
Il ne faut pas vendre 
la peau de YARN 
parce qu’un Mesos 
vaut mieux que deux 
Kubernetes



2

Pascal GILLET
Cloud Architect

@pagillet

Expert en nuages 

BIG DATA, CLOUD

Hi! My name is
I am a software engineer, specialized in Big Data 

with a growing interest in AI/ML/DL. 

In my everyday work, I am involved in cloud 

computing and data management in general, 

including the use of open data, issues related to 

the capture, storage, retrieval, sharing, analysis and 

visualization of big data, and finally make sense of 

data with the semantic Web. I define myself as a 

technical person and I love getting my hands in the 

code. 

More gibberish with a little bit of gobbledygook, some 

rigmarole, gabble, hocus-pocus and so on...



“

3

“A cluster is a set of nodes with at least one master node and 

several worker nodes.

The cluster manager is mostly used to dispatch work for the 

cluster (or cloud) to perform.”

Wikipedia



“

4

“An operating system architecture for cluster-level resource 

management.”

The Dalaï-Lama



5

Cluster managers
vs

Container orchestration systems



6

Kubernetes is everywhere...

VMware/
Pivotal PKS

Red Hat
OpenShift

Suse
CaaS

CoreOS

Azure
(AKS)

Google 
Cloud

(GKE)

AWS
(EKS)



7

… But there are many others



8

“The War of 
the Containers”

“One Container 
Orchestration System 

To Rule Them All”

“Which one is the best?”
“Docker, Inc cheated on Swarm with K8S!”

“There can be only one”



9

A brief history of Containers:
from chroot to Kubernetes

containerd

2016

chroot

1982

FreeBSD 
Jails/

Solaris 
Zones

2000

cgroups

2006

LXC

2008 2009~11

Mesos

2012

Hadoop 
MR2

with YARN

Docker

2013

Marathon

CoreOS
rkt

2014

Docker 
Compose

2015

Docker
Swarm

2017

Container
Storage/
Network
Interface

Mesosphere
DC/OS

Linux
namespaces

2002 2015

Kubernetes
+

CNCF

OCI
(runC)



10

The Docker revolution

But needs additional tooling for 
container management on 
multiple hosts!

Agnostic & self-sufficient single package

Deterministic app packaging

Complete information

SCM-like semantics

Portability

Image immutability & predictability

PaaS

CaaS

IaaS

SaaS



11

Workload heterogeneity

Batch jobs
One-off or time-scheduled (cron)

Short-lived

Analytics pipelines
MapReduce/Spark jobs

Machine learning

Average duration

Long-running services
Web services

Data services



12

Scheduling

Scheduler

Cluster of machines

User App

Host



13

Scheduling goals & requirements

1. Using the cluster resources efficiently

2. Working with user-supplied placement constraints

3. (Data locality)

4. Scheduling applications rapidly

5. Having a degree of fairness and/or business importance

6. Robustness & Availability



14

Design issues

Interference (concurrency):
● pessimistic approach: Ensure that a particular resource is only made available to one scheduler at a 

time
● optimistic approach (conflict detection)

Allocation granularity:
● Atomic all-or-nothing gang scheduling / hoarding
● Incremental placement (MapReduce)

Cluster-wide behaviors:
● priority preemption
● strict fairness
● ...



15

Scheduling architectures

Cluster of 
machines

No
concurrency

Cluster state
information

Subset

Cluster of 
machines

Optimistic
concurrency

(transactions)

Cluster state
information
(cell state)

Full state

Pessimistic
concurrency

(offers)

Scheduling 
logic

Monolithic Two-level Shared-state



16

Comparison of scheduling approaches

Approach Resource choice Interference Alloc. granularity Cluster-wide 
policies

Monolithic all available none (serialized) global policy strict priority 
(preemption)

Statically 
partitioned

fixed subset none (partitioned) per-partition policy scheduler-depend
ent

Two-level 
(Mesos)

dynamic subset pessimistic hoarding strict fairness

Shared-state 
(Omega)

all available optimistic per-scheduler 
policy

free-for-all, 
priority 

preemption



17

Resource allocation

Mesos: Dominant Resource Fairness (DRF)

YARN: Capacity Scheduler / Fair Scheduler

Kubernetes: 
Container resource requests / limits (cpu, memory)
Pod resources: sum of its containers’ resource requests / limits
“The scheduler ensures that, for each resource type, the sum of the resource requests of the scheduled Containers 
is less than the capacity of the node”

Swarm strategies for ranking nodes:
- Spread: Node with the least number of containers
- Binpack: Node which is most packed

Nomad: bin packing which “optimize the resource utilization and density of applications”

http://mesos.apache.org/documentation/latest/allocation-module/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://github.com/docker/docker.github.io/blob/master/swarm/scheduler/strategy.md
https://www.nomadproject.io/docs/internals/scheduling.html


18

Features

Declarative configuration: blue print
(desired state)

Rules & Constraints (affinity)

Provisioning (OSB)

Rolling updates

Scaling

Service Discovery

Load balancing

Health check & Monitoring
(desired state reconciliation)

Persistent storage (stateful 
applications)



19

Kubernetes (Monolithic)



20

Swarm (Monolithic)



21

YARN (Monolithic)



22

Mesos (two-level)



23

Mesos scheduling frameworks

Singularity

Chronos

Cook
Long-running servicesBatch jobs

Marathon

Aurora



24

Aparté on Spark

Experimental



25

Comparison in terms of Component Architecture

^^



26

Container disambiguation

“Without CGroups, it becomes hard to limit 
container CPU usage” - YARN

Container
runtimes

M
es

os
/Y

AR
N

K8
S/

Sw
ar

m

OS Kernel

CGroups Namespaces

LXC libcontainer containerd
(runC)

Docker

Docker evolution

High-level

Low-level



27

Paradigm shift in application deployment

Self-containerized applications
The cluster manager supports the 
application’s container format and run it 
directly

Docker

Managed containerization
The cluster manager is responsible for 
containerizing the application

Standalone applications: Shell scripts, Java

Agent’s working directory for dependencies & 
native libraries: 

● Mesos sandbox
● YARN LocalResources



28

Stateful services

Motivation & current 
limitations
Volume management is 
tightly coupled to the COs: 
adding support to new 
storage systems requires 
adding code into the core 
COs codebase

No well-defined interface 
allowing third-party storage 
vendors to plug into COs

Persistent volumes 
enable stateful services

Container Storage 
Interface (CSI)
Specification that defines a common set of APIs 
for all interactions between storage vendors and 
container orchestration platforms

Close collaboration among Kubernetes, 
CloudFoundry, Docker and Mesos communities

Primary goal: establish a standardized 
mechanism for COs to expose arbitrary storage 
systems to their (containerized) workloads, 
using a consistent API that decouples the 
release cycle of COs from that of the storage 
systems, making the integration itself more 
sustainable and maintainable



29

Container Storage Interface

CSI

EBS Ceph GCE 
PD Cinder SAN NAS

Storage drivers

Docker KubernetesMesos

Local-disk volume/
Volume plugins Volume pluginsPersistent 

volumes
Today

Tomorrow



30

Cloud Native Reference Stack

Infrastructure

Provisioning

Runtime

Orchestration & Management

Application Definition & Development

Observability
● View / Filter / Replay
● Monitoring / Trace / Stream / Log
● Business Intelligence

Orchestration and scheduling

Name resolution and service discovery (e.g., DNS)

Service Management 
● Routing / Proxy / Load Balancer
● Policy / Placement / Traffic Management

Resource Management

● Image Management
● Container Management
● Compute Resources

Cloud Native – Network 

● Network Segmentation and 
Policy

● SDN & APIs (e.g., CNI, 
libnetwork)

Cloud Native- Storage

● Volume Drivers/Plugins
● Local Storage Management
● Remote Storage Access



31

The static partition issue: siloed clusters

Node Node Node

Node Node Node

YARN

Resource
Manager

Node Node Node

Node Node Node

Mesos

Framework
+ 

master



32

The static partition issue: node resource partitioning

YARN

Resource
Manager

Mesos

Framework
+ 

master

Node Node Node

Node Node Node

Node Node Node

Node Node Node



33

Sharing a single pool of resources

YARN

Resource
Manager

Mesos

Framework
+ 

master

Node Node Node

Node Node Node

Node Node Node

Node Node Node



34

Swarm

YARN

Apache
Myriad

Original k8s on Mesos framework has been 
retired
New Mesosphere MKE (Mesosphere Kubernetes 
Engine):

● Not open source
● Only runs on Mesosphere DC/OS

More like a k8s installer through Mesos

Seamless integration of Kubernetes 
into the Docker platform, offering users 
the choice to use Kubernetes and/or 
Docker Swarm for orchestration

Integrations

Launching YARN applications 
using Docker containers
Experimental

Docker

Mesos as 
backend for 
Swarm

Running Mesos on Hadoop MRv1

Mesos supports Docker 
and Mesos containers.
Marathon framework is 
used for container 
orchestration.
As of version 1.4, 
Marathon supports the 
creation and 
management of pods.

Mesos

Kubernetes Hadoop



35

The server disaggregation

Operating system with minimal 
functionality required for 
deploying applications inside 
containers

Distributed operating system 
based on Apache Mesos

Do you remember when 
humans used to play with 
their toy servers along with 
a dedicated host operating 
system !?
They were such losers!
AHAHA



36

Conclusion

No unique solution to solve every problems with cluster computing

Developers & DevOps like to change tools and want to replace them easily

Vendors need to create multiple integrations to be supported across the 
container ecosystem

Propose an architecture that gives control to the developers

CNCF, OCI & OSB standards



37

Thanks

Would You Like To Know More?

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, John Wilkes, Omega: flexible, scalable 
schedulers for large compute clusters (2013)

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, John Wilkes, 
Large-scale cluster management at Google with Borg (2015)

A.Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant resource fairness: 
fair allocation of multiple resource types (2011)

Mesos Architecture providing an overview of Mesos concepts: 
http://mesos.apache.org/documentation/latest/architecture/

http://mesos.apache.org/documentation/latest/architecture/

