Skip to content
odml-templates collects re-useable odml documents
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
blackrock
datacite
eeg-setup
.gitignore
LICENSE
README.md

README.md

odML - The open metadata markup language

This repository contains re-usable odML templates.

It is meant as a template exchange and discussion forum for new odML templates or updates to existing ones.

A general introduction to odML and its usage can be found at the main odML page.

If you would like to contribute and provide a new template to be shared with the community, please create a Pull Request on this repository.

A brief introduction to odML and metadata

odML (open metadata Markup Language) is a framework, proposed by Grewe et al. (2011), to organize and store experimental metadata in a human- and machine-readable, XML based format (odml). In this tutorial we will illustrate the conceptual design of the odML framework and show hands-on how you can generate your own odML metadata file collection. A well organized metadata management of your experiment is a key component to guarantee the reproducibility of your research and facilitate the provenance tracking of your analysis projects.

What are metadata and why are they needed?

Metadata are data about data. They describe the conditions under which the actual raw-data of an experimental study were acquired. The organization of such metadata and their accessibility may sound like a trivial task, and most laboratories developed their home-made solutions to keep track of their metadata. Most of these solutions, however, break down if data and metadata need to be shared within a collaboration, because implicit knowledge of what is important and how it is organized is often underestimated.

While maintaining the relation to the actual raw-data, odML can help to collect all metadata which are usually distributed over several files and formats, and to store them unitedly which facilitates sharing data and metadata.

Key features of odML

  • open, XML based language, to collect, store and share metadata
  • Machine- and human-readable
  • Python-odML library
  • Interactive odML-Editor
You can’t perform that action at this time.