Front-end Developer

Handbook 2019
Written by Cody Lindley

Sponsored by Frontend Masters, advancing your skills with in-depth, modern front-
end engineering courses

Overview:

This is a guide that everyone can use to learn about the practice of front-end
development. It broadly outlines and discusses the practice of front-end
engineering: how to learn it and what tools are used when practicing it in 2019.

It is specifically written with the intention of being a professional resource for
potential and currently practicing front-end developers to equip themselves with
learning materials and development tools. Secondarily, it can be used by managers,
CTOs, instructors, and head hunters to gain insights into the practice of front-end
development.

http://codylindley.com/
https://frontendmasters.com/

The content of the handbook favors web technologies (HTML, CSS, DOM, and
JavaScript) and those solutions that are directly built on top of these open
technologies. The materials referenced and discussed in the book are either best in
class or the current offering to a problem.

The book should not be considered a comprehensive outline of all resources
available to a front-end developer. The value of the book is tied up in a terse,
focused, and timely curation of just enough categorical information so as not to
overwhelm anyone on any one particular subject matter.

The intention is to release an update to the content yearly. This is currently the
fourth year an edition has been released.

What is in this Handbook:

Chapter 0 provides a lite recap of the year in front-end development and what may
be to come. Chapter 1 & 2 aim to give a brief overview of the discipline and practice
of front-end development. Chapters 3 & 4 organize and recommend learning paths
and resources. Chapter 5 organizes and list the tools used by front-end developers
and Chapter 6 highlights front-end information outlets.

Contribute content, suggestions, and fixes on github:

https://frontendmasters.com/books/front-end-handbook/2019/#0

https://github.com/FrontendMasters/front-end-handbook-2019

Chapter 0. Recap of 2018 and Looking

Forward

0.1 — Recap of Front-end Development in 2018

React had several notable releases this past year that included, lifecycle methods,
context API, suspense, and React hooks.

Microsoft buys Github. Yeah, that happened.

Fonts created by CSS became a thing.

What I used to call front-end driven apps, gets labeled "serverless". Unfortunately,
this term is overloaded. However, the term JAMstack does seem to be resonating
with developers.

Google offered some neat tools this year to help make webpages load faster, i.e.
squoosh and quicklink.

Vue gets more Github stars than React this year. But React remains dominate in
terms of use.

A solution similar to React, without a virtual DOM or JSX, is introduced RE:DOM.

Alternatives to NW.js and Electron show up, DeskGap and Neutralino.js.

https://github.com/FrontendMasters/front-end-handbook-2019
https://reactjs.org/blog/2018/03/29/react-v-16-3.html#component-lifecycle-changes
https://reactjs.org/blog/2018/03/29/react-v-16-3.html#official-context-api
https://reactjs.org/docs/react-api.html#reactsuspense
https://reactjs.org/docs/hooks-intro.html
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://yusugomori.com/projects/css-sans/
https://thepowerofserverless.info/
https://frontendmasters.com/books/front-end-handbook/2019/owler.com/articles/serverless.html
https://jamstack.org/
https://jamstackconf.com/nyc/
https://github.com/GoogleChromeLabs/squoosh/
https://github.com/GoogleChromeLabs/quicklink
https://risingstars.js.org/2018/en/#section-framework
https://hasvuepassedreactyet.surge.sh/
https://2018.stateofjs.com/front-end-frameworks/overview/
https://www.npmjs.com/browse/depended
https://github.com/redom/redom
https://deskgap.com/
https://neutralino.js.org/

In 2017 the great divide between a front-end HTML & CSS developer v.s. front-end
application developer is realized/verbalized. In 2018 that divide has grown wider
and deeper and more people start to feel the divide.

This year, like most recent years, was stock full of app/framework solutions trying to
contend with the mainstream JavaScript app tools (i.e. React, Angular, and Vue
etc...) Let me list them for you. Radi.js, DisplayJS, Stimulus, Omi, Quasar.

JavaScript frameworks start offering their own languages that compile to JavaScript
(e.g. Mint).

CodeSandbox evolves to become the dominant solution for online code sharing.

CSS Grid and CSS Flexbox are fully supported in modern browsers and get taken for
some serious rides. But many are left wondering when to use which one and how.

Many realize the long terms costs of bolted on type systems (e.g. TypeScript and
Flow). Some concluded bolted on systems are not unlike bolted on module systems
(i.e. AMD/Require.js) and come with more issues than solutions. Minimally, many
developers realize that if types are needed in large code bases, that bolted on
systems are not ideal in comparison to languages that have them baked in (e.g.
Reason, Purescript, Elm).

CSS Variables gain browser support among modern web browsers

The flavors of CSS in JS exploded and some question the practice.

ES modules are now usable in modern browsers and dynamic imports are close
behind. We are even seeing a shift in tooling around this fact.

Many realize that end to end testing is the starting point of doing tests correctly in
large part due to Cypress (i.e. Cypress first, then Jest).

While Webpack was heavily used again this year, many developers found Parcel to
be easier to get up and running.

One of the most important questions asked this year was, what is the cost of
JavaScript.

Babel 7 was released this year. That's a big deal because the last major release was
almost three years ago.

https://medium.com/@jerrylowm/the-death-of-front-end-developers-803a95e0f411
https://medium.com/@mandy.michael/is-there-any-value-in-people-who-cannot-write-javascript-d0a66b16de06
https://medium.com/@mandy.michael/is-there-any-value-in-people-who-cannot-write-javascript-d0a66b16de06
https://css-tricks.com/the-great-divide/
https://rachelandrew.co.uk/archives/2019/01/30/html-css-and-our-vanishing-industry-entry-points/
https://hackernoon.com/the-backendification-of-frontend-development-62f218a773d4
http://bradfrost.com/blog/post/big-ol-ball-o-javascript/
https://justmarkup.com/log/2018/11/just-markup/
https://stateofjs.com/2017/front-end/results
https://radi.js.org/
https://display.js.org/
https://stimulusjs.org/
https://github.com/Tencent/omi
https://quasar-framework.org/
https://www.mint-lang.com/
https://codesandbox.io/
https://cssgridgarden.com/
https://flexboxfroggy.com/
https://www.youtube.com/watch?v=hs3piaN4b5I
https://css-irl.info/to-grid-or-to-flex/
https://medium.com/javascript-scene/the-typescript-tax-132ff4cb175b
https://reasonml.github.io/
http://www.purescript.org/
https://elm-lang.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables
https://caniuse.com/#feat=css-variables
http://michelebertoli.github.io/css-in-js/
http://bradfrost.com/blog/link/whats-wrong-with-css-in-js/
https://caniuse.com/#search=modules
https://developers.google.com/web/updates/2017/11/dynamic-import#dynamic
https://www.pikapkg.com/blog/introducing-pika-pack/
https://www.cypress.io/how-it-works/
https://jestjs.io/
https://webpack.js.org/
https://github.com/parcel-bundler/parcel
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://babeljs.io/blog/2018/08/27/7.0.0

The reality of too much JavaScript change too fast is realized and people start
talking about what you need to know before you can even learn something like
React. The fight is real.

Most developers found GraphQL, via Apollo, and see it as the next evolution for
data API's.

Gulp and friends definitely took a back seat to NPM/Yarn run. But this did not stop
Microsoft from getting in the game with Just.

This year, one can not only lint/hint HTML, CSS, and JavaScript they can lint/hint the
web itself.

The 2018 Front-End Tooling survey is worth reading if only to realize just how much
jQuery is still used.

It can't be denied TypeScript gained a lot of users this year.

VScode, dominates as the code editor of choice.

0.2 — In 2019, Expect...

Hopefully, more of this to come. "Stepping away from Sass".

Still a good idea to keep an eye on and learn about the up coming additions (and
potential additions) to CSS via https://cssdb.org

The WebP image format from Google could reach support from all modern
browsers this year.

Prepack will continue to cook.

GraphQL will continue to gain massive adoption.

The, "State of JavaScript" survey authors will add a "State of CSS" survey in 2019.

Keep an eye on Web Animations API.

Someone you know will try and convince you to use TypeScript.

https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
https://www.apollographql.com/
https://blog.bitsrc.io/why-does-everyone-love-graphql-17de7f99f05a
https://css-tricks.com/why-npm-scripts/
https://github.com/Microsoft/just
https://webhint.io/
https://ashleynolan.co.uk/blog/frontend-tooling-survey-2018-results
https://2018.stateofjs.com/javascript-flavors/typescript/
https://www.typescriptlang.org/
https://code.visualstudio.com/
https://triplebyte.com/blog/editor-report-the-rise-of-visual-studio-code
https://cathydutton.co.uk/posts/why-i-stopped-using-sass/
https://cssdb.org/
https://developers.google.com/speed/webp/
https://caniuse.com/#feat=webp
https://prepack.io/
https://graphql.org/
https://stateofjs.com/
https://stateofcss.com/
https://caniuse.com/#feat=web-animation
https://www.typescriptlang.org/

Babel will get some competition from swc-project.

The case for, JAMStack's will continue.

Chasing the one code base to many platforms will continue.

More developers will turn to languages like ReasonML over JavaScript/TypeScript
for large code bases.

More, largely used projects will start to shed jQuery in favor of native DOM
solutions.

Web Components! At this point, I have no idea how Web Components will play out.
Reality is they are not going away, and they have not gained a lot of
momentum/usage once the hype ended.

Chapter 1. What Is a Front-end

Developer?

This chapter provides a baseline explanation for front-end development and
the front-end developer discipline.

Front-end web development, also known as client-side development is

the practice of producing HTML, CSS and JavaScript for a website or
“

https://github.com/swc-project/swc
https://jamstack.org/
https://jamstackconf.com/nyc/
https://quasar-framework.org/
https://www.imaginarycloud.com/blog/reasonml-react-as-first-intended/
https://github.com/twbs/bootstrap/pull/23586
https://developer.mozilla.org/en-US/docs/Web/Web_Components

Image source: https://www.upwork.com/hiring/development/front-end-developer/

A Front-end Developer...

A front-end developer architects and develops websites and web applications using

Web Application so that a user can see and interact with them directly.

The challenge associated with front end development is that the tools

and techniques used to create the front end of a website change

constantly and so the developer needs to constantly be aware of how

the field is developing.

The objective of designing a site is to ensure that when the users open

up the site they see the information in a format that is easy to read and

relevant. This is further complicated by the fact that users now use a

large variety of devices with varying screen sizes and resolutions thus

forcing the designer to take into consideration these aspects when

designing the site. They need to ensure that their site comes up correctly

in different browsers (cross-browser), different operating systems (cross-

platform) and different devices (cross-device), which requires careful

planning on the side of the developer.

https://en.wikipedia.org/wiki/Front-end_web_development

https://www.upwork.com/hiring/development/front-end-developer/
https://en.wikipedia.org/wiki/Front-end_web_development

web technologies (i.e., HTML, CSS, and JavaScript), which typically runs on the
Open Web Platform or acts as compilation input for non-web platform environments
(i.e., React Native).

A person enters into the field of front-end development by learning to build a
website or web application which relies on HTML, CSS, and JavaScript and
commonly runs in a web browser but can also run in a headless browser, WebView,
or as compilation input for a native runtime environment. These four run times
scenarios are explained below.

Web Browsers (most common)

A web browser is software used to retrieve, present, and traverse information on the
WWW. Typically, browsers run on a desktop or laptop computer, tablet, or phone,
but as of late a browser can be found on just about anything (i.e, on a fridge, in cars,
etc.).

The most common web browsers are (shown in order of most used first):

Chrome

Safari

Internet Explorer (Note: not Edge, referring to IE 9 to IE 11)

Firefox

Edge

Headless Browsers

Headless browsers are a web browser without a graphical user interface that can be
controlled from a command line interface programmatically for the purpose of web
page automation (e.g., functional testing, scraping, unit testing, etc.). Think of
headless browsers as a browser that you can run programmatically from the

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://en.wikipedia.org/wiki/Open_Web_Platform
https://facebook.github.io/react-native/
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Headless_browser
http://developer.telerik.com/featured/what-is-a-webview/
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
http://www.google.com/chrome/
http://www.apple.com/safari/
https://en.wikipedia.org/wiki/Internet_Explorer
http://dev.modern.ie/
https://www.mozilla.org/firefox/
https://www.microsoft.com/en-us/windows/microsoft-edge

command line that can retrieve and traverse web page code.

The most common headless browsers are:

Headless Chromium

Zombie

slimerjs

puppeteer

Webviews

Webviews are used by a native OS, in a native application, to run web pages. Think
of a webview like an iframe or a single tab from a web browser that is embedded in a
native application running on a device (e.g., iOS, android, windows).

The most common solutions for webview development are:

Cordova (typically for native phone/tablet apps)

NW.js (typically used for desktop apps)

Electron (typically used for desktop apps)

Native from Web Tech

Eventually, what is learned from web browser development can be used by front-end
developers to craft code for environments that are not fueled by a browser engine
(i.e. web platform). As of late, development environments are being dreamed up that
use web technologies (e.g., CSS and JavaScript), without web engines, to create
native applications.

Some examples of these environments are:

https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://github.com/assaf/zombie
http://slimerjs.org/
https://github.com/GoogleChrome/puppeteer
http://developer.telerik.com/featured/what-is-a-webview/
http://developer.telerik.com/featured/what-is-a-webview/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
http://developer.android.com/reference/android/webkit/WebView.html
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.webview.aspx
http://developer.telerik.com/featured/what-is-a-webview/
https://cordova.apache.org/
https://github.com/nwjs/nw.js
http://electron.atom.io/

Flutter

React Native

NativeScript

Notes:

l. Make sure you are clear what exactly is meant by the "web platform". Read the,
"Open Web Platform" Wikipedia page. Explore the many technologies that make up
the web platform.

Chapter 2. The Practice of Front-end

Development: Overview

This chapter will break down and broadly describes the practice of front-end
engineering starting with, "How Front-End Developers Are Made".

2.1 - How Front-End Developers Are Made

How exactly does one become a front-end developer? Well, it's complicated. Just
consider this road map:

https://flutter.io/
https://facebook.github.io/react-native/
https://www.nativescript.org/
https://en.wikipedia.org/wiki/Open_Web_Platform
https://platform.html5.org/

Image source: https://github.com/kamranahmedse/developer-roadmap

Today, in general, one can't go to college and expect to graduate with a degree in
front-end engineering. And, I rarely hear of or meet front-end developers who
suffered through what is likely a deprecated computer science degree or graphic

https://github.com/kamranahmedse/developer-roadmap

design degree to end up writing HTML, CSS, and JavaScript professionally. From my
perspective, most of the people working on the front-end today generally seem to
be self-taught from the ground up or cross over into the front-end space from
design or computer science fields.

If you were to set out today to become a front-end developer I would loosely strive to
follow the process outlined below (Chapter 3 and Chapter 4 will dive into more
details on learning resources).

l. Learn, roughly, how the web platform works. Make sure you know the "what" and
"where" of HTML, CSS, DOM, JavaScript, Domains, DNS, URLs, HTTP, browsers,
and servers/hosting. Don't dive deep on anything just yet, just aim to understand
the parts at play and how they loosely fit together. Start by building simple web
pages.

n. Learn HTML

o. Learn CSS

p. Learn JavaScript

q. Learn DOM

r. Learn the fundamentals of user interface design (i.e. UI patterns, interaction design,
user experience design, and usability).

s. Learn CLI/command line

t. Learn the practice of software engineering (i.e., Application design/architecture,
templates, Git, testing, monitoring, automating, code quality, development
methodologies).

u. Get opinionated and customize your tool box with whatever makes sense to your
brain (e.g. Webpack, React, and Mobx).

lv. Learn Node.js

A short word of advice on learning. Learn the actual underlying technologies, before
learning abstractions. Don't learn jQuery, learn the DOM. Don't learn SASS, learn

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/How_does_the_Internet_work
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://youtu.be/QjKH1J77gjI?list=PL055Epbe6d5bQubu5EWf_kUNA3ef_qbmL
https://youtu.be/QjKH1J77gjI?list=PL055Epbe6d5bQubu5EWf_kUNA3ef_qbmL

CSS. Don't learn JSX, learn HTML. Don't learn TypeScript, learn JavaScript. Don't
learn Handlebars, learn JavaScript ES6 templates. Don't just use Bootstrap, learn UI
patterns.

Lately a lot of non-accredited, expensive, front-end code schools/bootcamps have
emerged. These avenues of becoming a front-end developer are typically teacher
directed courses, that follow a more traditional style of learning, from an official
instructor (i.e., syllabus, test, quizzes, projects, team projects, grades, etc.).

Keep in mind, if you are considering an expensive training program, this is the web!
Everything you need to learn is on the web for the taking, costing little to nothing.
However, if you need someone to tell you how to take and learn what is low cost to
free, and hold you accountable for learning it, you should consider a traditional
instructor lead class room setting. Otherwise, I am not aware of any other profession
that is practically free for the taking with an internet connection, a couple of dollars a
month for screencasting memberships, and a burning desire for knowledge.

For example, if you want to get going today, consuming one or more of the following
self-directed resources below can work:

Getting started with the Web [read]

So, You Want to be a Front-End Engineer [watch]

Frontend Masters Learning Paths [watch][$]

Introduction to Web Development [watch][$]

Treehouse Techdegree [watch][$]

Front-End Web Developer Nanodegree [watch][$]

Become a Front-End Web Developer [watch][$]

freeCodeCamp [interactive][watch]

When getting your start, you should fear most things that conceal complexity.

https://frontendmasters.com/join/
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web
https://www.youtube.com/watch?v=Lsg84NtJbmI
https://frontendmasters.com/learn
https://frontendmasters.com/courses/web-development-v2/
https://teamtreehouse.com/techdegree/front-end-web-development-2
https://www.udacity.com/course/front-end-web-developer-nanodegree--nd001
https://www.lynda.com/learning-paths/Web/become-a-front-end-web-developer
https://learn.freecodecamp.org/

Abstractions (e.g. jQuery) in the wrong hands can give the appearance of advanced
skills, while all the time hiding the fact that a developer has an inferior understanding
of the basics or underlying concepts.

It is assumed that on this journey you are not only learning, but also doing as you
learn and investigate tools. Some suggest only doing to learn. While others suggest
only learning about doing. I suggest you find a mix of both that matches how your
brain works and do that. But, for sure, it is a mix! So, don't just read about it, do it.
Learn, do. Learn, do. Repeat indefinitely because things change fast. This is why
learning the fundamentals, and not abstractions, are so important.

2.2 - Front-End Job Titles

A great divide has been brewing in the front-end developer space for several years
between two very different types of so-called front-end developers. On the one side,
you have JavaScript-focused programmers who write JavaScript for front-end
runtimes that likely have computer science skills with a software development
history. They more than likely view HTML and CSS as an abstraction (i.e. JSX and
CSS in JS). On the other side, you have, most likely, non-computer science educated
developers who focus on HTML, CSS, and JavaScript as it specifically pertains to the
UI. In 2019, when entering or trying to understand the front-end developer space you
will absolutely feel this divide. The term front-end developer is on the verge of
meaninglessness without clarifying words to address what type of front-end
developer is being discussed.

Below is a list and description of various front-end job titles (Keep in mind titles are
hard). The common, or most used (i.e., generic), title for a front-end developer is,
"front-end developer" or "front-end engineer". Note that any job that contains the
word "front-end", "client-side", "web UI", "HTML", "CSS", or "JavaScript" typically

https://css-tricks.com/the-great-divide/
https://reactjs.org/docs/introducing-jsx.html
https://hackernoon.com/all-you-need-to-know-about-css-in-js-984a72d48ebc
https://blog.prototypr.io/dissecting-front-end-job-titles-7f72a0ef0bc5

infers that a person has some degree of HTML, CSS, DOM, and JavaScript
professional know how.

Front-End Developer: The generic job title that describes a developer who is skilled
to some degree at HTML, CSS, DOM, and JavaScript and implementing these
technologies on the web platform.

Front-End Engineer (aka JavaScript Developer or Full-stack JavaScript
Developer): The job title given to a developer who comes from a computer science,
engineering, background and is using these skills to work with front-end
technologies. This role typically requires computer science knowledge and years of
software development experience. When the word "JavaScript Application" is
included in the job title, this will denote that the developer should be an advanced
JavaScript developer possessing advanced programming, software development,
and application development skills (i.e has years of experience building front-end
software applications).

CSS/HTML Developer: The front-end job title that describes a developer who is
skilled at HTML and CSS, excluding JavaScript and application, know how.

Front-End Web Designer: When the word "Designer" is included in the job title, this
will denote that the designer will possess front-end skills (i.e., HTML & CSS) but also
professional design (Visual Design and Interaction Design) skills.

UI (User Interface) Developer/Engineer: When the word "Interface" or "UI" is
included in the job title, this will denote that the developer should posses interaction
design skills in addition to front-end developer skills or front-end engineering skills.

Mobile/Tablet Front-End Developer: When the word "Mobile" or "Tablet" is
included in the job title, this will denote that the developer has experience
developing front-ends that run on mobile or tablet devices (either natively or on the
web platform, i.e., in a browser).

Front-End SEO Expert: When the word "SEO" is included in the job title, this will
denote that the developer has extensive experience crafting front-end technologies
towards an SEO strategy.

Front-End Accessibility Expert: When the word "Accessibility" is included in the job
title, this will denote that the developer has extensive experience crafting front-end
technologies that support accessibility requirements and standards.

Front-End Dev. Ops: When the word "DevOps" is included in the job title, this will
denote that the developer has extensive experience with software development
practices pertaining to collaboration, integration, deployment, automation, and
quality.

Front-End Testing/QA: When the word "Testing" or "QA" is included in the job title,
this will denote that the developer has extensive experience testing and managing
software that involves unit testing, functional testing, user testing, and A/B testing.

Notes:

l. If you come across the "Full Stack" or the generic "Web Developer" terms in job
titles these words may be used by an employer to describe a role that is responsible
for all aspects of web/app development, i.e., both front-end (potentially including
design) and back-end.

2.3 - Baseline Web Technologies Employed by Front-

End Developers

The following core web technologies are employed by front-end developers
(consider learning them in this order):

l. Hyper Text Markup Language (aka HTML)

n. Cascading Style Sheets (aka CSS)

o. Uniform Resource Locators (aka URLs)

p. Hypertext Transfer Protocol (aka HTTP)

q. JavaScript Programming Language (aka ECMAScript 262)

r. JavaScript Object Notation (aka JSON)

s. Document Object Model (aka DOM)

t. Web APIs (aka HTML5 and friends or Browser APIs)

u. Web Content Accessibility Guidelines (aka WCAG) & Accessible Rich Internet
Applications (aka ARIA)

For a comprehensive list of all web related specifications have a look at
platform.html5.org or MDN Web APIs.

The nine technologies just mentioned are defined below along with a link to the

https://platform.html5.org/
https://developer.mozilla.org/en-US/docs/Web/API

relevant documentation and specification for each technology.

Hyper Text Markup Language (aka HTML)

Most relevant specifications / documentation:

All W3C HTML Spec

The elements of HTML from the Living Standard

Global attributes

HTML 5.2 from W3C

HTML 5.3 from W3C

HTML attribute reference

HTML element reference

The HTML Syntax from the Living Standard

Cascading Style Sheets (aka CSS)

HyperText Markup Language, commonly referred to as HTML, is the

standard markup language used to create web pages. Web browsers

can read HTML files and render them into visible or audible web pages.

HTML describes the structure of a website semantically along with cues

for presentation, making it a markup language, rather than a

programming language.

— Wikipedia

“

http://www.w3.org/standards/techs/html#w3c_all
https://html.spec.whatwg.org/multipage
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://www.w3.org/TR/2017/REC-html52-20171214/
http://w3c.github.io/html/
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://html.spec.whatwg.org/multipage/syntax.html#syntax
https://en.wikipedia.org/wiki/HTML

Most relevant specifications / documentation:

All W3C CSS Specifications

Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specification

CSS reference

Selectors Level 3

Hypertext Transfer Protocol (aka HTTP)

Cascading Style Sheets (CSS) is a style sheet language used for

describing the look and formatting of a document written in a markup

language. Although most often used to change the style of web pages

and user interfaces written in HTML and XHTML, the language can be

applied to any kind of XML document, including plain XML, SVG and

XUL. Along with HTML and JavaScript, CSS is a cornerstone technology

used by most websites to create visually engaging webpages, user

interfaces for web applications, and user interfaces for many mobile

applications.

— Wikipedia

“

The Hypertext Transfer Protocol (HTTP) is an application protocol for

distributed, collaborative, hypermedia information systems. HTTP is the

foundation of data communication for the World Wide Web.

— Wikipedia

“

http://www.w3.org/Style/CSS/current-work
https://www.w3.org/TR/CSS22/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
http://www.w3.org/TR/css3-selectors/
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Most relevant specifications:

Hypertext Transfer Protocol -- HTTP/1.1

HTTP/2

Uniform Resource Locators (aka URL)

Most relevant specifications:

Uniform Resource Locators (URL)

URL Living Standard

Document Object Model (aka DOM)

A uniform resource locator (URL) (also called a web address) is a

reference to a resource that specifies the location of the resource on a

computer network and a mechanism for retrieving it. A URL is a specific

type of uniform resource identifier (URI), although many people use the

two terms interchangeably. A URL implies the means to access an

indicated resource, which is not true of every URI. URLs occur most

commonly to reference web pages (http), but are also used for file

transfer (ftp), email (mailto), database access (JDBC), and many other

applications.

— Wikipedia

“

https://tools.ietf.org/html/rfc2616
http://httpwg.org/specs/rfc7540.html
http://www.w3.org/Addressing/URL/url-spec.txt
https://url.spec.whatwg.org/
https://en.wikipedia.org/wiki/Uniform_Resource_Locator

Most relevant specifications / documentation:

DOM Living Standard

W3C DOM4

UI Events

JavaScript Programming Language (aka ECMAScript 262)

The Document Object Model (DOM) is a cross-platform and language-

independent convention for representing and interacting with objects in

HTML, XHTML, and XML documents. The nodes of every document are

organized in a tree structure, called the DOM tree. Objects in the DOM

tree may be addressed and manipulated by using methods on the

objects. The public interface of a DOM is specified in its application

programming interface (API).

— Wikipedia

“

JavaScript is a high level, dynamic, untyped, and interpreted

programming language. It has been standardized in the ECMAScript

language specification. Alongside HTML and CSS, it is one of the three

essential technologies of World Wide Web content production; the

majority of websites employ it and it is supported by all modern web

browsers without plug-ins. JavaScript is prototype-based with first-class

functions, making it a multi-paradigm language, supporting object-

oriented, imperative, and functional programming styles. It has an API

“

https://dom.spec.whatwg.org/
https://www.w3.org/TR/domcore/
https://www.w3.org/TR/uievents/
https://en.wikipedia.org/wiki/Document_Object_Model

Most relevant specifications / documentation:

ECMAScript® 2018 Language Specification

All ECMAScript Language Specifications

Web APIs (aka HTML5 and friends)

Most relevant documentation:

Web API Interfaces

JavaScript Object Notation (aka JSON)

for working with text, arrays, dates and regular expressions, but does

not include any I/O, such as networking, storage or graphics facilities,

relying for these upon the host environment in which it is embedded.

— Wikipedia

When writing code for the Web using JavaScript, there are a great many

APIs available. Below is a list of all the interfaces (that is, types of

objects) that you may be able to use while developing your Web app or

site.

— Mozilla

“

http://ecma-international.org/ecma-262/9.0/index.html#Title
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/API
https://en.wikipedia.org/wiki/JavaScript
https://developer.mozilla.org/en-US/docs/Web/API

Most relevant specifications:

Introducing JSON

JSON API

The JSON Data Interchange Format

Web Content Accessibility Guidelines (aka WCAG) & Accessible Rich Internet
Applications (aka ARIA)

It is the primary data format used for asynchronous browser/server

communication (A JA J), largely replacing XML (used by A JAX). Although

originally derived from the JavaScript scripting language, JSON is a

language-independent data format. Code for parsing and generating

JSON data is readily available in many programming languages. The

JSON format was originally specified by Douglas Crockford. It is

currently described by two competing standards, RFC 7159 and ECMA-

404. The ECMA standard is minimal, describing only the allowed

grammar syntax, whereas the RFC also provides some semantic and

security considerations. The official Internet media type for JSON is

application/json. The JSON filename extension is .json.

— Wikipedia

“

Accessibility refers to the design of products, devices, services, or

environments for people with disabilities. The concept of accessible

design ensures both “direct access” (i.e., unassisted) and "indirect

access" meaning compatibility with a person's assistive technology (for

example, computer screen readers).

“

http://json.org/
http://jsonapi.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://en.wikipedia.org/wiki/JSON

Web Accessibility Initiative (WAI)

Web Content Accessibility Guidelines (WCAG) Current Status

2.4 - Potential Front-end Developer Skills

Image source: http://blog.naustud.io/2015/06/baseline-for-modern-front-end-developers.html

A basic to advanced understanding of HTML, CSS, DOM, JavaScript, HTTP/URL, and
web browsers is assumed for any type of professional front-end developer role.

Beyond the skills just mentioned, a front-end developer might also be specifically
skilled in one or more of the following:

Content Management Systems (aka CMS)

— Wikipedia

https://www.w3.org/WAI/standards-guidelines/
http://www.w3.org/standards/techs/wcag#w3c_all
http://blog.naustud.io/2015/06/baseline-for-modern-front-end-developers.html
https://en.wikipedia.org/wiki/Accessibility

Node.js

Cross-Browser Testing

Cross-Platform Testing

Unit Testing

Cross-Device Testing

Accessibility / WAI-ARIA

Search Engine Optimization (aka SEO)

Interaction or User Interface Design

User Experience

Usability

E-commerce Systems

Portal Systems

Wireframing

CSS Layout / Grids

DOM Manipulation (e.g., jQuery)

Mobile Web Performance

Load Testing

Performance Testing

Progressive Enhancement / Graceful Degradation

Version Control (e.g., GIT)

MVC / MVVM / MV*

Functional Programming

Data Formats (e.g., JSON, XML)

Data APIs (e.g Restful API)

Web Font Embedding

Scalable Vector Graphics (aka SVG)

Regular Expressions

Microdata / Microformats

Task Runners, Build Tools, Process Automation Tools

Responsive Web Design

Object-Oriented Programming

Application Architecture

Modules

Dependency Managers

Package Managers

JavaScript Animation

CSS Animation

Charts / Graphs

UI Widgets

Code Quality Testing

Code Coverage Testing

Code Complexity Analysis

Integration Testing

Command Line / CLI

Templating Strategies

Templating Engines

Single Page Applications

Web/Browser Security

Browser Developer Tools

2.5 - Front-End Developers Develop For...

A front-end developer crafts HTML, CSS, and JS that typically runs on the web
platform (e.g. a web browser) delivered from one of the following operating systems
(aka OSs):

Android

Chromium

iOS

OS X (i.e. MacOS)

Ubuntu (or some flavor of Linux)

Windows

These operating systems typically run on one or more of the following devices:

Desktop computer

Laptop / netbook computer

Mobile phone

Tablet

TV

Watch

Things (i.e., anything you can imagine, car, refrigerator, lights, thermostat, etc.)

http://tess.oconnor.cx/2009/05/what-the-web-platform-is
https://www.android.com/
https://www.chromium.org/chromium-os
https://developer.apple.com/ios/
https://www.apple.com/macos
https://www.ubuntu.com/
https://www.microsoft.com/en-us/windows
https://en.wikipedia.org/wiki/Internet_of_things

Image source: https://www.enterpriseirregulars.com/104084/roundup-internet-things-forecasts-market-estimates-2015/

Generally speaking, front-end technologies can run on the aforementioned operating
systems and devices using the following run time web platform scenarios:

A web browser (examples: Chrome, IE, Safari, Firefox).

A headless browser (examples: Headless Chromium).

A WebView/browser tab (think iframe) embedded within a native application as a
runtime with a bridge to native APIs. WebView applications typically contain a UI
constructed from web technologies. (i.e., HTML, CSS, and JS). (examples: Apache
Cordova, NW.js, Electron)

A native application built from web tech that is interpreted at runtime with a bridge
to native APIs. The UI will make use of native UI parts (e.g., iOS native controls) not
web technologies. (examples: NativeScript, React Native)

https://www.enterpriseirregulars.com/104084/roundup-internet-things-forecasts-market-estimates-2015/
http://outdatedbrowser.com/en
https://en.wikipedia.org/wiki/Headless_browser
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
http://developer.telerik.com/featured/what-is-a-webview/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://cordova.apache.org/
http://nwjs.io/
http://electron.atom.io/
https://www.nativescript.org/
https://facebook.github.io/react-native/

2.6 - Front-End on a Team

A front-end developer is typically only one player on a team that designs and
develops web sites, web applications, or native applications running from web
technologies.

A bare-bones development team for building professional web sites or software for
the web platform will typically, minimally, contain the following roles.

Visual Designer (i.e., fonts, colors, spacing, emotion, visuals concepts & themes)

UI/Interaction Designer/Information Architect (i.e., wireframes, specifying all user
interactions and UI functionality, structuring information)

Front-End Developer (i.e., writes code that runs in client/on the device)

Back-End Developer (i.e., writes code that runs on the server)

The roles are ordered according to overlapping skills. A front-end developer will
typically have a good handle on UI/Interaction design as well as back-end
development. It is not uncommon for team members to fill more than one role by
taking on the responsibilities of an over-lapping role.

It is assumed that the team mentioned above is being directed by a project lead or
some kind of product owner (i.e., stakeholder, project manager, project lead, etc.)

A larger web team might include the following roles not shown above:

SEO Strategists

DevOps Engineers

Performance Engineers

API Developers

Database Administrators

QA Engineers / Testers

2.7 - Generalist/Full-Stack Myth

The term "Full-Stack" developer has come to take on several meanings. So many,
that not one meaning is clear when the term is used. Just consider the results from

the two surveys shown below. These results might lead one to believe that being a
full-stack developer is commonplace. But, in my almost 20 years of experience, this
is anything but the case in a professional context.

Image source: https://medium.freecodecamp.com/we-asked-15-000-people-who-they-are-and-how-theyre-learning-to-code-

4104e29b2781#.ngcpn8nlz

https://medium.freecodecamp.com/we-asked-15-000-people-who-they-are-and-how-theyre-learning-to-code-4104e29b2781#.ngcpn8nlz

Image source: https://insights.stackoverflow.com/survey/2017#developer-profile-specific-developer-types

https://insights.stackoverflow.com/survey/2018/#developer-profile

The roles to design and develop a website or web application require a deep set of
skills and vast experience in the area of visual design, UI/interaction design, front-
end development, and back-end development. Any person who can fill one or more
of these 4 roles at a professional level is an extremely rare commodity.

Pragmatically, you should seek to be, or seek to hire, an expert in one of these roles
(i.e. Visual Design, Interaction Design/IA, Front-end Dev, Back-end Dev). Those who
claim to operate at an expert level at one or more of these roles are exceptionally
rare.

However, given that JavaScript has infiltrated all layers of a technology stack (i.e.
Node.js) finding a full-stack JS developer who can code the front-end and back-end
is becoming less mythical. Typically, these full-stack developers only deal with
JavaScript. A developer who can code the front-end, back-end, API, and database
isn't as absurd as it once was (excluding visual design, interaction design, and CSS).
Still mythical in my opinion, but not as uncommon as it once was. Thus, I wouldn't
recommend a developer set out to become a "full-stack" developer. In rare
situations, it can work. But, as a general concept for building a career as a front-end
developer, I'd focus on front-end technologies.

2.8 - Front-End Interviews

Preparing:

Preparing for a Front-End Web Development Interview in 2017

Cracking the front-end interview

Front End Interview Handbook

Decoding the Front-end Interview Process

https://github.com/kamranahmedse/developer-roadmap#-front-end-roadmap
https://github.com/kamranahmedse/developer-roadmap#-back-end-roadmap
http://davidshariff.com/blog/preparing-for-a-front-end-web-development-interview-in-2017/
https://medium.freecodecamp.com/cracking-the-front-end-interview-9a34cd46237
https://github.com/yangshun/front-end-interview-handbook
https://dev.to/emmawedekind/decoding-the-front-end-interview-process-14dl

Quiz's:

Front End Web Development Quiz

JavaScript Web Quiz

Questions you may get asked:

10 Interview Questions Every JavaScript Developer Should Know

Front-End Job Interview Questions

Front End Web Development Quiz

Interview Questions for Front-End-Developer

The Best Frontend JavaScript Interview Questions (written by a Frontend Engineer))

Questions you ask:

An open source list of developer questions to ask prospective employers

2.9 - Front-End Job Boards

A plethora of technical job listing outlets exist. The narrowed list below are currently
the most relevant resources for finding a specific front-end position/career.

authenticjobs.com

careers.stackoverflow.com

css-tricks.com/jobs

frontenddeveloperjob.com

glassdoor.com

jobs.github.com

http://davidshariff.com/quiz/
http://davidshariff.com/js-quiz/
https://medium.com/javascript-scene/10-interview-questions-every-javascript-developer-should-know-6fa6bdf5ad95
http://h5bp.github.io/Front-end-Developer-Interview-Questions/
http://davidshariff.com/quiz/
http://thatjsdude.com/interview/index.html
https://performancejs.com/post/hde6d32/The-Best-Frontend-JavaScript-Interview-Questions-(Written-by-a-Frontend-Engineer
https://github.com/ChiperSoft/InterviewThis
https://authenticjobs.com/#category=4
http://careers.stackoverflow.com/jobs?searchTerm=front-end
https://css-tricks.com/jobs/
http://frontenddeveloperjob.com/
http://www.glassdoor.com/Job/front-end-developer-jobs-SRCH_KO0,19.htm?jobType=all
https://jobs.github.com/

linkedin.com

remote.co

weworkremotely.com

www.smashingmagazine.com/jobs/

Notes:

l. Want to work remotely as a front-end developer checkout these remote-friendly
companies.

2.10 - Front-End Salaries

The national average in the U.S for a mid-level front-end developer is somewhere
between $65k and 100k.

Of course when you first start expect to enter the field at around 40k depending
upon location and experience.

Notes:

l. A lead/senior front-end developer/engineer can potentially live wherever they want
(i.e., work remotely) and make over $150k a year (visit angel.co, sign-up, review
front-end jobs over $150k or examine the salary ranges on Stack Overflow Jobs).

Chapter 3. Learning Front-end Dev: Self

https://www.linkedin.com/jobs/search/?keywords=frontend%20developer
https://remote.co/remote-jobs/developer/
https://weworkremotely.com/
https://www.smashingmagazine.com/jobs/
https://github.com/jessicard/remote-jobs
https://www.payscale.com/research/US/Job=Front_End_Developer_%2f_Engineer/Salary
https://www.indeed.com/salaries/Front-End-Developer-Salaries
https://angel.co/jobs
https://stackoverflow.com/jobs?q=front-end&sort=y

Directed Resources/Recommendations

This chapter highlights the many resources (video training, books, etc.) that
an individual can use to direct their own learning process and career as a
front-end developer.

The learning resources identified (articles, books, videos, screencasts etc..)
will include both free and paid material. Paid material will be indicated with
[$].

3.1. - Learn Internet/Web

The Internet is a global system of interconnected computer networks

that use the Internet protocol suite (TCP/IP) to link several billion

devices worldwide. It is a network of networks that consists of millions

of private, public, academic, business, and government networks of

local to global scope, linked by a broad array of electronic, wireless,

and optical networking technologies. The Internet carries an extensive

range of information resources and services, such as the inter-linked

hypertext documents and applications of the World Wide Web (WWW),

electronic mail, telephony, and peer-to-peer networks for file sharing.

— Wikipedia

“

https://en.wikipedia.org/wiki/Internet

Image source: https://www.helloitsliam.com/2014/12/20/how-the-internet-works-infographic/

What is the Internet? [watch]

Internet Fundamentals [watch]

How the Web works [read]

How does the Internet work? https://developer.mozilla.org/en-
US/docs/Learn/Common_questions/How_does_the_Internet_work and
http://web.stanford.edu/class/msande91si/www-
spr04/readings/week1/InternetWhitepaper.htm [read]

How the Internet Works [watch]

How the Internet Works in 5 Minutes [watch]

How the Web Works [watch]

What Is the Internet? Or, "You Say Tomato, I Say TCP/IP" [read]

Donʼt Fear the Internet

https://frontendmasters.com/books/front-end-handbook/2019/assets/images/how-the-internet-works.jpg
https://www.helloitsliam.com/2014/12/20/how-the-internet-works-infographic/
https://www.youtube.com/watch?v=Dxcc6ycZ73M
http://internetfundamentals.com/
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/How_does_the_Internet_work
http://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm
https://www.khanacademy.org/partner-content/code-org/internet-works
https://www.youtube.com/watch?v=7_LPdttKXPc
https://www.eventedmind.com/classes/how-the-web-works-7f40254c
http://www.20thingsilearned.com/en-US/what-is-the-internet/1
http://www.dontfeartheinternet.com/

Image source: http://www.bitrebels.com/technology/find-out-who-runs-the-internet-chart/

3.2. - Learn Web Browsers

A web browser (commonly referred to as a browser) is a software

application for retrieving, presenting, and traversing information

resources on the World Wide Web. An information resource is identified

by a Uniform Resource Identifier (URI/URL) and may be a web page,

image, video or other piece of content. Hyperlinks present in resources

enable users easily to navigate their browsers to related resources.

“

http://www.bitrebels.com/technology/find-out-who-runs-the-internet-chart/

The most commonly used browsers (on desktop and mobile) are:

l. Chrome (engine: Blink + V8)

n. Firefox (engine: Gecko + SpiderMonkey)

o. Internet Explorer (engine: Trident + Chakra)

p. Safari (engine: Webkit + SquirrelFish)

Image source: http://gs.statcounter.com/browser-market-share

Evolution of Browsers & Web Technologies (i.e., APIs)

evolutionoftheweb.com [read]

Although browsers are primarily intended to use the World Wide Web,

they can also be used to access information provided by web servers in

private networks or files in file systems.

— Wikipedia

https://netmarketshare.com/?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
http://www.google.com/chrome/
https://en.wikipedia.org/wiki/Blink_%28layout_engine%29
https://en.wikipedia.org/wiki/V8_%28JavaScript_engine%29
https://www.mozilla.org/en-US/firefox/new/
https://en.wikipedia.org/wiki/Gecko_%28software%29
https://en.wikipedia.org/wiki/SpiderMonkey_%28software%29
http://windows.microsoft.com/en-us/internet-explorer/download-ie
https://en.wikipedia.org/wiki/Trident_%28layout_engine%29
https://en.wikipedia.org/wiki/Chakra_%28JScript_engine%29
https://www.apple.com/safari/
https://en.wikipedia.org/wiki/WebKit
https://trac.webkit.org/wiki/SquirrelFish
http://gs.statcounter.com/browser-market-share
http://www.evolutionoftheweb.com/
https://en.wikipedia.org/wiki/Web_browser

Timeline of web browsers [read]

The Most Commonly Used Headless Browser Are:

Headless Chromium (engine: Blink + V8)

SlimerJS (engine: Gecko + SpiderMonkey)

How Browsers Work

20 Things I Learned About Browsers and the Web [read]

Fast CSS: How Browsers Lay Out Web Pages [read]

How Browsers Work: Behind the scenes of modern web browsers [read]

Quantum Up Close: What is a browser engine?

So How Does the Browser Actually Render a Website [watch]

What forces layout / reflow [read]

What Every Frontend Developer Should Know About Webpage Rendering [read]

Optimizing for Browsers:

Browser Rendering Optimization [watch]

Website Performance Optimization [watch]

Comparing Browsers

Comparison of Web Browsers [read]

Browser Hacks

browserhacks.com [read]

Developing for Browsers

In the past, front-end developers spent a lot of time making code work in several

https://en.wikipedia.org/wiki/Timeline_of_web_browsers
http://www.asad.pw/HeadlessBrowsers/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://www.chromium.org/blink
http://slimerjs.org/
https://en.wikipedia.org/wiki/Gecko_%28software%29
https://en.wikipedia.org/wiki/SpiderMonkey_%28software%29
http://www.20thingsilearned.com/en-US/foreword/1
http://dbaron.org/talks/2012-03-11-sxsw/master.xhtml
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://hacks.mozilla.org/2017/05/quantum-up-close-what-is-a-browser-engine/
https://www.youtube.com/watch?v=SmE4OwHztCc
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
http://frontendbabel.info/articles/webpage-rendering-101/
https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.udacity.com/course/website-performance-optimization--ud884
https://en.wikipedia.org/wiki/Comparison_of_web_browsers
http://browserhacks.com/

different browsers. This was once a bigger issue than it is today. Today, abstractions
(e.g., React, Webpack, Post-CSS, Babel etc...) combined with modern browsers
make browser development fairly easy. The new challenge is not which browser the
user will use, but on which device they will run the browser.

Evergreen Browsers

The latest versions of most modern browsers are considered evergreen browsers.
That is, in theory, they are supposed to automatically update themselves silently
without prompting the user. This move towards self-updating browsers has been in
reaction to the slow process of eliminating older browsers that do not auto-update.

Picking a Browser

As of today, most front-end developers use Chrome and "Chrome Dev Tools" to
develop front-end code. However, the most used modern browsers all offer a flavor
of developer tools. Picking one to use for development is a subjective choice. The
more important issue is knowing which browsers, on which devices, you have to
support and then testing appropriately.

3.3 - Learn Domain Name System (aka DNS)

The Domain Name System (DNS) is a hierarchical distributed naming

system for computers, services, or any resource connected to the

Internet or a private network. It associates various information with

domain names assigned to each of the participating entities. Most

prominently, it translates domain names, which can be easily

“

Image source: http://www.digital-digest.com/blog/DVDGuy/wp-content/uploads/2011/11/how_dns_works.jpg

An Introduction to DNS Terminology, Components, and Concepts [read]

DNS Explained [watch]

How DNS Works [read]

memorized by humans, to the numerical IP addresses needed for the

purpose of computer services and devices worldwide. The Domain

Name System is an essential component of the functionality of most

Internet services because it is the Internet's primary directory service.

— Wikipedia

http://www.digital-digest.com/blog/DVDGuy/wp-content/uploads/2011/11/how_dns_works.jpg
https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
https://www.youtube.com/watch?v=72snZctFFtA
https://howdns.works/ep1/
https://en.wikipedia.org/wiki/Domain_Name_System

The Internet: IP Addresses and DNS [watch]

What is a domain name? [read]

3.4 - Learn HTTP/Networks (Including CORS &

WebSockets)

HTTP Specifications

HTTP/2

Hypertext Transfer Protocol -- HTTP/1.1

HTTP Docs

MDN HTTP [read]

HTTP Videos/Articles/Tutorials

High Performance Browser Networking: What Every Web Developer Should Know
About Networking and Web Performance [read]

HTTP - The Hypertext Transfer Protocol (HTTP) is an application

protocol for distributed, collaborative, hypermedia information

systems. HTTP is the foundation of data communication for the World

Wide Web.

— Wikipedia

“

https://www.youtube.com/watch?v=5o8CwafCxnU&index=3&list=PLzdnOPI1iJNfMRZm5DDxco3UdsFegvuB7
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_domain_name
https://http2.github.io/
https://tools.ietf.org/html/rfc2616
https://developer.mozilla.org/en-US/docs/Web/HTTP
http://chimera.labs.oreilly.com/books/1230000000545/index.html
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

MDN: An overview of HTTP [read]

HTTP: The Definitive Guide (Definitive Guides) [read][$]

HTTP/2 Frequently Asked Questions [read]

HTTP Fundamentals [watch][$]

HTTP/2 Fundamentals [watch][$]

HTTP: The Protocol Every Web Developer Must Know - Part 1 [read]

HTTP: The Protocol Every Web Developer Must Know - Part 2 [read]

HTTP Succinctly [read]

HTTP Status Codes

HTTP Status Codes

HTTP Status Codes in 60 Seconds [watch]

CORS Specifications

Cross-Origin Resource Sharing

CORS

CORS - Cross-origin resource sharing (CORS) is a mechanism that allows

restricted resources (e.g., fonts) on a web page to be requested from

another domain outside the domain from which the resource

originated.

— Wikipedia

“

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://www.amazon.com/HTTP-Definitive-Guide-Guides/dp/1565925092/ref=cm_cr_arp_d_product_top?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=11b990b79d33ddbef63712765715a9c1&camp=1789&creative=9325
https://http2.github.io/faq/#what-are-the-key-differences-to-http1x
http://www.pluralsight.com/courses/xhttp-fund
https://app.pluralsight.com/library/courses/http2-fundamentals/table-of-contents
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155
http://code.tutsplus.com/series/http-succinctly--net-33683
https://httpstatuses.com/
http://webdesign.tutsplus.com/tutorials/http-status-codes-in-60-seconds--cms-24317
https://www.w3.org/TR/cors/
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CORS in Action [read][$]

HTTP Access Control (CORS) [read]

WebSockets

Connect the Web With WebSockets [watch]

WebSocket: Lightweight Client-Server Communications [read][$]

The WebSocket Protocol [read]

3.5 - Learn Web Hosting

WebSockets - WebSocket is a protocol providing full-duplex

communication channels over a single TCP connection. The WebSocket

protocol was standardized by the IETF as RFC 6455 in 2011, and the

WebSocket API in Web IDL is being standardized by the W3C.

— Wikipedia

“

A web hosting service is a type of Internet hosting service that allows

individuals and organizations to make their website accessible via the

World Wide Web. Web hosts are companies that provide space on a

server owned or leased for use by clients, as well as providing Internet

“

https://www.amazon.com/CORS-Action-Creating-consuming-cross-origin/dp/161729182X/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=47ebd885d688a4ed69f77a1bd8273f8a&camp=1789&creative=9325
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://code.tutsplus.com/courses/connect-the-web-with-websockets
https://www.amazon.com/WebSocket-Client-Server-Communications-Andrew-Lombardi/dp/1449369278/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=dd39395cf3d2ab4fc7c820d7c19db39a&camp=1789&creative=9325
https://tools.ietf.org/html/rfc6455
https://en.wikipedia.org/wiki/WebSocket

General Learning:

Web Hosting 101: Get Your Website Live on the Web in No Time [video]

connectivity, typically in a data center.

— Wikipedia

https://www.udemy.com/web-hosting-101/
https://en.wikipedia.org/wiki/Web_hosting_service

Image source: https://firstsiteguide.com/wp-content/uploads/2016/06/what-is-web-hosting-infographic.jpg

3.6 - Learn General Front-End Development

Frontend Bootcamp / Days in the Web [read]

Becoming a Career-Ready Web Developer

Become a Front-End Web Developer [watch][$]

Being a web developer [read]

freeCodeCamp [interact]

learning front-end development during #100DaysOfCode [read]

Front-End Web Developer Nanodegree [watch][$]

Front End Web Development Career Kickstart [watch][$]

Front End Web Development: Get Started [watch][$]

Front-End Web Development Quick Start With HTML5, CSS, and JavaScript [watch]
[$]

Front-End Web Development: The Big Nerd Ranch Guide [read][$]

Complete Intro to Web Development [watch][$]

Learn Front End Web Development [watch][$]

So, You Want to Be a Front-End Engineer [watch]

https://firstsiteguide.com/wp-content/uploads/2016/06/what-is-web-hosting-infographic.jpg
https://github.com/Microsoft/frontend-bootcamp
https://frontendmasters.com/learn/beginner/
https://www.lynda.com/learning-paths/Web/become-a-front-end-web-developer
http://www.yellowshoe.com.au/standards
http://freecodecamp.com/
https://github.com/nas5w/100-days-of-code-frontend#contibuting
https://www.udacity.com/course/front-end-web-developer-nanodegree--nd001
http://www.pluralsight.com/courses/front-end-web-development-career-kickstart
http://www.pluralsight.com/courses/front-end-web-development-get-started
http://www.pluralsight.com/courses/front-end-web-app-html5-javascript-css
https://www.amazon.com/Front-End-Web-Development-Ranch-Guide/dp/0134433947/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=06802d4e42ca55b03294779c960d0826&camp=1789&creative=9325
https://frontendmasters.com/courses/web-development-v2/
https://teamtreehouse.com/tracks/front-end-web-development
https://www.youtube.com/watch?v=Lsg84NtJbmI

codecademy.com: Web Development Path [interact][free to $]

web.dev [read]

3.7 - Learn User Interface/Interaction Design

User Interface Design - User interface design (UI) or user interface

engineering is the design of user interfaces for machines and software,

such as computers, home appliances, mobile devices, and other

electronic devices, with the focus on maximizing the user experience.

The goal of user interface design is to make the user's interaction as

simple and efficient as possible, in terms of accomplishing user goals

(user-centered design).

— Wikipedia

Interaction Design Pattern - A design pattern is a formal way of

documenting a solution to a common design problem. The idea was

introduced by the architect Christopher Alexander for use in urban

planning and building architecture, and has been adapted for various

other disciplines, including teaching and pedagogy, development

organization and process, and software architecture and design.

— Wikipedia

User Experience Design - User Experience Design (UXD or UED or XD)

is the process of enhancing user satisfaction by improving the usability,

accessibility, and pleasure provided in the interaction between the user

“

https://www.codecademy.com/learn/paths/web-development
https://web.dev/learn
https://en.wikipedia.org/wiki/User_interface_design
https://en.wikipedia.org/wiki/Design_pattern

Minimally I'd suggest reading the following canonical texts on the matter so one can
support and potential build usable user interfaces.

About Face: The Essentials of Interaction Design [read][$]

Design for Hackers: Reverse Engineering Beauty [read][$]

Design for Non-Designers [watch]

Designing Interfaces [read][$]

Designing Web Interfaces: Principles and Patterns for Rich Interactions [read][$]

Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability
[read][$]

3.8 - Learn HTML & CSS

and the product. User experience design encompasses traditional

human–computer interaction (HCI) design, and extends it by addressing

all aspects of a product or service as perceived by users.

— Wikipedia

Human–Computer Interaction - Human–computer interaction (HCI)

researches the design and use of computer technology, focusing

particularly on the interfaces between people (users) and computers.

Researchers in the field of HCI both observe the ways in which humans

interact with computers and design technologies that lets humans

interact with computers in novel ways.

— Wikipedia

https://www.amazon.com/About-Face-Essentials-Interaction-Design-ebook/dp/B00MFPZ9UY/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=c723c84ad4d246cb7f1c4a737c5f38a4&camp=1789&creative=9325
https://www.amazon.com/Design-Hackers-Reverse-Engineering-Beauty/dp/1119998956/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=2a52f0968de21c03f069d857b9d92b37&camp=1789&creative=9325
https://www.youtube.com/watch?v=ZbrzdMaumNk&feature=youtu.be
https://www.amazon.com/Designing-Interfaces-Jenifer-Tidwell/dp/1449379702/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=4539707bb145c676472472aab25eaa56&camp=1789&creative=9325
https://www.amazon.com/Designing-Web-Interfaces-Principles-Interactions-ebook/dp/B0026OR33U/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=03fb59f4a4345732fae9ecdfaa5076ae&camp=1789&creative=9325
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=8b0b0771a9985e4e030ef1fe29cf6409&camp=1789&creative=9325
https://en.wikipedia.org/wiki/User_experience_design
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

Liken to constructing a house, one might consider HTML the framing and CSS to be
the painting & decorating.

General Learning:

Absolute Centering in CSS [read]

CSS Positioning [watch][$]

Introduction to Web Development (v2) [watch][$]

HTML - HyperText Markup Language, commonly referred to as HTML, is

the standard markup language used to create web pages. Web

browsers can read HTML files and render them into visible or audible

web pages. HTML describes the structure of a website semantically

along with cues for presentation, making it a markup language, rather

than a programming language.

— Wikipedia

CSS - Cascading Style Sheets (CSS) is a style sheet language used for

describing the look and formatting of a document written in a markup

language. Although most often used to change the style of web pages

and user interfaces written in HTML and XHTML, the language can be

applied to any kind of XML document, including plain XML, SVG and

XUL. Along with HTML and JavaScript, CSS is a cornerstone technology

used by most websites to create visually engaging webpages, user

interfaces for web applications, and user interfaces for many mobile

applications.

— Wikipedia

“

http://codepen.io/shshaw/full/gEiDt
http://www.pluralsight.com/courses/css-positioning-1834
https://frontendmasters.com/courses/web-development-v2/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets

Front End Web Development: Get Started [watch][$]

Front-End Web Development Quick Start With HTML5, CSS, and JavaScript [watch]
[$]

HTML and CSS: Design and Build Websites [read][$]

HTML Document Flow [watch][$]

HTML Mastery: Semantics, Standards, and Styling [read][$]

Interneting is Hard [read]

Intro to HTML/CSS: Making webpages [watch]

Learn to Code HTML & CSS [read]

Learn CSS Layout [read]

MarkSheet [read]

MDN: HTML [read]

MDN: CSS [read]

Semantic HTML: How to Structure Web Pages [watch]

Solid HTML Form Structure [watch]

Understanding the CSS Box Model [watch]

Resilient Web Design [read]

Mastering CSS:

A Complete Guide to Flexbox [read]

CSS Grids and Flexbox for Responsive Web Design [watch][$]

CSS Diner [interact]

CSS Selectors from CSS4 till CSS1 [read]

CSS Secrets: Better Solutions to Everyday Web Design Problems [read][$]

CSS3 [read]

http://www.pluralsight.com/courses/front-end-web-development-get-started
http://www.pluralsight.com/courses/front-end-web-app-html5-javascript-css
https://www.amazon.com/gp/product/1118008189/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=b1c45ab715f267f7dfed8c981c14eceb&camp=1789&creative=9325
http://www.pluralsight.com/courses/html-document-flow-1837
https://www.amazon.com/gp/product/1590597656/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=a5c4eb997239ea9e57a86456cef7763c&camp=1789&creative=9325
https://internetingishard.com/
https://www.khanacademy.org/computing/computer-programming/html-css
http://learn.shayhowe.com/html-css/
http://learnlayout.com/
http://marksheet.io/
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://webdesign.tutsplus.com/courses/semantic-html-how-to-structure-web-pages
https://webdesign.tutsplus.com/courses/solid-html-form-structure
https://webdesign.tutsplus.com/courses/understanding-the-css-box-model
https://resilientwebdesign.com/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://frontendmasters.com/courses/css-grids-flexbox/
http://flukeout.github.io/
http://css4-selectors.com/selectors/
https://www.amazon.com/CSS-Secrets-Solutions-Everyday-Problems/dp/1449372635/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=40a9480c18839b4b2ea798aa2afafd0e&camp=1789&creative=9325
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3

CSS In-Depth, v2 [watch][$]

What the Flexbox?! A Simple, Free 20 Video Course That Will Help You Master CSS
Flexbox [watch]

30 Seconds of CSS - A curated collection of useful CSS snippets you can
understand in 30 seconds or less. [read]

References/Docs:

CSS Triggers...a Game of Layout, Paint, and Composite

cssreference.io

cssvalues.com

Default CSS for Chrome Browser

Head - A list of everything that could go in the
of your document

HTML Attribute Reference

MDN CSS Reference

MDN HTML Element Reference

Glossary/Vocabulary:

CSS Glossary - Programming Reference for CSS Covering Comments, Properties,
and Selectors

CSS Vocabulary

HTML Glossary Programming Reference for HTML elements

Standards/Specifications:

All W3C CSS Specifications

All W3C HTML Spec

Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specification

https://frontendmasters.com/courses/css-in-depth-v2/
http://flexbox.io/
https://atomiks.github.io/30-seconds-of-css/
http://csstriggers.com/
http://cssreference.io/
http://cssvalues.com/
https://chromium.googlesource.com/chromium/blink/+/master/Source/core/css/html.css
http://gethead.info/
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://www.codecademy.com/articles/glossary-css
http://apps.workflower.fi/vocabs/css/en
https://www.codecademy.com/articles/glossary-html
http://www.w3.org/Style/CSS/current-work#roadmap
http://www.w3.org/standards/techs/html#w3c_all
https://drafts.csswg.org/css2/

CSS Indexes - A listing of every term defined by CSS specs

The Elements of HTML from the Living Standard

Global Attributes

The HTML Syntax from the Living Standard

HTML 5.2 from W3C

Selectors Level 3

Architecting CSS:

Atomic Design [read]

BEM

ITCSS

OOCSS [read]

SMACSS [read][$]

Scalable Modular Architecture for CSS (SMACSS) [watch][$]

SUIT CSS

rscss

Authoring/Architecting Conventions:

CSS code guide [read]

css-architecture

cssguidelin.es [read]

Idiomatic CSS [read]

MaintainableCSS [read]

Standards for Developing Flexible, Durable, and Sustainable HTML and CSS [read]

https://drafts.csswg.org/indexes/
https://html.spec.whatwg.org/multipage/semantics.html#semantics
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://html.spec.whatwg.org/multipage/syntax.html#syntax
http://w3c.github.io/html/
http://www.w3.org/TR/css3-selectors/
http://atomicdesign.bradfrost.com/
http://getbem.com/introduction/
https://www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/
http://oocss.org/
https://smacss.com/
https://frontendmasters.com/courses/smacss/
http://suitcss.github.io/
http://rscss.io/
http://codeguide.co/#css
https://github.com/jareware/css-architecture
http://cssguidelin.es/
https://github.com/necolas/idiomatic-css
http://maintainablecss.com/
http://mdo.github.io/code-guide/

3.9 - Learn Search Engine Optimization

Search engine optimization (SEO) is the process of affecting the visibility

of a website or a web page in a search engine's unpaid results — often

referred to as "natural," "organic," or "earned" results. In general, the

earlier (or higher ranked on the search results page), and more

frequently a site appears in the search results list, the more visitors it

will receive from the search engine's users. SEO may target different

kinds of search, including image search, local search, video search,

academic search, news search and industry-specific vertical search

engines.

— Wikipedia

“

https://en.wikipedia.org/wiki/Search_engine_optimization

Image source: https://visual.ly/community/infographic/computers/how-does-seo-work

General Learning:

Google Search Engine Optimization Starter Guide [read]

Modern SEO [watch][$]

SEO Fundamentals From David Booth [watch][$]

SEO Fundamentals From Paul Wilson [watch][$]

SEO Tutorial For Beginners in 2016 [read]

SEO for Web Designers [watch][$]

https://visual.ly/community/infographic/computers/how-does-seo-work
http://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
https://frontendmasters.com/courses/modern-seo/
http://www.lynda.com/Analytics-tutorials/SEO-Fundamentals/187858-2.html
http://www.pluralsight.com/courses/seo-fundamentals
http://www.hobo-web.co.uk/seo-tutorial/
https://webdesign.tutsplus.com/courses/seo-for-web-designers

3.10 - Learn JavaScript

Getting Started:

MDN: JavaScript [read]

javascript.info

JavaScript Enlightenment [read]

Eloquent JavaScript [read]

General Learning:

Speaking JavaScript [read]

JavaScript for impatient programmers [read]

JavaScript is a high level, dynamic, untyped, and interpreted

programming language. It has been standardized in the ECMAScript

language specification. Alongside HTML and CSS, it is one of the three

essential technologies of World Wide Web content production; the

majority of websites employ it and it is supported by all modern web

browsers without plug-ins. JavaScript is prototype-based with first-class

functions, making it a multi-paradigm language, supporting object-

oriented, imperative, and functional programming styles. It has an API

for working with text, arrays, dates and regular expressions, but does

not include any I/O, such as networking, storage or graphics facilities,

relying for these upon the host environment in which it is embedded.

— Wikipedia

“

https://developer.mozilla.org/en-US/docs/Learn/JavaScript
http://javascript.info/
http://www.javascriptenlightenment.com/
http://eloquentjavascript.net/
http://speakingjs.com/es5/index.html
http://exploringjs.com/impatient-js/index.html
https://en.wikipedia.org/wiki/JavaScript

You Don't Know JS: Up & Going [read]

You Don't Know JS: Types & Grammar [read]

You Don't Know JS: Scope & Closures [read]

You Don't Know JS: this & Object Prototypes [read]

Modern JavaScript Cheatsheet - Cheatsheet for the JavaScript knowledge you will
frequently encounter in modern projects. [read]

JavaScript: The Hard Parts [watch][$]

Deep Foundations of JavaScript (v3) [watch][$]

Mastering:

Setting up ES6 [read]

ES6 FOR EVERYONE! [watch][$]

Exploring ES6 [read]

You Don't Know JS: ES6 & Beyond [read]

Understanding ECMAScript 6: The Definitive Guide for JavaScript Developers [read]
[$]

JavaScript: The Recent Parts [watch][$]

Exploring ES2016 and ES2017 [read]

Exploring ES2018 and ES2019 [read]

JavaScript Regular Expression Enlightenment [read]

Using Regular Expressions [watch][$]

You Don't Know JS: Async & Performance [read]

JavaScript with Promises [read][$]

Test-Driven JavaScript Development [read][$]

JS MythBusters [read]

Robust JavaScript [read]

https://github.com/getify/You-Dont-Know-JS/blob/master/up%20&%20going/README.md#you-dont-know-js-up--going
https://github.com/getify/You-Dont-Know-JS/blob/master/types%20&%20grammar/README.md#you-dont-know-js-types--grammar
https://github.com/getify/You-Dont-Know-JS/blob/master/scope%20&%20closures/README.md#you-dont-know-js-scope--closures
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20&%20object%20prototypes/README.md#you-dont-know-js-this--object-prototypes
https://github.com/mbeaudru/modern-js-cheatsheet
https://frontendmasters.com/courses/javascript-hard-parts/
https://frontendmasters.com/courses/deep-javascript-v3/
https://leanpub.com/setting-up-es6
https://es6.io/
http://exploringjs.com/es6.html
https://github.com/getify/You-Dont-Know-JS/blob/master/es6%20&%20beyond/README.md#you-dont-know-js-es6--beyond
https://www.amazon.com/Understanding-ECMAScript-Definitive-JavaScript-Developers/dp/1593277571/ref=as_li_ss_tl?&_encoding=UTF8&tag=fronenddevejo-20&linkCode=ur2&linkId=1ca4f5f23b42aeadad0990ab3bf91ca7&camp=1789&creative=9325
https://frontendmasters.com/courses/js-recent-parts/
http://exploringjs.com/es2016-es2017/index.html
http://exploringjs.com/es2018-es2019/index.html
http://codylindley.com/techpro/2013_05_14__javascript-regular-expression-/
http://www.lynda.com/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
https://github.com/getify/You-Dont-Know-JS/blob/master/async%20&%20performance/README.md#you-dont-know-js-async--performance
http://www.amazon.com/JavaScript-Promises-Daniel-Parker/dp/1449373216/ref=pd_sim_sbs_14_5
http://www.amazon.com/dp/0321683919/
https://mythbusters.js.org/index.html
https://molily.de/robust-javascript/

JavaScript Algorithms and Data Structures [read]

33 Concepts Every JavaScript Developer Should Know [read]

doesitmutate.xyz [read]

Functional JavaScript:

Functional Programming Jargon

funfunfunction: Functional programming in JavaScript [watch]

Functional-Light-JS [read]

Functional Programming in JavaScript: How to improve your JavaScript programs
using functional techniques [read]

Mostly adequate guide to FP (in javascript) [read]

Professor Frisby Introduces Composable Functional JavaScript [watch]

JavaScript Allongé [read][$]

Functional-Lite JavaScript (v2) [watch][$]

Hardcore Functional Programming in JavaScript [watch][$]

References/Docs:

MDN JavaScript Reference

MSDN JavaScrip Reference

Glossary/Encyclopedia/Jargon:

The JavaScript Encyclopedia

JavaScript Glossary

Simplified JavaScript Jargon

Standards/Specifications:

https://github.com/trekhleb/javascript-algorithms#readme
https://github.com/leonardomso/33-js-concepts
https://doesitmutate.xyz/
https://github.com/hemanth/functional-programming-jargon#functional-programming-jargon
https://www.youtube.com/watch?v=BMUiFMZr7vk&list=PL0zVEGEvSaeEd9hlmCXrk5yUyqUag-n84
https://github.com/getify/Functional-Light-JS
https://www.amazon.com/Functional-Programming-JavaScript-functional-techniques/dp/1617292826/ref=sr_1_1?&_encoding=UTF8&tag=fronenddevejo-20&linkCode=ur2&linkId=dcc6b0cb7de57fa841f1b178d2d54b9d&camp=1789&creative=9325
https://drboolean.gitbooks.io/mostly-adequate-guide/content/
https://egghead.io/courses/professor-frisby-introduces-composable-functional-javascript
https://leanpub.com/javascriptallongesix
https://frontendmasters.com/courses/functional-javascript-v2/
https://frontendmasters.com/courses/functional-javascript/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://msdn.microsoft.com/en-us/library/yek4tbz0.aspx
http://www.crockford.com/javascript/encyclopedia/
https://www.codecademy.com/articles/glossary-javascript
http://jargon.js.org/

How to Read the ECMAScript Specification

ECMAScript® 2015 Language Specification

ECMAScript® 2016 Language Specification

ECMAScript® 2017 Language Specification

ECMAScript® 2018 Language Specification

ECMAScript® 2019 Language Specification

Status, Process, and Documents for ECMA262

Style:

Airbnb JavaScript Style Guide

JavaScript Standard Style

JavaScript Semi-Standard Style

Deprecated JS Learning Resources:

Crockford on JavaScript - Volume 1: The Early Years [watch]

Crockford on JavaScript - Chapter 2: And Then There Was JavaScript [watch]

Crockford on JavaScript - Act III: Function the Ultimate [watch]

Crockford on JavaScript - Episode IV: The Metamorphosis of Ajax [watch]

Crockford on JavaScript - Part 5: The End of All Things [watch]

Crockford on JavaScript - Scene 6: Loopage [watch]

JavaScript Patterns [read][$]

The Principles of Object-Oriented JavaScript [read][$]

JavaScript Modules [read]

Functional JavaScript: Introducing Functional Programming with Underscore.js
[read][$]

The Good Parts of JavaScript and the Web [watch][$]

https://timothygu.me/es-howto/
http://www.ecma-international.org/ecma-262/6.0/index.html
https://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/8.0/index.html
http://www.ecma-international.org/ecma-262/9.0/index.html
https://tc39.github.io/ecma262/
https://github.com/tc39/ecma262
http://airbnb.io/javascript/
http://standardjs.com/rules.html
https://github.com/Flet/semistandard
https://www.youtube.com/watch?v=JxAXlJEmNMg
https://www.youtube.com/watch?v=RO1Wnu-xKoY
https://www.youtube.com/watch?v=ya4UHuXNygM
https://www.youtube.com/watch?v=Fv9qT9joc0M
https://www.youtube.com/watch?v=47Ceot8yqeI
https://www.youtube.com/watch?v=QgwSUtYSUqA
http://www.amazon.com/gp/product/0596806752/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0596806752&linkCode=as2&tag=fronenddevejo-20&linkId=K56OPQZNQNMPF6QI
http://www.amazon.com/gp/product/1593275404/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1593275404&linkCode=as2&tag=fronenddevejo-20&linkId=NQTZVDOIMJRGMAQM
http://jsmodules.io/cjs.html
http://www.amazon.com/gp/product/1449360726/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1449360726&linkCode=as2&tag=fronenddevejo-20&linkId=BDQC3FTEB3YXTYCK
https://frontendmasters.com/courses/good-parts-javascript-web/

High Performance JavaScript (Build Faster Web Application Interfaces) [read][$]

JS Explorers/Visualizers:

JavaScript Array Explorer

JavaScript Object Explorer

JavaScript Visualizer

3.11 - Learn DOM, BOM, CSSOM & jQuery

DOM - The Document Object Model (DOM) is a cross-platform and

language-independent convention for representing and interacting with

objects in HTML, XHTML, and XML documents. The nodes of every

document are organized in a tree structure, called the DOM tree.

Objects in the DOM tree may be addressed and manipulated by using

methods on the objects. The public interface of a DOM is specified in its

application programming interface (API).

— Wikipedia

BOM - The Browser Object Model (BOM) is a browser-specific

convention referring to all the objects exposed by the web browser.

Unlike the Document Object Model, there is no standard for

implementation and no strict definition, so browser vendors are free to

implement the BOM in any way they wish.

— Wikipedia

“

http://www.amazon.com/Performance-JavaScript-Faster-Application-Interfaces/dp/059680279X/ref=sr_1_1
https://sdras.github.io/array-explorer/
https://sdras.github.io/object-explorer/
https://tylermcginnis.com/javascript-visualizer/
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Browser_Object_Model

The ideal path, but certainly the most difficult, would be to first learn JavaScript,
then the DOM, then jQuery. However, do what makes sense to your brain. Most
front-end developers learn about JavaScript and then DOM by way of first learning
jQuery. Whatever path you take, just make sure JavaScript, the DOM, and jQuery
don't become a black box.

General Learning:

The Document Object Model [read]

HTML/JS: Making Webpages Interactive [watch]

HTML/JS: Making Webpages Interactive with jQuery [watch]

jQuery Enlightenment [read]

What is the DOM? [read]

Mastering:

AdvancED DOM Scripting: Dynamic Web Design Techniques [read][$]

Advanced JS Fundamentals to jQuery & Pure DOM Scripting [watch][$]

Douglas Crockford: An Inconvenient API - The Theory of the DOM [watch]

DOM Enlightenment [read][$] or read online for free

Fixing Common jQuery Bugs [watch][$]

jQuery - jQuery is a cross-platform JavaScript library designed to

simplify the client-side scripting of HTML. jQuery is the most popular

JavaScript library in use today, with installation on 65% of the top 10

million highest-trafficked sites on the Web. jQuery is free, open-source

software licensed under the MIT License.

— Wikipedia

http://eloquentjavascript.net/13_dom.html
https://www.khanacademy.org/computing/computer-programming/html-css-js
https://www.khanacademy.org/computing/computer-programming/html-js-jquery
http://jqueryenlightenment.com/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
http://www.amazon.com/gp/product/1590598563/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1590598563&linkCode=as2&tag=fronenddevejo-20&linkId=VQZU5EQIQQXCF56Y
https://frontendmasters.com/courses/javascript-jquery-dom/
https://www.youtube.com/watch?v=Y2Y0U-2qJMs&list=PL5586336C26BDB324&index=2
http://www.amazon.com/DOM-Enlightenment-Cody-Lindley/dp/1449342841/
http://domenlightenment.com/
http://www.pluralsight.com/courses/fixing-common-jquery-bugs
https://en.wikipedia.org/wiki/JQuery

jQuery-Free JavaScript [watch][$]

jQuery Tips and Tricks [watch][$]

References/Docs:

jQuery Docs

Events

DOM Browser Support

DOM Events Browser Support

HTML Interfaces Browser Support

MDN Document Object Model (DOM)

MDN Browser Object Model

MDN Document Object Model

MDN Event reference

MSDN Document Object Model (DOM)

CSS Object Model (CSSOM)

Standards/Specifications:

Document Object Model (DOM) Level 3 Events Specification

Document Object Model (DOM) Technical Reports

DOM Living Standard

W3C DOM4

3.12 - Learn Web Animation

http://www.pluralsight.com/courses/jquery-free-javascript
http://www.pluralsight.com/courses/jquery-tips-and-tricks
http://api.jquery.com/
https://html.spec.whatwg.org/#events-2
http://www.webbrowsercompatibility.com/dom/desktop/
http://www.webbrowsercompatibility.com/dom-events/desktop/
http://www.webbrowsercompatibility.com/html-interfaces/desktop/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/Events
https://msdn.microsoft.com/en-us/library/hh772384%28v=vs.85%29.aspx
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model
https://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/DOM/DOMTR
https://dom.spec.whatwg.org/
https://www.w3.org/TR/2015/REC-dom-20151119/

General Learning:

SVG Essentials and Animation, v2 [$][watch]

Adventures in Web Animations [$][watch]

Animating With Snap.svg [$][watch]

Animation in CSS3 and HTML5 [$][watch]

Create Animations in CSS [read & watch]

CSS Animation in the Real World [$][watch]

Foundation HTML5 Animation with JavaScript [$][read]

Learn to Create Animations in JavaScript [read & watch]

Motion Design with CSS [$][watch]

State of the Animation 2015 [watch]

Web Animation using JavaScript: Develop & Design (Develop and Design) [$][read]

Standards/Specifications:

Web Animations

3.13 - Learn Web Fonts, Icons, & Images

Web typography refers to the use of fonts on the World Wide Web.

When HTML was first created, font faces and styles were controlled

exclusively by the settings of each Web browser. There was no

mechanism for individual Web pages to control font display until

“

https://frontendmasters.com/courses/svg-essentials-animation/
https://www.codeschool.com/courses/adventures-in-web-animations
https://webdesign.tutsplus.com/courses/animating-with-snapsvg
https://frontendmasters.com/courses/animation-storytelling-html5-css3/
http://www.kirupa.com/css_animations/index.htm
https://webdesign.tutsplus.com/courses/css-animation-in-the-real-world
http://www.amazon.com/Foundation-HTML5-Animation-JavaScript-Lamberta/dp/1430236655/ref=sr_1_3
http://www.kirupa.com/javascript_animations/index.htm
https://frontendmasters.com/courses/motion-design-css/
https://air.mozilla.org/rachel-nabors-state-of-the-animation-2015/
http://www.amazon.com/Web-Animation-using-JavaScript-Develop-ebook/dp/B00UNKXVDU/ref=sr_1_1
https://w3c.github.io/web-animations/

Fonts:

A Comprehensive Guide to Font Loading Strategies [read]

Beautiful Web Type a Showcase of the Best Typefaces from the Google Web Fonts
Directory [read]

Quick Guide to Webfonts via @font-face [read]

MDN: Web fonts [read]

Responsive Web Typography, v2 [watch][$]

Typography for the Web [watch][$]

Icons:

Netscape introduced the tag in 1995, which was then

standardized in the HTML 3.2 specification. However, the font specified

by the tag had to be installed on the user's computer or a fallback font,

such as a browser's default sans-serif or monospace font, would be

used. The first Cascading Style Sheets specification was published in

1996 and provided the same capabilities.

The CSS2 specification was released in 1998 and attempted to improve

the font selection process by adding font matching, synthesis and

download. These techniques did not gain much use, and were removed

in the CSS2.1 specification. However, Internet Explorer added support

for the font downloading feature in version 4.0, released in 1997. Font

downloading was later included in the CSS3 fonts module, and has

since been implemented in Safari 3.1, Opera 10 and Mozilla Firefox 3.5.

This has subsequently increased interest in Web typography, as well as

the usage of font downloading.

— Wikipedia

https://www.zachleat.com/web/comprehensive-webfonts/
http://hellohappy.org/beautiful-web-type/
http://www.html5rocks.com/en/tutorials/webfonts/quick/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts
https://frontendmasters.com/courses/responsive-typography-v2/
http://www.pluralsight.com/courses/typography-for-web-1790
https://en.wikipedia.org/wiki/Web_typography

[read] [watch]

Images:

MDN: Images in HTML [read]

MDN: Responsive images [read]

SVG ON THE WEB - A Practical Guide [read]

3.14 - Learn Accessibility

Accessibility refers to the design of products, devices, services, or

environments for people with disabilities. The concept of accessible

design ensures both “direct access” (i.e., unassisted) and "indirect

access" meaning compatibility with a person's assistive technology (for

example, computer screen readers).

Accessibility can be viewed as the "ability to access" and benefit from

some system or entity. The concept focuses on enabling access for

people with disabilities, or special needs, or enabling access through

the use of assistive technology; however, research and development in

accessibility brings benefits to everyone.

Accessibility is not to be confused with usability, which is the extent to

which a product (such as a device, service, or environment) can be used

by specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use.

“

https://www.lynda.com/CSS-tutorials/Web-Icons-SVG/502312-2.html
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Images_in_HTML
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://svgontheweb.com/

General Learning:

9 tips to get bare minimum of web accessibility

Foundations of UX: Accessibility [watch][$]

How HTML elements are supported by screen readers [read]

Introduction to Web Accessibility - WAI [read]

Universal Design for Web Applications: Web Applications That Reach Everyone
[read][$]

Web Accessibility: Getting Started [watch][$]

A Web for Everyone [read][$]

Web Accessibility [watch][$]

A11ycasts [watch]

Accessibility by Google - Udacity course [watch]

Standards/Specifications:

Accessible Rich Internet Applications (WAI-ARIA) Current Status

Web Accessibility Initiative (WAI)

Web Content Accessibility Guidelines (WCAG) Current Status

Accessibility is strongly related to universal design which is the process

of creating products that are usable by people with the widest possible

range of abilities, operating within the widest possible range of

situations. This is about making things accessible to all people (whether

they have a disability or not).

— Wikipedia

https://medium.com/@realabhijeet4u/9-tips-to-get-bare-minimum-of-web-accessibility-739899a9437c
http://www.lynda.com/Accessibility-tutorials/Foundations-UX-Accessibility/435008-2.html
http://thepaciellogroup.github.io/AT-browser-tests/?utm_source=html5weekly&utm_medium=email
https://www.w3.org/WAI/intro/accessibility.php
http://www.amazon.com/Universal-Design-Web-Applications-Everyone/dp/0596518730/ref=sr_1_1
http://www.pluralsight.com/courses/web-accessibility-getting-started
http://rosenfeldmedia.com/books/a-web-for-everyone/
https://frontendmasters.com/courses/web-accessibility/
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.udacity.com/course/web-accessibility--ud891
http://www.w3.org/standards/techs/aria#w3c_all
http://www.w3.org/WAI/
http://www.w3.org/standards/techs/wcag#w3c_all
https://en.wikipedia.org/wiki/Accessibility

3.15 - Learn Web/Browser APIs

Image source: http://www.evolutionoftheweb.com/

The BOM (Browser Object Model) and the DOM (Document Object Model) are not
the only browser APIs that are made available on the web platform inside of
browsers. Everything that is not specifically the DOM or BOM, but an interface for
programming the browser could be considered a web or browser API (tragically in
the past some of these APIs have been called HTML5 APIs which confuses their own
specifics/standardize with the actual HTML5 specification specifying the HTML5
markup language). Note that web or browser APIs do include device APIs (e.g.,
Navigator.getBattery()) that are available through the browser on tablet and

http://www.evolutionoftheweb.com/
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/getBattery

phones devices.

You should be aware of and learn, where appropriate, web/browser APIs. A good tool
to use to familiarize oneself with all of these APIs would be to investigate the
HTML5test.com results for the 5 most current browsers.

MDN has a great deal of information about web/browser APIs.

MDN Web API Reference

MDN Web APIs Interface Reference - All Interfaces, Arranged Alphabetically

MDN WebAPI - Lists Device Access APIs and Other APIs Useful for Applications

Keep in mind that not every API is specified by the W3C or WHATWG.

In addition to MDN, you might find the following resources helpful for learning about
all the web/browser API's:

The HTML 5 JavaScript API Index

HTML5 Overview

platform.html5.org

3.16 - Learn JSON (JavaScript Object Notation)

JSON, (canonically pronounced sometimes JavaScript Object Notation),

is an open standard format that uses human-readable text to transmit

data objects consisting of attribute–value pairs. It is the primary data

“

https://html5test.com/compare/browser/index.html
https://developer.mozilla.org/en-US/docs/Web/Reference/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/WebAPI
http://html5index.org/
http://html5-overview.net/current
https://platform.html5.org/

General Learning:

Introduction to JavaScript Object Notation: A To-the-Point Guide to JSON [read][$]

json.com [read]

What is JSON [watch]

References/Docs:

json.org [read]

Standards/Specifications:

ECMA-404 The JSON Data Interchange Format

RFC 7159 The JavaScript Object Notation (JSON) Data Interchange Format

format used for asynchronous browser/server communication (A JA J),

largely replacing XML (used by A JAX).

Although originally derived from the JavaScript scripting language, JSON

is a language-independent data format. Code for parsing and

generating JSON data is readily available in many programming

languages.

The JSON format was originally specified by Douglas Crockford. It is

currently described by two competing standards, RFC 7159 and ECMA-

404. The ECMA standard is minimal, describing only the allowed

grammar syntax, whereas the RFC also provides some semantic and

security considerations. The official Internet media type for JSON is

application/json. The JSON filename extension is .json.

— Wikipedia

https://www.amazon.com/Introduction-JavaScript-Object-Notation-Point/dp/1491929480/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=24e8df4722cb62d086d3f8c87f4e17a1&camp=1789&creative=9325
https://www.json.com/
https://mijingo.com/lessons/what-is-json/
http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc7159
https://en.wikipedia.org/wiki/JSON

STD 90 - RFC 8259 - The JavaScript Object Notation (JSON) Data Interchange
Format, DECEMBER 2017

Architecting:

JSON API

3.17 - Learn JS Templates

A JavaScript template is typically used, but not always with a MV* solution to
separate parts of the view (i.e., the UI) from the logic and model (i.e., the data or
JSON).

ES6 Template Literals, the Handlebars killer? [read]

Getting Started with nunjucks [read]

[read][$]

Lodash Templates [docs]

Note that JavaScript 2015 (aka ES6) added a native templating mechanism called
"Templates strings". Additionally, templating as of late has been replaced by things
like JSX, a template element, or HTML strings.

If I was not using React & JSX I'd first reach for JavaScript "Templates strings" and
when that was lacking move to nunjucks.

3.18 - Learn Static Site Generators

https://www.rfc-editor.org/info/rfc8259
http://jsonapi.org/
http://todomvc.com/
https://www.keithcirkel.co.uk/es6-template-literals/
http://mozilla.github.io/nunjucks/getting-started.html
https://lodash.com/docs/4.17.2#template
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/template_strings
https://facebook.github.io/jsx/
http://aurelia.io/docs/templating/basics
https://angular.io/docs/ts/latest/guide/template-syntax.html#
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/template_strings
http://mozilla.github.io/nunjucks/getting-started.html

Static site generators, typically written using server side code (i.e., ruby, php,
python, nodeJS, etc.), produce static HTML files from static text/data + templates
that are intended to be sent from a server to the client statically without a dynamic
nature.

General Learning:

JAMstack [read]

Static Site Generators [read]

Working with Static Sites - Bringing the Power of Simplicity to Modern Sites [read]
[$]

3.19 - Learn Computer Science via JS

Four Semesters of Computer Science in Six Hours [video][$]

Four Semesters of Computer Science in Six Hours: Part 2 [video][$]

Computer Science in JavaScript [read]

Collection of classic computer science paradigms, algorithms, and approaches
written in JavaScript [read]

A Practical Guide to Algorithms with JavaScript [watch][$]

Introduction to Data Structures for Interviews [watch][$]

JavaScript Algorithms and Data Structures Masterclass [watch][$]

3.20 - Learn Front-End Application Architecture

https://jamstack.org/
http://www.oreilly.com/web-platform/free/static-site-generators.csp
https://www.amazon.com/Working-Static-Sites-Bringing-Simplicity/dp/1491960949
https://frontendmasters.com/courses/computer-science/
https://frontendmasters.com/courses/computer-science-2/
https://github.com/davidshariff/computer-science
https://github.com/nzakas/computer-science-in-javascript
https://frontendmasters.com/courses/practical-algorithms/
https://frontendmasters.com/courses/data-structures-interviews/
https://www.udemy.com/js-algorithms-and-data-structures-masterclass/

General Learning:

Grab Front End Guide [read]

A set of best practices for JavaScript projects

Spellbook of Modern Web Dev

JavaScript Stack from Scratch

Deprecated Learning Materials:

JavaScript Application Design [read][$]

Build an App with React and Ampersand [watch]

Field Guide to Web Applications [read]

Frontend Guidelines Questionnaire [read]

Human JavaScript [read]

Nicholas Zakas: Scalable JavaScript Application Architecture [watch]

Organizing JavaScript Functionality [watch][$]

Patterns for Large-Scale JavaScript Application Architecture [read]

Terrific [read]

frontend case studies [read]

Not a lot of general content is being created on this topic as of late. Most of the
content offered for learning how to build front-end/SPA/JavaScript applications
presupposes you've decided up a tool like Angular, Ember, React, or Aurelia.

My advice, in 2019 learn React and Mobx and Apollo/graphql.

3.21 - Learn Data (i.e. JSON) API Design

https://github.com/grab/front-end-guide
https://github.com/elsewhencode/project-guidelines
https://github.com/dexteryy/spellbook-of-modern-webdev
https://github.com/verekia/js-stack-from-scratch
https://www.amazon.com/JavaScript-Application-Design-Build-Approach/dp/1617291951?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=4dd15b53493d3b5148af2b3e5488e98d&camp=1789&creative=9325
http://learn.humanjavascript.com/react-ampersand
http://www.html5rocks.com/webappfieldguide/toc/index/
https://github.com/bradfrost/frontend-guidelines-questionnaire
http://read.humanjavascript.com/
https://www.youtube.com/watch?v=vXjVFPosQHw
https://frontendmasters.com/courses/organizing-javascript/
http://addyosmani.com/largescalejavascript/
http://terrifically.org/
https://github.com/andrew--r/frontend-case-studies
https://2018.stateofjs.com/front-end-frameworks/overview/
https://facebook.github.io/react/
https://github.com/mobxjs/mobx
https://www.apollographql.com/

API Design, v3 [watch][$]

Build APIs You Won't Hate [$][read]

JSON API [read]

3.22 - Learn React

Learning React:

Tutorial: Intro To React [read]

ReactJS For Stupid People [read]

The Beginner's Guide to ReactJS [watch]

Complete Intro to React v4 [watch][$]

React ! [read]

React Patterns Video Subscription [watch][$]

React Enlightenment [read]

REACT JS TUTORIAL #1 - Reactjs Javascript Introduction & Workspace Setup
[watch]

Mastering React:

Build Your First Production Quality React App [watch][$]

Advanced React Component Patterns [watch][$]

Intermediate React [watch][$]

React Patterns [read]

8 Key React Component Decisions [read]

https://frontendmasters.com/courses/api-design-nodejs-v3/
http://apisyouwonthate.com/
http://jsonapi.org/
https://facebook.github.io/react/tutorial/tutorial.html
http://blog.andrewray.me/reactjs-for-stupid-people/
https://egghead.io/courses/the-beginner-s-guide-to-reactjs
https://frontendmasters.com/courses/complete-react-v4/
https://react.holiday/
https://school.reactpatterns.com/
https://www.reactenlightenment.com/
https://www.youtube.com/watch?v=MhkGQAoc7bc&t=6s
https://egghead.io/courses/build-your-first-production-quality-react-app
https://frontendmasters.com/courses/advanced-react-patterns/
https://frontendmasters.com/courses/intermediate-react/
https://reactpatterns.com/
https://medium.freecodecamp.org/8-key-react-component-decisions-cc965db11594

React - Basic Theoretical Concepts [read]

React + Mobx codebase containing real world examples (CRUD, auth, advanced
patterns, etc) that adheres to the RealWorld spec and API. [code]

An Introduction to React Router v4 and its Philosophy Toward Routing [read]

Once you have a good handle on React move on to learning a more robust state
management solution like MobX. If you are an experienced developer with Functional
Programming knowledge look at Redux. If you need help understanding the role of
state management beyond React's setState watch, "Advanced State Management
in React (feat. Redux and MobX)".

3.23 - Learn Application State Management

State management in JavaScript [read]

Advanced State Management in React (feat. Redux and MobX) [watch][$]

React js tutorial - How Redux Works [watch]

MobX + React is AWESOME [watch]

3.24 - Learn Progressive Web App

Unlike traditional applications, progressive web apps are a hybrid of

regular web pages (or websites) and a mobile application. This new

https://github.com/reactjs/react-basic
https://github.com/gothinkster/react-mobx-realworld-example-app
https://medium.freecodecamp.org/react-router-v4-philosophy-and-introduction-730fd4fff9bc
https://mobx.js.org/
https://redux.js.org/
https://frontendmasters.com/courses/react-state/
https://codeburst.io/state-management-in-javascript-15d0d98837e1
https://frontendmasters.com/courses/react-state/
https://www.youtube.com/watch?v=1w-oQ-i1XB8&list=PLoYCgNOIyGADILc3iUJzygCqC8Tt3bRXt
https://www.youtube.com/watch?v=_q50BXqkAfI&t=10s

application model attempts to combine features offered by most

modern browsers with the benefits of mobile experience.

In 2015, designer Frances Berriman and Google Chrome engineer Alex

Russell coined the term "Progressive Web Apps" to describe apps taking

advantage of new features supported by modern browsers, including

Service Workers and Web App Manifests, that let users upgrade web

apps to be first-class applications in their native OS.

According to Google Developers, these characteristics are:

Progressive - Work for every user, regardless of

browser choice because they’re built with

progressive enhancement as a core tenet.

Responsive - Fit any form factor: desktop, mobile,

tablet, or forms yet to emerge.

Connectivity independent - Service workers allow

work offline, or on low quality networks.

App-like - Feel like an app to the user with app-style

interactions and navigation.

Fresh - Always up-to-date thanks to the service

worker update process.

Safe - Served via HTTPS to prevent snooping and

ensure content hasn’t been tampered with.

Discoverable - Are identifiable as “applications”

“

A Beginner s̓ Guide To Progressive Web Apps [read]

Progressive Web Apps [read]

Getting Started with Progressive Web Apps [watch][$]

Building a Progressive Web App [watch][$]

Intro to Progressive Web Apps by Google [watch]

Native Apps are Doomed [read]

Why Native Apps Really are Doomed: Native Apps are Doomed pt 2 [read]

Your First Progressive Web App [read]

Progressive Web Applications and Offline [watch][$]

thanks to W3C manifests[6] and service worker

registration scope allowing search engines to find

them.

Re-engageable - Make re-engagement easy through

features like push notifications.

Installable - Allow users to “keep” apps they find

most useful on their home screen without the

hassle of an app store.

Linkable - Easily shared via a URL and do not

require complex installation.

— Wikipedia

https://www.smashingmagazine.com/2016/08/a-beginners-guide-to-progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://www.pluralsight.com/courses/web-apps-progressive-getting-started
https://www.lynda.com/CSS-tutorials/Building-Progressive-Web-App/518052-2.html
https://www.udacity.com/course/intro-to-progressive-web-apps--ud811
https://medium.com/javascript-scene/native-apps-are-doomed-ac397148a2c0#.rfw9hdym6
https://medium.com/javascript-scene/why-native-apps-really-are-doomed-native-apps-are-doomed-pt-2-e035b43170e9#.qjrm13yj3
https://developers.google.com/web/fundamentals/codelabs/your-first-pwapp/
https://frontendmasters.com/courses/progressive-web-apps/
https://en.wikipedia.org/wiki/Progressive_web_app

3.25 - Learn JS API Design

Designing Better JavaScript APIs [read]

Writing JavaScript APIs [read]

3.26 - Learn Browser Web Developer Tools

Web development tools allow web developers to test and debug their

code. They are different from website builders and IDEs in that they do

not assist in the direct creation of a webpage, rather they are tools used

for testing the user facing interface of a website or web application.

Web development tools come as browser add-ons or built in features in

web browsers. The most popular web browsers today like, Google

Chrome, Firefox, Opera, Internet Explorer, and Safari have built in tools

to help web developers, and many additional add-ons can be found in

their respective plugin download centers.

Web development tools allow developers to work with a variety of web

technologies, including HTML, CSS, the DOM, JavaScript, and other

components that are handled by the web browser. Due to the

increasing demand from web browsers to do more popular web

browsers have included more features geared for developers.

— Wikipedia

“

http://www.smashingmagazine.com/2012/10/designing-javascript-apis-usability/
http://blog.wolksoftware.com/writing-javascript-apis
https://en.wikipedia.org/wiki/Web_development_tools

While most browsers come equipped with web developer tools, the Chrome
developer tools are currently the most talked about and widely used.

I'd suggest learning and using the Chrome web developer tools, simply because the
best resources for learning web developer tools revolves around Chrome DevTools.

Learn Chrome Web Developer Tools:

Chrome Developer Tools [watch][$]

Explore and Master Chrome DevTools [watch]

Mastering Chrome Developer Tools v2 [watch][$]

Using The Chrome Developer Tools [watch][$]

Learning Chrome Web Developer Tools [watch][$]

Chrome Web Developer Tools Docs:

Command Line API Reference

Keyboard & UI Shortcuts Reference

Per-Panel Documentation

Configure and Customize DevTools

3.27 - Learn the Command Line (aka CLI)

A command-line interface or command language interpreter (CLI), also

known as command-line user interface, console user interface, and
“

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://code.tutsplus.com/courses/chrome-developer-tools
http://discover-devtools.codeschool.com/
https://frontendmasters.com/courses/chrome-dev-tools-v2/
http://www.pluralsight.com/courses/chrome-developer-tools
https://www.lynda.com/Chrome-tutorials/Learning-Chrome-Web-Developer-Tools/590844-2.html
https://developers.google.com/web/tools/chrome-devtools/console/command-line-reference
https://developers.google.com/web/tools/iterate/inspect-styles/shortcuts
https://developers.google.com/web/tools/chrome-devtools/#docs
https://developer.chrome.com/devtools/docs/settings

General Learning:

The Bash Guide [read]

Command Line Power User [watch]

Learn Enough Command Line to Be Dangerous [read] [free to $]

Mastering:

Advanced Command Line Techniques [watch][$]

Introduction to Bash, VIM & Regex [watch][$]

3.28 - Learn Node.js

character user interface (CUI), is a means of interacting with a

computer program where the user (or client) issues commands to the

program in the form of successive lines of text (command lines).

— Wikipedia

Node.js is an open-source, cross-platform runtime environment for

developing server-side web applications. Node.js applications are

written in JavaScript and can be run within the Node.js runtime on OS

X, Microsoft Windows, Linux, FreeBSD, NonStop, IBM AIX, IBM System z

and IBM i. Its work is hosted and supported by the Node.js Foundation,

a collaborative project at Linux Foundation.

“

http://guide.bash.academy/
http://commandlinepoweruser.com/
http://www.learnenough.com/command-line-tutorial
https://code.tutsplus.com/courses/advanced-command-line-techniques
https://frontendmasters.com/courses/bash-vim-regex/
https://en.wikipedia.org/wiki/Command-line_interface

General Learning:

The Art of Node [read]

Introduction to Node.js [watch][$]

Introduction to Node.js from Evented Mind [watch]

io.js and Node.js Next: Getting Started [watch][$]

Learning Node: Moving to the Server-Side [read][$]

Learn You The Node.js [self-guided workshops]

Node.js Basics [watch][$]

Node.js in Practice [read][$]

Real-time Web with Node.js [watch]

API Design in Node.js, v3 [watch][$]

Learn Node [watch][$]

3.29 - Learn Modules

Node.js provides an event-driven architecture and a non-blocking I/O

API designed to optimize an application's throughput and scalability for

real-time web applications. It uses Google V8 JavaScript engine to

execute code, and a large percentage of the basic modules are written

in JavaScript. Node.js contains a built-in library to allow applications to

act as a web server without software such as Apache HTTP Server,

Nginx or IIS.

— Wikipedia

https://github.com/maxogden/art-of-node#the-art-of-node
https://frontendmasters.com/courses/node-js/
https://www.eventedmind.com/classes/introduction-to-node-js-4c0326de
http://www.pluralsight.com/courses/running-node-applications-io-js
https://www.amazon.com/Learning-Node-Server-Side-Shelley-Powers/dp/1491943122/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=264ce29eb0775f4e8ccb7db892539555&camp=1789&creative=9325
https://github.com/workshopper/learnyounode
http://teamtreehouse.com/library/nodejs-basics
https://www.amazon.com/Node-js-Practice-Alex-R-Young/dp/1617290939/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=e202c01e97ebad79157fab3b59723e94&camp=1789&creative=9325
https://www.codeschool.com/courses/real-time-web-with-node-js
https://frontendmasters.com/courses/api-design-nodejs-v3/
https://learnnode.com/
https://en.wikipedia.org/wiki/Node.js

General Learning:

JavaScript for impatient programmers - Modules [read]

ES6 Modules in Depth [read]

Exploring JS - Modules [read]

ES modules: A cartoon deep-dive [read]

References/Docs:

MDN - export

MDN - import

3.30 - Learn Module loaders/bundlers

Webpack:

Webpack [read]

Webpack 4 Fundamentals [watch][$]

Survivejs.com Webpack Book [read]

Rollup:

Rollup [read]

Microbundle

Parcel

Parcel [read]

http://exploringjs.com/impatient-js/ch_modules.html
https://ponyfoo.com/articles/es6-modules-in-depth
http://exploringjs.com/es6/ch_modules.html#ch_modules
https://hacks.mozilla.org/2018/03/es-modules-a-cartoon-deep-dive/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://webpack.js.org/guides/getting-started/
https://frontendmasters.com/courses/webpack-fundamentals/
https://survivejs.com/webpack/introduction/
http://rollupjs.org/guide/
https://github.com/developit/microbundle
https://parceljs.org/getting_started.html

3.31 - Learn Package Manager

General Learning:

An introduction to how JavaScript package managers work [read]

The Mystical & Magical SemVer Ranges Used By npm & Bower [read]

Package Managers: An Introductory Guide For The Uninitiated Front-End Developer
[read]

npm docs

yarn docs

3.32 - Learn Version Control

A package manager or package management system is a collection of

software tools that automates the process of installing, upgrading,

configuring, and removing software packages for a computer's

operating system in a consistent manner. It typically maintains a

database of software dependencies and version information to prevent

software mismatches and missing prerequisites.

— Wikipedia

“

https://medium.freecodecamp.com/javascript-package-managers-101-9afd926add0a#.hu6knvct3
http://developer.telerik.com/featured/mystical-magical-semver-ranges-used-npm-bower/
http://codylindley.com/techpro/2013_04_12__package-managers-an-introducto/
https://docs.npmjs.com/
https://yarnpkg.com/en/docs/
https://en.wikipedia.org/wiki/Package_manager

The most common solution used for version control today is Git. Learn it!

General Learning:

Getting Git Right [read]

Git Fundamentals [watch][$]

learn Enough Git [read]

Ry's Git Tutorial [read]

Mastering:

Git In-depth [watch][$]

Advanced Git Tutorials [read]

Pro Git [read]

Learn Git Branching [interact]

References/Docs:

A component of software configuration management, version control,

also known as revision control or source control, is the management of

changes to documents, computer programs, large web sites, and other

collections of information. Changes are usually identified by a number

or letter code, termed the "revision number," "revision level," or simply

"revision." For example, an initial set of files is "revision 1." When the

first change is made, the resulting set is "revision 2," and so on. Each

revision is associated with a timestamp and the person making the

change. Revisions can be compared, restored, and with some types of

files, merged.

— Wikipedia

“

https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/
https://www.atlassian.com/git/
http://www.pluralsight.com/courses/git-fundamentals
https://www.learnenough.com/git-tutorial
https://www.amazon.com/Rys-Git-Tutorial-Ryan-Hodson-ebook/dp/B00QFIA5OC
https://frontendmasters.com/courses/git-in-depth/
https://www.atlassian.com/git/tutorials/advanced-overview/
http://git-scm.com/book/en/v2
http://learngitbranching.js.org/
https://en.wikipedia.org/wiki/Version_control

https://git-scm.com/doc

git-cheatsheet

3.33 - Learn Build and Task Automation

General Learning:

Getting Started with Gulp [read][$]

Gulp Basics [watch][$]

JavaScript Build Automation With Gulp.js [watch][$]

References/Docs:

Gulp

Gulp is great. However, you might only need npm run. Before turning to additional
complexity in your application stack ask yourself if npm run can do the job. If you
need more, use Gulp.

Build automation is the process of automating the creation of a

software build and the associated processes including: compiling

computer source code into binary code, packaging binary code, and

running automated tests.

— Wikipedia

“

https://git-scm.com/docs
https://gist.github.com/eashish93/3eca6a90fef1ea6e586b7ec211ff72a5
https://www.amazon.com/Getting-Started-Gulp-Travis-Maynard/dp/1784395765?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=3eb1e7a868a09b44f90570c56ef5f53b&camp=1789&creative=9325
http://teamtreehouse.com/library/gulp-basics
http://www.pluralsight.com/courses/javascript-build-automation-gulpjs
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md
https://en.wikipedia.org/wiki/Build_automation

Read:

Give Grunt the Boot! A Guide to Using npm as a Build Tool

Using npm as a Build System for Your next Project

Using npm as a Task Runner [watch][$]

Why I Left Gulp and Grunt for npm Scripts

Why npm Scripts?

3.34 - Learn Site Performance Optimization

General Learning:

Browser Rendering Optimization [watch]

Even Faster Web Sites: Performance Best Practices for Web Developers [read][$]

High Performance Web Sites: Essential Knowledge for Front-End Engineers [read]

Web performance optimization, WPO, or website optimization is the

field of knowledge about increasing the speed in which web pages are

downloaded and displayed on the user's web browser. With the average

internet speed increasing globally, it is fitting for website administrators

and webmasters to consider the time it takes for websites to render for

the visitor.

— Wikipedia

“

http://www.sitepoint.com/guide-to-npm-as-a-build-tool/
https://drublic.de/blog/npm-builds
http://teamtreehouse.com/library/using-npm-as-a-task-runner
https://medium.freecodecamp.com/why-i-left-gulp-and-grunt-for-npm-scripts-3d6853dd22b8#.z8plsoxxs
https://css-tricks.com/why-npm-scripts/
https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.amazon.com/Even-Faster-Web-Sites-Performance/dp/0596522304?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=4fe6a82bbf727209ba337ecaa0e516bc&camp=1789&creative=9325
https://www.amazon.com/High-Performance-Web-Sites-Essential/dp/0596529309/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=e93ab3ea06b7e3e93ee0d868249d0e3f&camp=1789&creative=9325
https://en.wikipedia.org/wiki/Web_performance_optimization

[$]

JavaScript Performance Rocks [read][$]

PageSpeed Insights Rules [read]

perf-tooling.today [read]

Performance Calendar [read]

perf.rocks [read]

Using WebPageTest [read][$]

Web Performance Daybook Volume 2 [read][$]

Website Performance [watch][$]

Web Performance with Webpack 4 [watch][$]

Website Performance Optimization [watch]

Front-End Performance Checklist 2019 [PDF, Apple Pages, MS Word] [read]

3.35 - Learn Testing

Unit Testing - In computer programming, unit testing is a software

testing method by which individual units of source code, sets of one or

more computer program modules together with associated control

data, usage procedures, and operating procedures, are tested to

determine whether they are fit for use. Intuitively, one can view a unit

as the smallest testable part of an application.

— Wikipedia

“

http://javascriptrocks.com/
https://developers.google.com/speed/docs/insights/rules
http://www.perf-tooling.today/
http://calendar.perfplanet.com/
http://perf.rocks/
https://www.amazon.com/Using-WebPageTest-Rick-Viscomi/dp/1491902590/ref=sr_1_1?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=91a76d5d4b4f47cf4e0d1392cc9cea30&camp=1789&creative=9325
https://www.amazon.com/Web-Performance-Daybook-Techniques-Optimizing/dp/1449332919/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=59e32c394c2377bb17af1d801b924d1d&camp=1789&creative=9325
https://frontendmasters.com/courses/web-performance/
https://frontendmasters.com/courses/performance-webpack/
https://www.udacity.com/course/website-performance-optimization--ud884
https://www.smashingmagazine.com/2019/01/front-end-performance-checklist-2019-pdf-pages/
https://en.wikipedia.org/wiki/Unit_testing

General Learning:

JavaScript Testing Practices and Principles [watch][$]

Front-End First: Testing and Prototyping JavaScript Apps [watch][$]

Let's Code: Test-Driven JavaScript [watch][$]

JavaScript Testing [watch]

JavaScript Testing Recipes [read][$]

Testable JavaScript [read][$]

Test-Driving JavaScript Applications: Rapid, Confident, Maintainable Code[read][$]

Functional Testing - Functional testing is a quality assurance (QA)

process and a type of black box testing that bases its test cases on the

specifications of the software component under test. Functions are

tested by feeding them input and examining the output, and internal

program structure is rarely considered (not like in white-box testing).

Functional testing usually describes what the system does.

— Wikipedia

Integration Testing - Integration testing (sometimes called integration

and testing, abbreviated I&T) is the phase in software testing in which

individual software modules are combined and tested as a group. It

occurs after unit testing and before validation testing. Integration

testing takes as its input modules that have been unit tested, groups

them in larger aggregates, applies tests defined in an integration test

plan to those aggregates, and delivers as its output the integrated

system ready for system testing.

— Wikipedia

https://frontendmasters.com/courses/testing-practices-principles/
http://www.pluralsight.com/courses/testing-and-prototyping-javascript-apps
http://www.letscodejavascript.com/
https://www.udacity.com/course/javascript-testing--ud549
http://jstesting.jcoglan.com/
https://www.amazon.com/gp/product/1449323391?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=a27df21b09e3eff9ad8033a5c959e7f0&camp=1789&creative=9325
https://www.amazon.com/Test-Driving-JavaScript-Applications-Confident-Maintainable/dp/1680501747?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=c97c9c87e634569328a335cba0b0c15f&camp=1789&creative=9325
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Integration_testing

Test-Driven JavaScript Development [read][$]

The Way of the Web Tester: A Beginner's Guide to Automating Tests [read][$]

Testing React Applications, v2 [watch][$]

Learn Javascript Unit Testing With Mocha, Chai and Sinon [watch][$]

3.36 - Learn Headless Browsers

Getting Started with Headless Chrome [readme]

A headless browser is a web browser without a graphical user interface.

Headless browsers provide automated control of a web page in an

environment similar to popular web browsers, but are executed via a

command line interface or using network communication. They are

particularly useful for testing web pages as they are able to render and

understand HTML the same way a browser would, including styling

elements such as page layout, color, font selection and execution of

JavaScript and A JAX which are usually not available when using other

testing methods. Google stated in 2009 that using a headless browser

could help their search engine index content from websites that use

A JAX.

— Wikipedia

“

https://www.amazon.com/dp/0321683919/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=f707aa5243bf6bac68bda05d1e6369e8&camp=1789&creative=9325
https://www.amazon.com/Way-Web-Tester-Beginners-Automating/dp/1680501836/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=3e2c87950e0350d64c9d9862ed2ef524&camp=1789&creative=9325
https://frontendmasters.com/courses/testing-react/
https://www.udemy.com/learn-javascript-unit-testing-with-mocha-chai-and-sinon/
https://developers.google.com/web/updates/2017/04/headless-chrome
https://en.wikipedia.org/wiki/Headless_browser

PhantomJS is no longer maintained, Headless Chrome steps in.

3.37 - Learn Offline Development

Offline development (aka offline first) is an area of knowledge and discussion around
development practices for devices that are not always connected to the Internet or a
power source.

General Learning:

Creating HTML5 Offline Web Applications [read]

Everything You Need to Know to Create Offline-First Web Apps [read]

Offline First [read]

offlinefirst.org [read]

The Offline Cookbook [read]

Offline Quickstart[read]

3.38 - Learn Web/Browser/App Security

Browser Security Handbook [read]

Frontend Security [watch]

Hacksplaining [read]

HTML5 Security Cheatsheet [read]

HTTP Security Best Practice [read]

https://www.infoq.com/news/2017/04/Phantomjs-future-uncertain
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
http://apress.jensimmons.com/v5/pro-html5-programming/ch12.html
https://github.com/pazguille/offline-first
http://www.webdirections.org/offlineworkshop/ibooksDraft.pdf
http://offlinefirst.org/
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/
https://developers.google.com/web/ilt/pwa/offline-quickstart
https://code.google.com/p/browsersec/wiki/Main
https://mikewest.org/2013/09/frontend-security-frontendconf-2013
https://www.hacksplaining.com/
https://html5sec.org/
https://httpsecurityreport.com/best_practice.html

Identity and Data Security for Web Development: Best Practices read

Security for Web Developers: Using JavaScript, HTML, and CSS [read][$]

The Basics of Web Application Security [read]

The Internet: Encryption & Public Keys [watch]

The Internet: Cybersecurity & Crime [watch]

The Tangled Web: A Guide to Securing Modern Web Applications [read][$]

Web Security Basics [read]

Web security [read]

Web Security [watch][$]

Full Stack for Front End Engineers [watch][$]

3.39 - Learn Multi-Device Development

https://www.amazon.com/Identity-Data-Security-Web-Development/dp/1491937017?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=f5f2aaa4d5f944a3ccc316a16e3673f4&camp=1789&creative=9325
https://frontendmasters.com/books/front-end-handbook/2019/$
https://www.amazon.com/Security-Web-Developers-Using-JavaScript/dp/1491928646/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=df49be399d7d1a12acebe5a85637a7a8&camp=1789&creative=9325
http://martinfowler.com/articles/web-security-basics.html
https://www.youtube.com/watch?v=ZghMPWGXexs&list=PLzdnOPI1iJNfMRZm5DDxco3UdsFegvuB7&index=6
https://www.youtube.com/watch?v=AuYNXgO_f3Y&list=PLzdnOPI1iJNfMRZm5DDxco3UdsFegvuB7&index=7
http://lcamtuf.coredump.cx/tangled/
https://github.com/vasanthk/web-security-basics
https://developer.mozilla.org/en-US/docs/Web/Security
https://frontendmasters.com/courses/web-security/
https://frontendmasters.com/courses/full-stack/

Image source: http://bradfrost.com/blog/post/this-is-the-web/

A website or web application can run on a wide range of computers, laptops, tablets
and phones, as well as a handful of new devices (watches, thermostats, fridges,
etc.). How you determine what devices you'll support and how you will develop to

http://bradfrost.com/blog/post/this-is-the-web/

support those devices is called, "multi-device development strategy". Below, I list the
most common multi-device development strategies.

Build a responsive (RWD) web site/app for all devices.

Build an adaptive/progressively enhanced web site/app for all devices.

Build a website, web app, native app, or hybrid-native app for each individual device
or a grouping of devices.

Attempt to retrofit something you have already built using bits and parts from
strategies 1, 2 or 3.

General Learning:

A book Apart Pack - Responsive Web Design [read][$]

A Book Apart Pack - Design For Any Device [read][$]

Adaptive Web Design [read][$]

Designing with Progressive Enhancement [read][$]

Mobile Web Development [watch]

CSS Grids and Flexbox for Responsive Web Design [watch][$]

Responsive HTML Email Design [watch][$]

Responsive Images [watch]

Responsive Web Typography, v2 [watch][$]

Responsive Web Design Fundamentals [watch]

Chapter 4. Learning Front-end Dev:

Instructor Directed

https://en.wikipedia.org/wiki/Responsive_web_design
https://en.wikipedia.org/wiki/Adaptive_web_design
https://abookapart.com/collections/responsive-design
https://abookapart.com/collections/design-for-any-device
https://www.amazon.com/gp/product/0134216148?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=defa398e66db76e7edbb8ddfa28caa1e&camp=1789&creative=9325
https://www.amazon.com/Designing-Progressive-Enhancement-Building-Everyone/dp/0321658884/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=bdac6f12a3d24fe694468aa8145001eb&camp=1789&creative=9325
https://www.udacity.com/course/mobile-web-development--cs256
https://frontendmasters.com/courses/css-grids-flexbox/
https://frontendmasters.com/courses/responsive-email/
https://www.udacity.com/course/responsive-images--ud882
https://frontendmasters.com/courses/responsive-typography-v2/
https://www.udacity.com/course/responsive-web-design-fundamentals--ud893

Resources/Recommendations

This chapter highlights a few options for instructor directed learning via
front-end development schools, courses, programs, and bootcamps.

The table below contains a small selection of instructor-led courses (i.e. programs,
schools, and bootcamps). Use the table to get a general idea of what is available, the
cost, duration, and locations of courses. (Be aware the information can change
quickly)

company program
price
estim
ate

on site

re
m
ot
e

duration

Betamore Front-end Web
Development 3,000 Baltimor

e, MD 10 weeks

BLOC
Become a
Front-end
Developer

4,999 ye
s

16 weeks @ 25hr/wk
or 32 weeks @
10hr/wk

General Assembly Front-end Web
Development 3,500

multiple
location
s

3 hrs/day 2 days/wk
for 8 weeks

Thinkful Front-end Web
Development

300
per
month

ye
s

15 hrs/wk for 3
months

Turing School of
Software &
Design

Front-End
Engineering 20,000 Denver,

CO 7 months full time

Notes:

l. For a complete list of schools, courses, programs, and bootcamps to evaluate have a

http://betamore.com/academy/front-end-web-development/
https://www.bloc.io/frontend-development-bootcamp
https://generalassemb.ly/education/front-end-web-development
http://www.thinkful.com/courses/learn-web-development-online
https://www.turing.io/programs/front-end-engineering

look at switchup.org or coursereport.com.

If you can't afford a directed education (can be very expensive), a self directed
education using screencasts, books, and articles is a viable alternative to learn front-
end development for the self-driven individual.

Chapter 5. Front-end Dev Tools

This chapter identifies the tools of the trade. Make sure you understanding
the category that a set of tools falls within, before studying the tools
themselves. Note that just because a tool is listed, or a category of tools is
documented, this does not equate to an assertion on my part that a front-
end developer should learn it and use it. Choose your own toolbox. I'm just
providing the common toolbox options.

5.1 - Doc/API Browsing Tools

Tools to browse common developer documents and developer API references.

Dash [OS X, iOS][$]

DevDocs

Velocity [Windows][$]

Zeal [Windows, Linux]

https://www.switchup.org/front-end-development
https://www.coursereport.com/tracks/front-end-developer-bootcamps
https://kapeli.com/dash
http://devdocs.io/
https://velocity.silverlakesoftware.com/
https://zealdocs.org/

Cheatsheets:

devhints.io

5.2 - SEO Tools

General SEO Tools:

Keyword Tool

Google Webmasters Search Console

Varvy SEO tool

Tools for Finding SEO Tools:

SEO Tools - The Complete List

CuratedSEOTools - Curated directory of the best SEO tools

5.3 - Prototyping & Wireframing Tools

Creating:

Axure [$]

Balsamiq Mockups [$]

Justinmind [$]

Moqups [$]

proto.io [$]

https://devhints.io/
http://keywordtool.io/
https://www.google.com/webmasters/
https://varvy.com/tools/
http://backlinko.com/seo-tools
https://curatedseotools.com/
http://www.axure.com/
https://balsamiq.com/
http://www.justinmind.com/
https://moqups.com/
https://proto.io/

UXPin [free to $]

Collaboration / Presenting:

InVision [free to $]

Conceptboard [free to $]

myBalsamiq [$]

Marvel [free to $]

5.4 - Diagramming Tools

draw.io [free to $]

Cacoo [free to $]

gliffy [free to $]

sketchboard.io [$]

5.5 - HTTP/Network Tools

Charles [$]

Chrome DevTools Network Panel

Insomnia [free - $]

Mitmproxy [free]

Paw [$]

Postman [free - $]

http://www.uxpin.com/
http://www.invisionapp.com/
https://conceptboard.com/
https://balsamiq.cloud/
https://marvelapp.com/
https://www.draw.io/
https://cacoo.com/
https://www.gliffy.com/products/online/
https://sketchboard.io/
http://www.charlesproxy.com/
https://developers.google.com/web/tools/chrome-devtools/profile/network-performance/resource-loading
https://insomnia.rest/
https://mitmproxy.org/
https://paw.cloud/
https://www.getpostman.com/

5.6 - Code Editing Tools

Front-end code can minimally be edited with a simple text editing application like
Notepad or TextEdit. But, most front-end practitioners use a code editor specifically
design for editing a programming language.

Code editors come in all sorts of types and size, so to speak. Selecting one is a
rather subjective engagement. Choose one, learn it inside and out, then get on to
learning HTML, CSS, DOM, and JavaScript.

However, I do strongly believe, minimally, a code editor should have the following
qualities (by default or by way of plugins):

l. Good documentation on how to use the editor

n. Report (i.e., hinting/linting/errors) on the code quality of HTML, CSS, and
JavaScript.

o. Offer syntax highlighting for HTML, CSS, and JavaScript.

p. Offer code completion for HTML, CSS, and JavaScript.

A source code editor is a text editor program designed specifically for

editing source code of computer programs by programmers. It may be

a standalone application or it may be built into an integrated

development environment (IDE) or web browser. Source code editors

are the most fundamental programming tool, as the fundamental job

of programmers is to write and edit source code.

— Wikipedia

“

https://en.wikipedia.org/wiki/Source_code_editor

q. Be customizable by way of a plug-in architecture

r. Have available a large repository of third-party/community plug-ins that can be
used to customize the editor to your liking

s. Be small, simple, and not coupled to the code (i.e., not required to edit the code)

Code Editors:

Atom

Sublime Text [$]

WebStorm [$]

Visual Studio Code

Online Code Editors:

PaizaCloud [free to $]

AWS Cloud9 [$]

Codeanywhere [free to $]

StackBliz

codeSandbox

Shareable & Runnable Simple Code Editors:

Used to share limited amounts of immediately runnable code. Not a true code editor
but a tool that can be used to share small amounts of immediately runnable code in a
web browser.

CodePen [free to $]

jsbin.com [free to $]

jsfiddle.net

glitch

https://atom.io/
http://www.sublimetext.com/
https://www.jetbrains.com/webstorm/whatsnew/
https://code.visualstudio.com/
https://paiza.cloud/
https://aws.amazon.com/cloud9/
https://codeanywhere.com/
https://stackblitz.com/
https://codesandbox.io/
http://codepen.io/
http://jsbin.com/
http://jsfiddle.net/
https://glitch.com/

I recommending using Visual Studio Code because of the quality of the tool and the
continuous improvements made to the editor that likely won't stop or slow due to the
fact that Microsoft is behind the tool. It is widely used:

Image source: https://2018.stateofjs.com/other-tools/text_editors

5.7 - Browser Tools

JS Utilities to fix Browsers:

History.js

html2canvas

Platform.js

URI.js

General Reference Tools to Determine If X Browser Supports X:

Browser support for broken/missing images

https://code.visualstudio.com/
https://2018.stateofjs.com/other-tools/text_editors
https://github.com/browserstate/history.js
https://github.com/niklasvh/html2canvas
https://github.com/bestiejs/platform.js
http://medialize.github.io/URI.js/
http://codepen.io/bartveneman/full/qzCte/

Browserscope

caniuse.com

Firefox Platform Status - Implementation & standardization roadmap for web
platform features

HTML5 Please

HTML5 Test

iwanttouse.com

web-platform-tests dashboard

whatwebcando.today

Browser Development/Debug Tools:

Chrome Developer Tools (aka DevTools)

Per-Panel Documentation

Command Line API Reference

Keyboard & UI Shortcuts Reference

Settings

Firefox Developer Tools

Safari Web Inspector

Vorlon.js

JavaScript Utilities to Determine If X Browser Supports X:

Feature.js

Modernizr

Broad Browser Polyfills/Shims:

console-polyfill

http://www.browserscope.org/
http://caniuse.com/
https://platform-status.mozilla.org/
http://html5please.com/
https://html5test.com/
http://www.iwanttouse.com/
https://wpt.fyi/
https://whatwebcando.today/
https://developers.google.com/web/tools/?hl=en
https://developers.google.com/web/tools/chrome-devtools/#docs
https://developers.google.com/web/tools/javascript/command-line/command-line-reference?hl=en
https://developers.google.com/web/tools/iterate/inspect-styles/shortcuts
https://developer.chrome.com/devtools/docs/settings
https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
http://vorlonjs.com/
http://featurejs.com/
https://modernizr.com/
https://github.com/paulmillr/console-polyfill

HTML5 Cross Browser Polyfills

fetch

socket.io

SockJS

webcomponents.js

webshim

Hosted Testing/Automation for Browsers:

Browserling [free to $]

BrowserStack [$]

CrossBrowserTesting.com [$]

Ghost Inspector [free to $]

Nightcloud.io

Sauce Labs [$]

Headless Browsers:

slimerjs

Zombie.js

Headless Chromium

Browser Automation:

Used for functional testing and monkey testing.

CasperJS

Nightmare

TestCafe

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/github/fetch
http://socket.io/
https://github.com/sockjs/sockjs-client
https://github.com/WebComponents/webcomponentsjs
https://afarkas.github.io/webshim/demos/
https://www.browserling.com/
https://www.browserstack.com/
http://crossbrowsertesting.com/
https://ghostinspector.com/
http://nightcloud.io/
https://saucelabs.com/
http://slimerjs.org/
http://zombie.js.org/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
http://casperjs.org/
https://github.com/segmentio/nightmare
https://github.com/DevExpress/testcafe

Browser Hacks:

browserhacks.com

Browser Syncing Tools:

Browsersync

Browser List:

Share target browsers between different front-end tools, like Autoprefixer, Stylelint
and babel-preset-env.

Browserslist

http://browserl.ist/

5.8 - HTML Tools

HTML Templates/Boilerplates/Starter Kits:

dCodes

Email-Boilerplate

HTML5 Boilerplate

HTML5 Bones

Mobile boilerplate

HTML Polyfill:

html5shiv

http://browserhacks.com/
http://www.browsersync.io/
https://github.com/ai/browserslist
http://browserl.ist/?q=%3E+2%25
http://www.dcodes.net/2/docs/index.html
https://github.com/seanpowell/Email-Boilerplate
https://html5boilerplate.com/
http://html5bones.com/
https://html5boilerplate.com/mobile/
https://github.com/aFarkas/html5shiv

Transpiling:

Pug

Markdown

References:

Element attributes

Elements

HTML Arrows

HTML Entity Lookup

htmlreference.io

HEAD - A free guide to
elements

Linting/Hinting:

HTMLHint

html-inspector

Optimizer:

HTML Minifier

Online Creation/Generation/Experimentation Tools:

tablesgenerator.com

Authoring Conventions:

HTML Code Guide

Principles of Writing Consistent, Idiomatic HTML

https://pugjs.org/api/getting-started.html
http://daringfireball.net/projects/markdown/
https://html.spec.whatwg.org/multipage/indices.html#attributes-3
https://html.spec.whatwg.org/multipage/indices.html#elements-3
http://htmlarrows.com/
http://entity-lookup.leftlogic.com/
http://htmlreference.io/
https://gethead.info/
http://htmlhint.com/
https://github.com/philipwalton/html-inspector
http://kangax.github.io/html-minifier/
http://www.tablesgenerator.com/
http://codeguide.co/#html
https://github.com/necolas/idiomatic-html

Workflow:

Emmet

HTML Outliner:

HTML 5 Outliner

Trending HTML Repositories on GitHub This Month:

https://github.com/trending?l=html&since=monthly

5.9 - CSS Tools

CSS Utilities:

Basscss

Skeleton

Shed

Tailwind CSS

Tachyons

CSS Frameworks (utilities + UI):

Base

Bulma

Bootstrap 4

Concise

Foundation

http://emmet.io/
https://gsnedders.html5.org/outliner/
https://github.com/trending?l=html&since=monthly
https://css-tricks.com/need-css-utility-library/
http://basscss.com/
http://getskeleton.com/
http://tedconf.github.io/shed-css/
https://tailwindcss.com/
https://github.com/tachyons-css/tachyons/
http://getbase.org/
http://bulma.io/
https://v4-alpha.getbootstrap.com/
http://concisecss.com/
http://foundation.zurb.com/

Material Design Lite (MDL)

Metro UI

Mini.css

Mobi.css

Picnic

Pure.css

Semantic UI

Shoelace

Spectre.css

Mobile Only CSS Frameworks:

Ratchet

CSS Reset:

Eric Meyer's “Reset CSS” 2.0

Normalize

sanitize.css

A CSS Reset (or “Reset CSS”) is a short, often compressed (minified) set

of CSS rules that resets the styling of all HTML elements to a consistent

baseline.

— cssreset.com

“

http://www.getmdl.io/index.html
http://metroui.org.ua/
https://minicss.org/
http://getmobicss.com/
http://picnicss.com/
http://purecss.io/
http://semantic-ui.com/
https://shoelace.style/
https://picturepan2.github.io/spectre/
http://goratchet.com/
https://meyerweb.com/eric/tools/css/reset/
https://necolas.github.io/normalize.css/
https://github.com/jonathantneal/sanitize.css
http://cssreset.com/what-is-a-css-reset/

Transpiling:

pleeease.io

PostCSS & cssnext

rework & myth

References:

CSS Cursors

css3test.com

css3clickchart.com

cssreference.io

CSS Indexes - A listing of every term defined by CSS specs

css4-selectors.com

css4 Rocks

CSS TRIGGERS...A GAME OF LAYOUT, PAINT, AND COMPOSITE

CSS Tricks Almanac

cssvalues.com

MDN CSS Reference

CSS Cheat Sheet

What s̓ next for CSS?

Linting/Hinting:

CSS Lint

stylelint

Code Formatter/Beautifier:

CSScomb

http://pleeease.io/
https://github.com/postcss/postcss
http://cssnext.io/
https://github.com/reworkcss/rework
http://www.myth.io/
http://csscursor.info/
http://css3test.com/
http://css3clickchart.com/
http://cssreference.io/
https://drafts.csswg.org/indexes/
http://css4-selectors.com/
http://css4.rocks/
http://csstriggers.com/
https://css-tricks.com/almanac/
http://cssvalues.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://adam-marsden.co.uk/css-cheat-sheet/
https://cssdb.org/
http://csslint.net/
http://stylelint.io/
https://github.com/csscomb/csscomb.js

CSSfmt

Optimizer:

clean-css

cssnano

CSSO

purgecss

Online Creation/Generation/Experimentation Tools:

CSS Arrow Please

CSS Matic

Enjoy CSS

flexplorer

patternify.com

patternizer.com

Ultimate CSS Gradient Generator

Architecting CSS:

Atomic Design [read]

BEM

ITCSS

OOCSS [read]

SMACSS [read][$]

Scalable Modular Architecture for CSS (SMACSS) [watch][$]

SUIT CSS

https://github.com/morishitter/cssfmt
https://github.com/jakubpawlowicz/clean-css
http://cssnano.co/
http://css.github.io/csso/
https://github.com/FullHuman/purgecss
http://cssarrowplease.com/
http://www.cssmatic.com/
http://enjoycss.com/
http://bennettfeely.com/flexplorer/
http://patternify.com/
http://patternizer.com/
http://www.colorzilla.com/gradient-editor/
http://atomicdesign.bradfrost.com/
http://getbem.com/introduction/
https://www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/
http://oocss.org/
https://smacss.com/
https://frontendmasters.com/courses/smacss/
http://suitcss.github.io/

rscss

Authoring/Architecting Conventions:

CSS code guide [read]

css-architecture [read]

cssguidelin.es [read]

Idiomatic CSS [read]

MaintainableCSS [read]

Standards for Developing Flexible, Durable, and Sustainable HTML and CSS [read]

Airbnb CSS / Sass Styleguide [read]

Style Guide Resources:

Frontify [$]

SC5 STYLE GUIDE GENERATOR

styleguide-generators

Catalog

CSS in JS:

styled components

Emotion

Radium

Aphrodite

Trending CSS Repositories on GitHub This Month:

https://github.com/trending?l=css&since=monthly

http://rscss.io/
http://codeguide.co/#css
https://github.com/jareware/css-architecture
http://cssguidelin.es/
https://github.com/necolas/idiomatic-css
http://maintainablecss.com/
http://mdo.github.io/code-guide/
https://github.com/airbnb/css
https://frontify.com/
http://styleguide.sc5.io/
https://github.com/davidhund/styleguide-generators
https://docs.catalog.style/
https://www.styled-components.com/
https://emotion.sh/docs/introduction
https://formidable.com/open-source/radium/
https://github.com/Khan/aphrodite
https://github.com/trending?l=css&since=monthly

5.10 - DOM Tools

DOM Libraries/Frameworks:

Bliss

jQuery

You Don't Need jQuery

Zepto

cash

Umbrella JS

nanoJS

DOM Utilities:

Keypress

Tether

clipboard.js

DOM Event Tools:

Keyboard Event Viewer

DOM Performance Tools:

Chrome DevTools Timeline

DOM Monster

References:

Events

DOM Browser Support

http://blissfuljs.com/docs.html
http://jquery.com/
https://github.com/oneuijs/You-Dont-Need-jQuery
http://zeptojs.com/
https://github.com/kenwheeler/cash/
http://umbrellajs.com/
https://vladocar.github.io/nanoJS/
http://dmauro.github.io/Keypress/
http://tether.io/docs/welcome/
http://zenorocha.github.io/clipboard.js/
http://w3c.github.io/uievents/tools/key-event-viewer.html
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
http://mir.aculo.us/dom-monster/
https://html.spec.whatwg.org/#events-2
http://www.webbrowsercompatibility.com/dom/desktop/

DOM Events Browser Support

HTML Interfaces Browser Support

MDN Document Object Model (DOM)

MDN Browser Object Model

MDN Document Object Model

MDN Event reference

MSDN Document Object Model (DOM)

DOM Polyfills/Shims:

dom-shims

Pointer Events Polyfill: a unified event system for the web platform

Virtual DOM:

jsdom

virtual-dom

5.11 - JavaScript Tools

JS Utilities:

accounting.js

async

axios

chance

date-fns

http://www.webbrowsercompatibility.com/dom-events/desktop/
http://www.webbrowsercompatibility.com/html-interfaces/desktop/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/Events
https://msdn.microsoft.com/en-us/library/hh772384%28v=vs.85%29.aspx
https://github.com/necolas/dom-shims
https://github.com/jquery/PEP
https://github.com/tmpvar/jsdom
https://github.com/Matt-Esch/virtual-dom
http://openexchangerates.github.io/accounting.js/
http://caolan.github.io/async/
https://github.com/mzabriskie/axios
http://chancejs.com/
https://date-fns.org/

dinero

Finance.js

format.js

Howler.js

immutable

is.js

lodash

You-Dont-Need-Lodash-Underscore

Luxon

You don't (may not) need Moment.js

Math.js

Moment.js

Numeral.js

Ramda

RxJS

string.js

TheoremJS

voca

wait

xregexp.com

Transforming JavaScript Objects Tool:

transform-www

Transpiling / Type Checking (ES to ES):

https://sarahdayan.github.io/dinero.js/module-Dinero.html
http://financejs.org/
http://formatjs.io/
https://howlerjs.com/
https://facebook.github.io/immutable-js/
http://arasatasaygin.github.io/is.js/
https://lodash.com/
https://github.com/you-dont-need/You-Dont-Need-Lodash-Underscore
https://moment.github.io/luxon/
https://github.com/you-dont-need/You-Dont-Need-Momentjs
http://mathjs.org/
http://momentjs.com/
http://numeraljs.com/
http://ramdajs.com/
http://reactivex.io/rxjs/
http://stringjs.com/
https://theorem.js.org/
https://vocajs.com/
https://github.com/elving/wait
http://xregexp.com/
https://transform.now.sh/

TypeScript

Type Checking (ES to ES):

Flow

Transpiling (ES to ES):

Babel

sucrase

scw

Code-analysis Engine:

Tern

Linting/Hinting & Style Linter:

eslint

Unit Testing:

AVA

Jasmine

Mocha

Tape

Testing Assertions for Unit Testing:

Chai

expect.js

should.js

Test Spies, Stubs, and Mocks for Unit Testing:

https://www.typescriptlang.org/
https://flowtype.org/
https://babeljs.io/
https://sucrase.io/
https://swc-project.github.io/
https://ternjs.net/
http://eslint.org/
https://github.com/avajs/ava
http://jasmine.github.io/
http://mochajs.org/
https://github.com/substack/tape
http://chaijs.com/
https://github.com/Automattic/expect.js
http://shouldjs.github.io/

sinon.js

Kakapo.js

Code Formater/Beautifier:

esformatter

js-beautify

jsfmt

prettier

Performance Testing:

benchmark.js

jsperf.com

Visualization, Static Analysis, Complexity, Coverage Tools:

Coveralls [$]

Esprima

istanbul

Optimizer:

Closure Compiler

Terser

optimize-js

Prepack

Obfuscate:

Javascript Obfuscator [free to $]

JScrambler [$]

http://sinonjs.org/
http://devlucky.github.io/kakapo-js
https://github.com/millermedeiros/esformatter#esformatterformatstr-optsstring
http://jsbeautifier.org/
http://rdio.github.io/jsfmt/
https://github.com/jlongster/prettier
http://benchmarkjs.com/
https://jsperf.com/
https://coveralls.io/
http://esprima.org/
https://github.com/gotwarlost/istanbul
https://developers.google.com/closure/compiler/
https://github.com/terser-js/terser
https://github.com/nolanlawson/optimize-js
https://prepack.io/
http://www.javascriptobfuscator.com/
https://jscrambler.com/

Sharable/Runnable Code Editors:

CodeSandbox [free to $]

Online Regular Expression Editors/Visual Tools:

debuggex

regex101

regexper

RegExr

Authoring Convention Tools:

Airbnb's ESLint config, following our styleguide

Standard - ESLint Shareable Config

Trending JS Repositories on GitHub This Month:

https://github.com/trending?l=javascript&since=monthly

Most Depended upon Packages on NPM:

https://www.npmjs.com/browse/depended

5.12 - Headless CMS Tools

Site Generator Listings:

headless CMS

https://codesandbox.io/
https://www.debuggex.com/
https://regex101.com/
http://regexper.com/
http://regexr.com/
https://www.npmjs.com/package/eslint-config-airbnb
https://github.com/feross/eslint-config-standard
https://github.com/trending?l=javascript&since=monthly
https://www.npmjs.com/browse/depended
https://headlesscms.org/

5.13 - Static Site Generators Tools

Site Generator Listings:

staticgen.com

staticsitegenerators.net

5.14 - Accessibility Tools

Guides

A11Y Style Guide

Accessibility Guidelines Checklist

Interactive WCAG 2.0

18F Accessibility Guide

Site Scanners

aXe Browser Extension

Chrome Accessibility Developer Tools

Tenon Accessibility Tool

WAVE Accessibility Tool

Color Contrast Testers

Colorable

Colorable Matrix

Color Safe

https://www.staticgen.com/
https://staticsitegenerators.net/
http://a11y-style-guide.com/style-guide/
http://accessibility.voxmedia.com/
http://code.viget.com/interactive-wcag/
https://pages.18f.gov/accessibility/checklist/
http://www.deque.com/products/axe/
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://tenon.io/
http://wave.webaim.org/
http://jxnblk.com/colorable/demos/text/
http://jxnblk.com/colorable/demos/matrix/
http://colorsafe.co/

Color Ratio

Low-Vision Simulators

SEE (Chrome)

Spectrum (Chrome)

NoCoffee (Chrome)

Screen Readers

VoiceOver (Mac)

JAWS (Win)

NVDA (Win)

ChromeVox (Chrome extension)

Basic screen reader commands

Readability Testers

Expresso App

Hemingway App

Grammarly

Readability Score

MS Office

Articles

Getting Started with ARIA

Reframing Accessibility for the Web

An Alphabet of Accessibility Issues

Practical ARIA Examples

http://leaverou.github.io/contrast-ratio/
https://chrome.google.com/webstore/detail/see/dkihcccbkkakkbpikjmpnbamkgbjfdcn
https://chrome.google.com/webstore/detail/spectrum/ofclemegkcmilinpcimpjkfhjfgmhieb
https://chrome.google.com/webstore/detail/nocoffee/jjeeggmbnhckmgdhmgdckeigabjfbddl
http://www.apple.com/accessibility/
http://www.freedomscientific.com/Products/Blindness/JAWS
https://www.nvaccess.org/
http://www.chromevox.com/
https://www.paciellogroup.com/blog/2015/01/basic-screen-reader-commands-for-accessibility-testing/
http://www.expresso-app.org/
http://www.hemingwayapp.com/
https://www.grammarly.com/
https://readability-score.com/text/
https://support.office.com/en-us/article/Test-your-document-s-readability-0adc0e9a-b3fb-4bde-85f4-c9e88926c6aa
http://a11yproject.com/posts/getting-started-aria/
http://alistapart.com/article/reframing-accessibility-for-the-web
https://the-pastry-box-project.net/anne-gibson/2014-July-31
http://heydonworks.com/practical_aria_examples/

MDN Accessibility Guide

Enable accessibility panel in Chrome dev tools

5.15 - App Frameworks (Desktop, Mobile, Tablet, etc.)

Tools

Front-End App Frameworks:

AngularJS (i.e Angular 1.x.x) + Batarang

Angular (i.e. Angular 2.0.0 +) + angular-cli

Aurelia + Aurelia CLI

Ember + embercli + Ember Inspector

Polymer

React + create-react-app + React Developer Tools

Vue.js + vue-cli & Vue.js devtools

Riot

Native Hybrid Mobile WebView (i.e., Browser Engine Driven) Frameworks:

These solutions typically use Cordova, crosswalk, or a custom WebView as a bridge
to native APIs.

ionic

onsen.io

Native Hybrid Mobile Development Webview (i.e., Browser Engine Driven)
Environments/Platforms/Tools:

https://developer.mozilla.org/en-US/docs/Learn/Accessibility
https://umaar.com/dev-tips/101-accessibility-inspection/
https://github.com/angular/angular.js
https://github.com/angular/angularjs-batarang
https://github.com/angular/angular
https://github.com/angular/angular-cli
http://aurelia.io/
https://github.com/aurelia/cli
http://emberjs.com/
https://ember-cli.com/
https://chrome.google.com/webstore/detail/ember-inspector/bmdblncegkenkacieihfhpjfppoconhi?hl=en
https://www.polymer-project.org/1.0/
http://facebook.github.io/react/
https://github.com/facebookincubator/create-react-app
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
http://vuejs.org/
https://github.com/vuejs/vue-cli
https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajbpd?hl=en
http://riotjs.com/
https://cordova.apache.org/
https://crosswalk-project.org/
http://ionicframework.com/
http://onsen.io/

These solutions typically use Cordova, crosswalk, or a custom WebView as a bridge
to native APIs.

Adobe PhoneGap [$]

cocoon.io [free to $]

ionic hub [free to $]

kony [$]

Monaca [$]

Native Desktop App Frameworks:

Electron

NW.js

proton

Neutralino.js

DeskGap

Native Mobile App Frameworks (Aka JavaScript Native Apps)

These solutions use a JS engine at runtime to interpret JS and bridge that to native
APIs. No browser engine or WebView is used. The UI is constructed from native UI
components.

Flutter

NativeScript

React Native

tabris.js [free to $]

trigger.io [$]

weex

https://cordova.apache.org/
https://crosswalk-project.org/
http://phonegap.com/
https://cocoon.io/
http://ionic.io/
http://www.kony.com/products/mobility-platform
https://monaca.io/
http://electron.atom.io/
https://github.com/nwjs/nw.js
https://proton-native.js.org/#/
https://neutralino.js.org/
https://deskgap.com/
https://flutter.io/
https://www.nativescript.org/
https://facebook.github.io/react-native/
https://tabrisjs.com/
https://trigger.io/how-it-works/
https://weex.apache.org/

References & demo apps:

todomvc.com

RealWorld example apps [code]

Front-end Guidelines Questionnaire

Front-end Guidelines

Performance:

js-framework-benchmark

Front-End Performance Checklist 2019 [PDF, Apple Pages, MS Word] [read]

If you are new to front-end/JavaScript application development I'd start with Vue.js.
Then I'd work my way to React. Then I'd look at Angular 2+, Ember, or Aurelia.

If you are building a simple website that has minimal interactions with data (i.e.
mostly a static content web site), you should avoid a front-end framework. A lot of
work can be done with a task runner like Gulp and jQuery, while avoiding the
unnecessary complexity of learning and using an app framework tool.

Want something smaller than React, consider Preact. Preact is an attempt to
recreate the core value proposition of React (or similar libraries like Mithril) using as
little code as possible, with first-class support for ES2015. Currently the library is
around 3kb (minified & gzipped).

5.16 - JavaScript App Manager

JSUI

http://todomvc.com/
https://github.com/gothinkster/realworld
https://github.com/bradfrost/frontend-guidelines-questionnaire
https://github.com/bendc/frontend-guidelines
https://github.com/krausest/js-framework-benchmark
https://www.smashingmagazine.com/2019/01/front-end-performance-checklist-2019-pdf-pages/
http://vuejs.org/
http://facebook.github.io/react/
https://angular.io/
http://emberjs.com/
http://aurelia.io/
https://github.com/vigetlabs/blendid
https://preactjs.com/
https://github.com/kitze/JSUI

5.17 - State Tools

Redux

Mobx

mobx-state-tree

Cerebral

freactal

unistore

unstated

Vuex

5.18 - Progressive Web App Tools:

lighthouse

Progressive Web App Checklist

5.19 - GUI Development/Build Tools

CodeKit

Prepros

KoalaApp [free]

https://redux.js.org/
https://mobx.js.org/
https://github.com/mobxjs/mobx-state-tree
https://github.com/cerebral/cerebral
https://github.com/FormidableLabs/freactal
https://github.com/developit/unistore
https://github.com/jamiebuilds/unstated
https://vuex.vuejs.org/en/
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/progressive-web-apps/checklist
http://incident57.com/codekit/
https://prepros.io/
http://koala-app.com/

5.20 - Templating/Data Binding Tools

Just Templating:

doT.js

art-template

Nunjuncks

Templating and Reactive Data Binding:

ractive.js

react.js

preact

inferno

nerv

rax

riot

Rivets.js

vue.js

Templating to Virtual DOM:

JSX

5.21 - UI Widget & Component Toolkits

On Web Platform:

http://olado.github.io/doT/
https://aui.github.io/art-template/
http://mozilla.github.io/nunjucks/
https://ractive.js.org/
https://facebook.github.io/react/index.html
https://preactjs.com/
https://infernojs.org/
https://github.com/NervJS/nerv
https://github.com/alibaba/rax
http://riotjs.com/
http://rivetsjs.com/
http://vuejs.org/
https://facebook.github.io/jsx/

Kendo UI for jQuery [free to $]

Materialize

Office UI Fabric

Semantic UI

UiKit

Webix [$]

React Specific, On Web Platform:

Ant Design

Material ui

Semantic-UI-React

ExtReact [$]

Fabric

Native Desktop/Laptop/Netbook Apps via Web Platform (i.e. used with NW.js and
Electron):

Photon

React UI Components for OS X El Capitan and Windows 10

If you need a basic set of UI Widgets/Components start with Semantic UI. If you are
building something that needs a grid, spreadsheet, or pivot grid you'll have to look at
Kendo UI or Webix. Keep in mind that most of these solutions still require jQuery.

5.22 - Data Visualization (e.g., Charts) Tools

JS Libraries:

http://www.telerik.com/kendo-ui
http://materializecss.com/
http://dev.office.com/fabric
http://semantic-ui.com/
https://getuikit.com/
http://webix.com/
https://ant.design/
http://material-ui.com/
https://react.semantic-ui.com/
https://www.sencha.com/products/extreact/#app
https://developer.microsoft.com/en-us/fabric
http://photonkit.com/
http://gabrielbull.github.io/react-desktop/
http://semantic-ui.com/
http://www.telerik.com/kendo-ui
http://webix.com/

d3

sigmajs

Widgets & Components:

amCharts [free to $]

AnyChart [Non-commercial free to $]

C3.js

Chartist-jsj

Chart.js

Epoch

FusionCharts [$]

Google Charts

Highcharts [Non-commercial free to $]

ZingChart [free to $]

Services (i.e. hosted data visualization services for embedding and sharing):

ChartBlocks [free to $]

Datawrapper

infogr.am [free to $]

plotly [free to $]

5.23 - Graphics (e.g., SVG, canvas, webgl) Tools

General:

http://d3js.org/
http://sigmajs.org/
http://www.amcharts.com/
http://www.anychart.com/
http://c3js.org/
https://github.com/gionkunz/chartist-js
http://www.chartjs.org/
http://epochjs.github.io/epoch/
http://www.fusioncharts.com/
https://developers.google.com/chart/interactive/docs/
http://www.highcharts.com/
http://www.zingchart.com/
http://www.chartblocks.com/
https://datawrapper.de/
https://infogr.am/
https://plot.ly/

Fabric.js

Two.js

Canvas:

EaselJS

Paper.js

SVG:

d3

GraphicsJS

Raphaël

Snap.svg

svg.js

WebGL:

pixi.js

three.js

5.24 - Animation Tools

CSS and JavaScript Utilities:

Animate Plus

Animate

Anime.js

http://fabricjs.com/
http://jonobr1.github.io/two.js/#introduction
https://github.com/CreateJS/EaselJS
http://paperjs.org/
http://d3js.org/
http://www.graphicsjs.org/
http://dmitrybaranovskiy.github.io/raphael/
http://snapsvg.io/
http://svgjs.com/
https://github.com/pixijs/pixi.js
http://threejs.org/
https://github.com/bendc/animateplus
https://github.com/daneden/animate.css
http://animejs.com/

Animista.net

Dynamics.js

GreenSock-JS

Kute.js

Magic

Micron.js

Motion

TweenJS

Popmotion

Velocity.js

Polyfills/Shims:

web-animations-js

Animation References:

canianimate.com

5.25 - JSON Tools

Online Editors:

JSONmate

JSON Editor Online

Formatter & Validator:

http://animista.net/
http://dynamicsjs.com/
http://greensock.com/
http://thednp.github.io/kute.js/
https://github.com/miniMAC/magic
https://webkul.github.io/micron/
http://mojs.io/
https://github.com/CreateJS/TweenJS
https://popmotion.io/
http://julian.com/research/velocity/
https://github.com/web-animations/web-animations-js
http://canianimate.com/
http://jsonmate.com/
https://jsoneditoronline.org/

jsonformatter.org

JSON Formatter & Validator

Query Tools:

DefiantJS

JSON Mask

ObjectPath

Generating Mock JSON Tools:

JSON Generator

Mockaroo [free to $]

Online JSON Mocking API Tools:

FillText.com

FakeJSON [free to $]

Jam API

JSONPlaceholder

jsonbin.io

jsonbin.org

mockable.io

mockapi.io

Mocky

RANDOM USER GENERATOR

List of public JSON API's:

A collective list of JSON APIs for use in web development

http://jsonformatter.org/
https://jsonformatter.curiousconcept.com/
http://www.defiantjs.com/
https://github.com/nemtsov/json-mask
http://objectpath.org/
http://www.json-generator.com/
https://www.mockaroo.com/
http://www.filltext.com/
https://fakejson.com/
https://github.com/dinubs/jam-api
http://jsonplaceholder.typicode.com/
https://jsonbin.io/
https://jsonbin.org/
https://www.mockable.io/
http://www.mockapi.io/
http://www.mocky.io/
https://randomuser.me/
https://github.com/toddmotto/public-apis

Local JSON Mocking API Tools:

json-server

JSON Specifications/Schemas:

json-schema.org & jsonschema.net

{json:api}

5.26 - Placeholder Content Tools

Images:

placehold.it

Satyr

Placeimg

Lorem Pixel

CSS-Tricks Image Resources

LibreStock

Unsplash

Device Mockups:

placeit.net

mockuphone.com

Text:

Meet the Ipsums

https://github.com/typicode/json-server
http://json-schema.org/
http://jsonschema.net/
http://jsonapi.org/
http://placehold.it/
http://satyr.io/
http://placeimg.com/
http://lorempixel.com/
https://css-tricks.com/sites-with-high-quality-photos-you-can-use-for-free/
http://librestock.com/
https://unsplash.it/
https://placeit.net/
http://mockuphone.com/
http://meettheipsums.com/

catipsum.com

baconipsum.com (API)

User Data:

uinames.com

randomuser.me

5.27 - Testing Tools

Software Testing Frameworks:

Intern

Jest

majestic

Enzyme

Cheerio

Unit Testing:

AVA

Jasmine

Mocha

Tape

Testing Assertions for Unit Testing:

Chai

http://www.catipsum.com/
http://baconipsum.com/
http://baconipsum.com/json-api/
https://uinames.com/
https://randomuser.me/
https://theintern.github.io/
http://facebook.github.io/jest/
https://majestic.debuggable.io/
https://github.com/airbnb/enzyme
https://github.com/cheeriojs/cheerio
https://github.com/avajs/ava
http://jasmine.github.io/
http://mochajs.org/
https://github.com/substack/tape
http://chaijs.com/

expect.js

should.js

Test Spies, Stubs, and Mocks for Unit Testing:

sinon.js

Kakapo.js

Hosted Testing/Automation for Browsers:

Browserling [$]

BrowserStack [$]

CrossBrowserTesting.com [$]

Nightcloud.io

Sauce Labs [$]

Integration/Functional Testing:

Cypress

Nightwatch

WebDriver.io

Browser Automation:

CasperJS

Nightmare

TestCafe

UI Testing Tools:

gremlins.js

Percy

https://github.com/Automattic/expect.js
http://shouldjs.github.io/
http://sinonjs.org/
http://devlucky.github.io/kakapo-js
https://www.browserling.com/
https://www.browserstack.com/
http://crossbrowsertesting.com/
http://nightcloud.io/
https://saucelabs.com/
https://www.cypress.io/
http://nightwatchjs.org/
http://webdriver.io/
http://casperjs.org/
https://github.com/segmentio/nightmare
https://github.com/DevExpress/testcafe
https://github.com/marmelab/gremlins.js
https://percy.io/

BackstopJS

PhantomCSS

Ghost Inspector

diff.io

Automated dead link and error detectors:

Monkey Test It

HTTP Stubbing

Polly.JS

5.28 - Front-End Data Storage Tools (i.e. Data storage

solution in the client)

AlaSQL

Dexie.js

LocalForage

LokiJS

Lovefield

lowdb

Pouchdb

NeDB

RxDB

ImmortalDB

https://github.com/garris/BackstopJS
https://github.com/Huddle/PhantomCSS
https://ghostinspector.com/
https://diff.io/
https://monkeytest.it/
https://netflix.github.io/pollyjs/#/README
http://alasql.org/
http://www.dexie.org/
https://localforage.github.io/localForage/
http://lokijs.org/#/
https://google.github.io/lovefield
https://github.com/typicode/lowdb
http://pouchdb.com/
https://github.com/louischatriot/nedb
https://pubkey.github.io/rxdb/install.html
https://github.com/gruns/ImmortalDB

5.29 - Module Loading/Bundling Tools

Parcel

Rollup

Microbundle

webpack

Poi

jetpack

Fusebox

Browserify

5.30 - Module/Package Repository Tools

NPM

yarn

PNPM

5.31 - Hosting Tools

General

AWS [$]

https://parceljs.org/
http://rollupjs.org/
https://github.com/developit/microbundle
https://webpack.js.org/
https://poi.js.org/
https://github.com/KidkArolis/jetpack
https://fuse-box.org/
http://browserify.org/
https://www.npmjs.com/
https://yarnpkg.com/
https://pnpm.js.org/
https://aws.amazon.com/websites/

DigitalOcean [$]

WebFaction [$]

Static

Firebase Hosting [free to $]

netlify [free to $]

Bitballoon

Surge [free to $]

Forge [$]

5.32 - Project Management & Code Hosting Tools

Assembla [free to $]

Bitbucket [free to $]

Codebase [$]

Github [free to $]

GitLab [free to $]

Unfuddle [$]

5.33 - Collaboration & Communication Tools

Slack & screenhero [free to $]

https://digitalocean.com/
https://www.webfaction.com/
https://firebase.google.com/docs/hosting/
https://www.netlify.com/
https://www.bitballoon.com/
https://surge.sh/
https://getforge.com/
https://www.assembla.com/
https://bitbucket.org/
https://www.codebasehq.com/
https://github.com/
https://about.gitlab.com/
https://unfuddle.com/
https://slack.com/
https://screenhero.com/

appear.in

Mattermost [free to $]

Code/GitHub Collaboration & Communication:

Gitter [free to $]

5.34 - Content Management Hosted/API Tools

Headless CMS Tools:

Contentful [$]

prismic.io [free to $]

Headless

Self-hosted Headless CMS Tools:

Cockpit

Directus 7 App

Hosted CMS:

LightCMS [$]

Surreal CMS [$]

Static CMS Tools:

webhook.com

Dato CMS

siteleaf

https://appear.in/
https://mattermost.org/
https://gitter.im/
https://www.contentful.com/
https://prismic.io/
https://www.headless.rest/
https://getcockpit.com/
https://directus.io/
https://www.lightcms.com/
http://www.surrealcms.com/
http://www.webhook.com/
https://www.datocms.com/
https://www.siteleaf.com/

forestry.io

5.35 - Back-end/API tools

Data/back-end as a service aka BAAS:

Backendless

Firebase [free to $]

Pusher [free to $]

restdb.io [free to $]

MongoDB Stitch

Data/back-end

GraphQL

Apollo

Relay

Falcor

RxDB

User Management as a Service:

Auth0 [$]

AuthRocket

Okta

Search

https://forestry.io/
https://backendless.com/
https://www.firebase.com/index.html
https://pusher.com/
https://restdb.io/
https://www.mongodb.com/cloud/stitch
http://graphql.org/
http://www.apollodata.com/
https://facebook.github.io/relay/
https://netflix.github.io/falcor/
https://github.com/pubkey/rxdb
https://auth0.com/
https://authrocket.com/
https://developer.okta.com/

Algolia

5.36 - Offline Tools

Hoodie

Offline.js

PouchDB

upup

Workbox

For more tools look here.

5.37 - Security Tools

Coding Tool:

DOMPurify

XSS

Security Scanners/Evaluators/Testers:

Netsparker

Websecurify

OWASP ZAP

References:

https://www.algolia.com/
http://hood.ie/
http://github.hubspot.com/offline/docs/welcome/
http://pouchdb.com/
https://www.talater.com/upup/
https://developers.google.com/web/tools/workbox/
https://github.com/pazguille/offline-first#tools
https://github.com/cure53/DOMPurify
http://jsxss.com/en/index.html
https://www.netsparker.com/
http://www.websecurify.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

HTML5 Security Cheatsheet

5.38 - Tasking (aka Build) Tools

Tasking/Build Tools:

Gulp

Opinionated Tasking/Build pipeline tools:

Brunch

Before reaching for Gulp make sure npm scripts or yarn script won't fit the bill. Read,
"Why I Left Gulp and Grunt for npm Scripts".

5.39 - Deployment Tools

Bamboo [$]

Buddy [free to $]

CircleCI [free to $]

Codeship [free to $]

Deploybot [free to $]

Deployhq [free to $]

FTPLOY [free to $]

Now [free to $]

https://html5sec.org/
http://gulpjs.com/
http://brunch.io/
https://docs.npmjs.com/misc/scripts
https://yarnpkg.com/en/docs/package-json#toc-scripts
https://medium.freecodecamp.com/why-i-left-gulp-and-grunt-for-npm-scripts-3d6853dd22b8#.nw3huib54
https://www.atlassian.com/software/bamboo/
https://buddy.works/
https://circleci.com/
https://codeship.com/
https://deploybot.com/
https://www.deployhq.com/
http://ftploy.com/
https://zeit.co/now

Travis CI [free to $]

Semaphore [free to $]

Springloops [free to $]

5.40 - Site/App Monitoring Tools

Uptime Monitoring:

Uptime Robot [free to $]

General Monitoring Tools:

Pingdom [free to $]

New Relic

Uptrends [$]

5.41 - JavaScript Error Reporting/Monitoring

bugsnag [$]

errorception [$]

Honeybadger [$]

Raygun [$]

Rollbar [free to $]

Sentry [free to $]

TrackJS [$]

http://docs.travis-ci.com/
https://semaphoreci.com/
http://www.springloops.io/
https://uptimerobot.com/
https://www.pingdom.com/
http://newrelic.com/
https://www.uptrends.com/
https://bugsnag.com/
https://errorception.com/
https://www.honeybadger.io/
https://raygun.io/
https://rollbar.com/
https://getsentry.com/welcome/
https://trackjs.com/

5.42 - Performance Tools

Reporting:

bundlephobia.com

GTmetrix

sitespeed.io

Speed Curve [$]

Web Page Test

Sonarwhal

webhint.io

Datadog [$]

Lighthosue

JS Tools:

imagemin

ImageOptim-CLI

Budgeting:

performancebudget.io

References/Docs:

Jank Free

Performance of ES6 features relative to the ES5

Checklist:

The Front-End Checklist

https://bundlephobia.com/
https://gtmetrix.com/
https://www.sitespeed.io/
https://speedcurve.com/
http://www.webpagetest.org/
https://sonarwhal.com/
https://webhint.io/
https://www.datadoghq.com/
https://developers.google.com/web/tools/lighthouse/
https://github.com/imagemin/imagemin
http://jamiemason.github.io/ImageOptim-CLI/
http://www.performancebudget.io/
http://jankfree.org/
https://kpdecker.github.io/six-speed/
https://frontendchecklist.io/

Front-End Performance Checklist 2019 [PDF, Apple Pages, MS Word] [read]

5.43 - Tools for Finding Tools

built with

frontendtools.com

javascripting.com

js.coach

JSter

npms

stackshare.io

Unheap

bestof.js.org

librariers.io

5.44 - Documentation Generation Tools

docz

ESDoc

JSDoc

documentjs

https://www.smashingmagazine.com/2019/01/front-end-performance-checklist-2019-pdf-pages/
http://builtwith.com/
http://frontendtools.com/
http://www.javascripting.com/
https://js.coach/
http://jster.net/
https://npms.io/
http://stackshare.io/
http://www.unheap.com/
https://bestof.js.org/
https://libraries.io/
https://www.docz.site/
https://github.com/esdoc/esdoc
http://usejsdoc.org/
https://documentjs.com/

Chapter 6. Front-end Communities,

Newsletters, News Sites, & Podcasts

General Front-End Newsletters, News, & Podcasts:

The Big Web Show

Dev Tips

Front End Happy Hour

Front-End Front

Front-end Focus

Web Platform News Weekly

ShopTalk Show

UX Design Newsletter

Web Development Reading List

The Web Platform Podcast

Web Tools Weekly

Fresh Brewed Front-end

Pony Foo Weekly

CSS-Tricks

syntax.

HTML/CSS Newsletters:

Accessibility Weekly

CSS Weekly

csslayout.news

http://5by5.tv/bigwebshow
https://umaar.com/dev-tips/
http://frontendhappyhour.com/
http://frontendfront.com/
http://frontendfocus.co/
https://webplatform.news/
http://shoptalkshow.com/
http://uxdesignnewsletter.com/
https://wdrl.info/
http://thewebplatform.libsyn.com/
http://webtoolsweekly.com/
https://freshbrewed.co/frontend/
https://ponyfoo.com/weekly
https://css-tricks.com/newsletters/
https://syntax.fm/
http://a11yweekly.com/
http://css-weekly.com/archives/
http://csslayout.news/

JavaScript Newsletters, News, & Podcasts:

Awesome JavaScript Newsletter

Echo JS

ECMAScript Daily

ES.next News

JavaScript Jabber

JavaScript Kicks

JavaScript Weekly

React Status

JS Party

JAMStack Radio

My JavaScript Story

Front-End Communities

http://fedsonslack.com/

front-end on spectrum.

Notes:

l. Need more Newsletters, News Sites, & Podcasts look at Awesome Newsletter.

n. Find local front-end development communities by searching
https://www.meetup.com/

https://js.libhunt.com/newsletter?f=es-top-d
http://www.echojs.com/
https://ecmascript-daily.github.io/
http://esnextnews.com/
https://devchat.tv/js-jabber/
http://javascriptkicks.com/
http://javascriptweekly.com/
https://react.statuscode.com/
https://changelog.com/jsparty
https://www.heavybit.com/library/podcasts/jamstack-radio/
https://devchat.tv/my-javascript-story/
http://fedsonslack.com/
https://spectrum.chat/frontend/
https://github.com/vredniy/awesome-newsletters
https://www.meetup.com/

