

IMO Maritime Single Window

- a generic multi-platform Open Source Maritime Single Window developed in
the Norwegian and Antigua and Barbuda MSW project.

Introduction

1. This document gives the reader a look under the hood of the Maritime Single Window

vehicle developed in the IMO Maritime Single Window project (2017-2019).

2. The generic Single Window system and its environment, including the Client, Server,
Database and Middleware are as much as possible developed in the spirit of the Open
Source Initiative. Also the system is developed to support cross-platform implementations
thus the generic Maritime Single Window system could be deployed on multiple
computing platforms.

3. The generic Maritime Single Window developed in the Antigua and Barbuda and Norway
project is a single-page web application (SPA/Client) which interacts with the user by
dynamically, rewriting the current page rather than loading entire new pages from a
server. This approach avoids interruption of the user experience between successive
pages, making the application behave more like a desktop application. In the application
the appropriate resources are dynamically loaded and added to the page as necessary,
usually in response to user actions. The page does not reload at any point in the process,
nor does control transfer to another page, although the location hash or the HTML5
History API can be used to provide the perception and navigability of separate logical
pages in the application.

4. The application is mainly a web application that requires manual input, but has a built in

capacity to upload bulky data, such as Crew Lists. In principal all information is electronic
and digitized, but the application allows for a download of the Clearance Certificate (CS)
to prevent any misunderstandings and interruptions in the next port of call. Interaction
with the single page application involves dynamic communication with the web server
and database behind the scenes.

Page 2

The Client application architecture

5. In principal the generic Maritime Single Window has three main functions or modules;

I. Administrative functions, such as maintaining the UserID’ of the system, Ship

Data maintenance, and interfaces to maintain Organizations and Locations

II. The main module of the application is the Port Calls Overview. The interface that
lets the reporting party manage the existing port call, create a new call or simple
view the details registered.

III. The third interface, Clearance Management allows the authorities to view and give

Clearance to a particular ship having a port call. The Authorities and the reporting
party share the function to view or download the Clearance Certificate.

 A complete overview of the application architecture is shown in the following figure.

6. As seen on the figure, most of the Single Window reporting functionalities sit within the

Port Call and Reporting Management module. This is where the main mandatory
reporting obligations are registered. The generic application covers all the required
information in the current FAL forms and the Security reporting. The registrations forms
are optimized to keep the reporting work to a minimum i.e the Crew Effects List is only
one simple field of input, and is found on the Crew List tab in the application.

7. To facilitate the reporting of the detailed Ship Store, Crew- and Passenger list, upload

functionality has been developed to allow for a possible upload of data in a pre-populated
spreadsheet template1.

1
 See Annex for more information on the spreadsheet template and functionalities

Page 3

8. A newly created Port Call will be stored in Draft Mode and only available for the

Reporting Party until it is Confirmed and Activated. At this point the Port Call become
official and made available for the Authorities for further actions and Clearance.

9. The Clearance Certificate (CS) is a function that is shared between the Reporting Party

and the Authorities. This function is only activated after all the Clearance has been
finalized. After Clearance is done electronically a copy of the Clearance Certificate
populated with key Port Call Information can be downloaded for further required manual
processes.

The generic Maritime Single Window application architecture

10. The Maritime Single Window has a distributed application structure through standard

client-server and database architecture.

11. The Client (frontend) is developed using Angular which is a structural framework for
developing dynamic web apps. To have a responsive behavior suitable for mobile
devices, HTML and CSS-based design templates and interface components the web
framework Bootstrap is used as a part of the Client platform.

12. To enable a cross-platform, high-performance open-source framework, the Server

(backend) is developed using an ASP.NET Core framework. The communication
between the Client and Server are encrypted using Hyper Text Transfer Protocol Secure
(HTTPS).

13. The database server is based upon a PostgreSQL database which is a powerful, open

source object-relational database system that uses and extends the SQL language
combined with many features that safely store and scale the most complicated data
workloads.

14. The REST-endpoints in the client and server typically refers to some object or set of

objects (i.e; api/portcall/user) are developed using C# (C Sharp) and utilizes the Entity
Framework Core (EF Core). The Object-Relational Mapping (ORM) in the EF Core
translates objects to and from the relational structure of the PostgreSQL database. The
EF Core is lightweight, extensible and support cross platform development. In the
application the EF Core is also used for access control.

15. The figure below shows an even more detailed visualization of the system components

and the communication between the various parts and components.

Page 4

The Software project

16. The software project is structured with a Model–

view–controller (MVC) architecture. This architecture
divides the application into three interconnected
parts. This is done to separate internal
representations of information from the ways
information is presented to and accepted from the
user.

17. The MVC design pattern decouples these major

components allowing for efficient code reuse and
parallel development. The model is the central
component of the pattern. It is the application's
dynamic data structure, independent of the user
interface. It directly manages the data, logic and rules
of the application.

18. A view can be any output representation the various parts of the Single Window

application. The controller accepts input and converts it to commands for the model or
view. In addition to dividing the application into three kinds of components, the model–
view–controller design defines the interactions between them.

Page 5

Client project (frontend)

19. The client follows the recommended structure of the Angular framework and is generated

using the Angular CLI. The figure below shows the structure of the Client.

20. There are five main directories in the client project;

 auth

This directory contains the client side of all the login, authentication, guards,

password management amongst other.

 error

This directory contains the module for error handling in the client.guards

 guards

This directory contains the root and error guards of the client. These guards

protect the routes within the client.

 main-content

This directory contains most of the components used in the client. The directory

is divided into three subdirectories; footer, header and content-container.

o Footer and header contain the components for these two features of the

client.

o Content-container contains all the other components in the client divided

into subdirectories based upon where in the client they are used.

 The three main directories are; account, basis-data and port-call.

Page 6

o The account directory contains components to do with the currently

logged in account.

o The basis-data directory contains components related to organization,

ships, users and locations.

o The port-call directory contains components for clearance, confirmation,

overview, registration and view-port-call.

 Shared

This directory contains all the components that are often shared between

modules/components. Examples include such components as date-picker,

country-select, search bars, buttons. Constants, interfaces, models, services

and utilities are also located within this directory.

21. The client project is developed using Angular 5 and TypeScript (superset of JavaScript).

The Client project is compiled down to a regular JavaScript file which is moved into the
“wwwroot” directory on the server project and will comprise the code that is executed on
the web site.

22. The Client project is only used for development and will have no impact on the product
until it is compiled and moved into the wwwroot directory.

The prerequisites and steps to compile the client are described in the README file in the
GitHub repository.

Page 7

Server project (backend)

23. The server code follows the recommended structure for MVC projects, and the figure

below shows the main structure of the server project.

24. The following table describes the top folders for the server project.

Folder Description

Auth Classes that handle authentication/authorization and Web Tokens

Controllers Contains controllers which are the connection between the client and the
server. The RESI-endpoints are defined here.

Data Classes that handle access to data and ORM-mappings

Extensions Extension methods that expand class-functionality

Helpers Constants, mappings, services

Identity Contains classes to interact with the ASP .NET Core Identity framework

Models Contains models that represent entities in the database

Repositories Classes with logic to communicate with the relevant storage medium

Services Contains services (e.g EmailSender)

SpreadSheet Contains the classes for SpreadSheet import. Contains mapping, validation,
definitions.

SqlScripts Contains the database scripts to be run on releases

ViewModels Contains classes that describe the objects sent between the client and the
server.

Wwwroot Contains the compiled client project and is ready to run

Page 8

25. The server project hosts a REST-API with various methods located in controller classes,

these classes include but are not limited to

Controller Description

Account Contains methods for creating/modifying accounts as well as various
administrative methods such as deactivating users.

Auth Contains methods for authenticating users (Login, credentials etc)

Claim Retrieves claims to be used in JWT.

Connection Retrieves current database connection state.

Country Contains various methods for retrieving countries (by exact name, by id or
search)

Dpg Retrieves DPG items from the database.

File Contains method for uploading and importing data from an excel sheet.
Currently implemented methods for Crew, Passengers and Ship Stores.

IAccount Interface Implementation of the Account Controller

Location Contains methods for registering, updating and retrieving location data.

PersonOnBoard Retrieve Crew/Pax from the database

Purpose Contains methods related to purpose of a port call.

Test Contains various test methods

26. ShipController offers amongst other these endpoints

Endpoint (protocol) Description

api/ship
(post)

Register a ship

api/ship
(put)

Update ship

api/ship/{shipId}/internationalShipSecurityCertifi
cate/isscId
(put)

Update the ISSC of the ship with the shipId

api/ship/search{searchTerm}/{amount}
(get)

Returns a list of ships based on search criteria
supplied from request.

api/ship/search{searchTerm}/{amount}/{enumVa
lue}
(get)

Returns a list of ships based on search criteria
filtered on shipType(enumValue)

27. PortCallController offers amongst other these endpoints

Endpoint (protocol) Description

api/portcall/{portCallId}/falShipStores
(get/put)

Retrieves/Updates ship stores for a specified port
call

api/portcall{portCallId}/consignments
(get/put)

Retrieves/Updates consignments for a specified
port call

api/portcall{portCallId}/personOnBoard
(get/put)

Retrieves/Updates Person on board for a
specified port call

api/portcall{portCallId}/personOnBoard
/personOnBoardType/{EnumValue}
(get)

Retrieves all Persons on Board by portcallId and
type (crew/pax)

api/portcall{portCallId}/personOnBoard
/personOnBoardType/{EnumValue}
(put)

Updates person on board list for a specified port
call (portCallId) for a specific type (crew/pax)

api/portcall/user
(get)

Gets all port calls related to the currently logged in
user

api/portcall/updatestatus/awaitingclearance/{por
tCallId}
(post)

Sets the status for a specified port call to
“Awaiting Clearance”

api/portcall/updatestatus/cleared/{portCallId}
(post)

Sets the status for a specified port call to “cleared”

Page 9

api/portcall/updatestatus/completed/{portCallId}
(post)

Sets the status for a specified port call to
“completed”

api/portcall/updatestatus/cancelled/{portCallId}
(post)

Sets the status for a specified port call to
“cancelled”

api/portcall/updatestatus/draft/{portCallId}
(post)

Sets the status for a specified port call to “draft”

api/portcall/delete/{portCallId}
(post)

Sets the status for a specified port call to “deleted”

api/portCall
(post)

Register a new port call

api/portCall/{id}
(get)

Gets a specific port call by ID

Database

28. The project uses an object-relational database model using the open source relational

database management system (RDMS) PostgreSQL.

The following tables are contained within this database

29. The MSW project has deployed a public site of the Single Window System. The database

for this site is hosted on a virtual Linux machine in the Azure cloud portal. To connect to
the database from the Server project the file appsettings.json is used. The listing below
shows the connect parameters for this particular deployment. For obvious reasons most
of the information is left out in the figure below.

Page 10

Security

30. The information in the Maritime Single Window is considered too be sensitive and

security is therefore a very important element. In a local installation security will normally
mean to setup firewalls and various other means of protecting the computer site and
data. However the application also has to have built in mechanisms to prevent security
breached and malicious attacks.

31. The Client communicates with the Server using the internet, thus the server requires the

Client to communicate using a cryptographic protocol. By using The Transport Layer
Security (TLS), the Maritime Single Window network establish secure communication.

32. Access to the system requires that a systems administrator registers the user account

and assign a role for the particular user. The newly created user will receive an email to
create a new password for the account. The password registered by the new user is
hashed using a pseudo-random salt. The system uses Password-Based Key Derivation
Function 2 (PBKDF2) to reduce the vulnerability of encrypted keys to brute force attacks.

33. PBKDF2 is used with the following parameters as standard:

 Salt: 128 bits

 Derivated key: 256 bits

 Iterations: 1000

 Algorithm: HMAC-SHA1

Page 11

34. After a successful authenticated login, the userID is provided a JSON Web Token (JWT ,

RFC 7519) which contains information that the server uses to authenticate the userID
sending the request. Below is a typical a JWT token with a Keyed-hash Message
Authentication Code HS256:

{

"auth_token":
{

"header":
{

"alg": "HS256",
"typ": "JWT",

},
"payload":
{

"claims": [],
"aud": ,
"exp": ,
"iat": ,
"id": ,
"iss": ,
"jti": <JWT id>,
"nbf": ,
"rol": ,
"sub": ,

},
"signature": ,

}
}

35. Each attribute in for the object “auth_token.payload” is called a “claim”. The claim
“auth_token.payload.claims” contains application specific rights for the relevant userID.
The other claims are called “registered claim names”. The attribute “header” specifies
what type it is, JWT, and what algorithm is used to generate the signature, HS256.

36. The Authorization library from AspnetCore is used to protect the REST-Endpoints by
annotating the various endpoints with authorization levels.

37. The JWT is stored in the LocalStorage of the browser which in turn hinders Cross Site

Request Forgery attacks which prevents an attack that forces an end user to execute
unwanted actions on the Maritime Single Window session in which they are currently
authenticated.

38. The Language-Integrated Query (LINQ) framework is used to protect from SQL injection.

LINQ performs parameter-based SQL queries which prevent a malicious attacker from
injecting nefarious SQL statements through inputs in the client.

39. Strings to connect to the database (username, password and URL) are retrieved from a

config file located on the server. This file is not in the source code and not accessible
from the outside. The same principle applies for the key to sign tokens.

Page 12

Source Code and public site

40. The source code can be found on the following GitHub Repository:
 https://github.com/Fundator/IMO-Maritime-Single-Window’

41. The public demo of the Maritime Single Window can be accessed on the following URL:
https://imo-msw-public-test.azurewebsites.net/

.

https://github.com/Fundator/IMO-Maritime-Single-Window
https://imo-msw-public-test.azurewebsites.net/

Page 13

Annex A Spreadsheet Templates

The Maritime Single Window uses an extended version of the JRCC eAPIS template for
uploading bulky data.

Page 14

Page 15

Annex B Spreadsheet Upload diagram

Below is an outline of the process and logic of the upload function in Maritime Single
Window.

