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7 Ofo 255 signed

7256 to 511, unsigned

A 51210 787 unsigned

A 768 to 1023 signed

bool use_signed_math = {{(wave_id & Ox200) == ({wave_jd << 1) & Ox200)) 7 true : false
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/# This function performs unsigned atomic max on the image
# We need special handfing if value < NULL, since we want NULL fo be overwritten
/# by the value
wint32 image_umax{(uint32 X, uint32 v, winf32 value)
{
wint32 result
iffvalue < NULL} {
boot relry
do {
refry = false
# naxt line does the following
# result = pixel_dependencyXilyf
A ifpixel_dependencylxily] == NULL} pixel_dependancylxily] = valug
result = image_atomic_cmpswap{pixel_dependencyixjivl, NULL, valug)
iffresult I= NULL) {
& next line does the folfowing
A result = pixgl_dependency[xjivi
A if{pixel_dependency{x]iyi < value) pixel_dependencylxiivi = value
rasult = image_afomic_umax{pixel_dependencyxjly], value)
iffresull == NULL) retry = frue
J
Fwhile{relry)
}else
/# next line does the following
i result = pixel_dependency{xjfv]
A if(pixel_dependencyiXly] < value} pixel_dependencyxiivi = value
result = image_afomic_umax{pixel_dependencyx]ly] value)
}
return resulft

J
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RASTER ORDER VIEW
BACKGROUND

Description of the Related Art

[0001] A graphics processing unit (GPU) is a complex
integrated circuit that performs graphics-processing tasks.
For example, a GPU executes graphics-processing tasks
required by an end-user application, such as a video-game
application. GPUs are also increasingly being used to per-
form other tasks which are unrelated to graphics. In some
implementations, the GPU is a discrete device or is included
in the same device as another processor, such as a central
processing unit (CPU).

[0002] In many applications, such as graphics processing
applications executed by a GPU, a sequence of work-items,
which can also be referred to as threads, are processed so as
to output a final result. In one implementation, each pro-
cessing element executes a respective instantiation of a
particular work-item to process incoming data. A work-item
is one of a collection of parallel executions of a kernel
invoked on a compute unit. A work-item is distinguished
from other executions within the collection by a global ID
and a local ID. As used herein, the term “compute unit” is
defined as a collection of processing elements (e.g., single-
instruction, multiple-data (SIMD) units) that perform syn-
chronous execution of a plurality of work-items. The num-
ber of processing elements per compute unit can vary from
implementation to implementation. A subset of work-items
in a workgroup that execute simultaneously together on a
compute unit can be referred to as a wavefront, warp, or
vector. The width of a wavefront is a characteristic of the
hardware of the compute unit. As used herein, a collection
of wavefronts are referred to as a “workgroup”. Also, a
“wavefront” can also be referred to herein as a “wave”.
[0003] Graphics processors are often used within com-
puter graphics processing systems to create computer-gen-
erated imagery from a geometric model. A geometric model
defines various objects, details, lighting sources, and other
elements of a virtual scene. The computing system deter-
mines how to render a given scene based on the geometric
model and other inputs from a software application. A GPU
process the inputs and the geometric model to generate a two
or three dimensional array of pixel color values that repre-
sent the desired image or video frame. Typically, a plurality
of' waves are launched in parallel on the GPU to generate the
pixel values for a given image or video frame. However,
while the waves are launched in the correct order, due to the
nature of the GPU hardware, the waves may get executed
out of order.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description in conjunction with the accompa-
nying drawings, in which:

[0005] FIG.1 is a block diagram of one implementation of
a computing system.

[0006] FIG. 2 is a block diagram of another implementa-
tion of a computing system.

[0007] FIG. 3 is a diagram of one implementation of a
pixel dependency data structure and a thread dependency
linked list.
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[0008] FIG. 4 is a diagram of one implementation of a
pixel dependency data structure and thread dependency
linked list for a primitive being rendered.

[0009] FIG. 5 is a diagram of another implementation of
a pixel dependency data structure and a thread dependency
linked list for a pair of primitives.

[0010] FIG. 6 is a block diagram of one implementation of
multiple waves corresponding to overlapping primitives.
[0011] FIG. 7 is an example of pseudocode for implement-
ing a raster order view enforcement mechanism in accor-
dance with one implementation.

[0012] FIG. 8 is a generalized flow diagram illustrating
one implementation of a method for implementing a raster
order view enforcement mechanism in a multi-threaded
environment.

[0013] FIG. 9 is a generalized flow diagram illustrating
one implementation of a method for performing dependency
chain generation.

[0014] FIG. 10 is an example of pseudocode for handling
wrapping of wave IDs and the NULL value in accordance
with one implementation.

DETAILED DESCRIPTION OF
IMPLEMENTATIONS

[0015] In the following description, numerous specific
details are set forth to provide a thorough understanding of
the methods and mechanisms presented herein. However,
one having ordinary skill in the art should recognize that the
various implementations may be practiced without these
specific details. In some instances, well-known structures,
components, signals, computer program instructions, and
techniques have not been shown in detail to avoid obscuring
the approaches described herein. It will be appreciated that
for simplicity and clarity of illustration, elements shown in
the figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

[0016] Various systems, apparatuses, and methods for
implementing raster order view enforcement techniques are
disclosed herein. A processor includes a plurality of compute
units coupled to one or more memories. A plurality of waves
are launched in parallel for execution on the plurality of
compute units, where each wave comprises a plurality of
threads, and where the waves can execute out-of-order. In
one implementation, each wave corresponds to a primitive
being rendered. A dependency chain is generated for each
wave of the plurality of waves due to the possibility for
out-of-order execution. The compute units wait for all older
waves to complete dependency chain generation prior to
executing any threads with dependencies. Responsive to all
older waves completing dependency chain generation, a
given thread with a dependency is executed only if all other
threads upon which the given thread is dependent have
become inactive. When executed, the plurality of waves
generate a plurality of pixels to be driven to a display.
[0017] In one implementation, generating a dependency
chain for a thread involves multiple steps. First, a given pixel
being rendered by the thread is identified. Second, an entry
for the given pixel in a pixel dependency data structure is
located. Third, it is determined if the given thread identifier
(ID) of the thread is greater than a thread ID currently stored
in the pixel dependency data structure entry. If the given
thread ID is greater than a thread ID currently stored in the
entry, then an atomic operation is performed to assign the
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given thread ID to the entry for the given pixel in the pixel
dependency data structure. Also, an atomic operation is
performed to add a linked list entry to a head of a thread
dependency linked list for the given pixel if the given thread
1D is greater than the thread ID currently stored in the entry.
The given thread ID of the thread is stored in this linked list
entry.

[0018] In one implementation, if the given thread ID is
less than the thread ID currently stored in the entry for the
given pixel in the pixel dependency data structure, then the
head of the thread dependency linked list for the given pixel
is located using a pointer in the entry. Also, an atomic
operation is performed to traverse the thread dependency
linked list to find where to add a given linked list entry for
the given thread ID. Then, an atomic operation is performed
to add the given linked list entry for the given thread ID to
the thread dependency linked list in a correct location based
on a comparison of the given thread ID to other thread IDs
in other thread dependency linked list entries for the given
pixel.

[0019] Referring now to FIG. 1, a block diagram of one
implementation of a computing system 100 is shown. In one
implementation, computing system 100 includes at least
processors 105A-N, input/output (I/O) interfaces 120, bus
125, memory controller(s) 130, network interface 135,
memory device(s) 140, display controller 150, and display
155. In other implementations, computing system 100
includes other components and/or computing system 100 is
arranged differently. Processors 105A-N are representative
of any number of processors which are included in system
100.

[0020] Inoneimplementation, processor 105A is a general
purpose processor, such as a central processing unit (CPU).
In one implementation, processor 105N is a data parallel
processor with a highly parallel architecture. Data parallel
processors include graphics processing units (GPUs), digital
signal processors (DSPs), field programmable gate arrays
(FPGAs), application specific integrated circuits (ASICs),
and so forth. In some implementations, processors 105A-N
include multiple data parallel processors. In one implemen-
tation, processor 105N is a GPU which provides pixels to
display controller 150 to be driven to display 155.

[0021] Memory controller(s) 130 are representative of any
number and type of memory controllers accessible by pro-
cessors 105A-N. Memory controller(s) 130 are coupled to
any number and type of memory devices(s) 140. Memory
device(s) 140 are representative of any number and type of
memory devices. For example, the type of memory in
memory device(s) 140 includes Dynamic Random Access
Memory (DRAM), Static Random Access Memory
(SRAM), NAND Flash memory, NOR flash memory, Fer-
roelectric Random Access Memory (FeRAM), or others.
[0022] 1/O interfaces 120 are representative of any number
and type of I/O interfaces (e.g., peripheral component inter-
connect (PCI) bus, PCI-Extended (PCI-X), PCIE (PCI
Express) bus, gigabit Ethernet (GBE) bus, universal serial
bus (USB)). Various types of peripheral devices (not shown)
are coupled to I/O interfaces 120. Such peripheral devices
include (but are not limited to) displays, keyboards, mice,
printers, scanners, joysticks or other types of game control-
lers, media recording devices, external storage devices,
network interface cards, and so forth. Network interface 135
is used to receive and send network messages across a
network.
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[0023] Invarious implementations, computing system 100
is a computer, laptop, mobile device, game console, server,
streaming device, wearable device, or any of various other
types of computing systems or devices. It is noted that the
number of components of computing system 100 varies
from implementation to implementation. For example, in
other implementations, there are more or fewer of each
component than the number shown in FIG. 1. It is also noted
that in other implementations, computing system 100
includes other components not shown in FIG. 1. Addition-
ally, in other implementations, computing system 100 is
structured in other ways than shown in FIG. 1.

[0024] Turning now to FIG. 2, a block diagram of another
implementation of a computing system 200 is shown. In one
implementation, system 200 includes GPU 205, system
memory 225, and local memory 230. System 200 also
includes other components which are not shown to avoid
obscuring the figure. GPU 205 includes at least command
processor 235, control logic 240, dispatch unit 250, compute
units 255A-N, memory controller 220, global data share
270, level one (L1) cache 265, and level two (L.2) cache 260.
In other implementations, GPU 205 includes other compo-
nents, omits one or more of the illustrated components, has
multiple instances of a component even if only one instance
is shown in FIG. 2, and/or is organized in other suitable
manners. In one implementation, the circuitry of GPU 205
is included in processor 105N (of FIG. 1).

[0025] Invarious implementations, computing system 200
executes any of various types of software applications. As
part of executing a given software application, a host CPU
(not shown) of computing system 200 launches kernels to be
performed on GPU 205. Command processor 235 receives
kernels from the host CPU and uses dispatch unit 250 to
issue corresponding wavefronts (or waves for short) to
compute units 255A-N. It is noted that dispatch unit 250 can
also be referred to herein as a scheduler. Waves executing on
compute units 255A-N read and write data to global data
share 270, L1 cache 265, and L2 cache 260 within GPU 205.
Although not shown in FIG. 2, in one implementation,
compute units 255A-N also include one or more caches
and/or local memories within each compute unit 255A-N.

[0026] Referring now to FIG. 3, a diagram of one imple-
mentation of a pixel dependency data structure 305 and a
thread dependency linked list linked list is shown. In one
implementation, pixel dependency data structure 305 is a
two-dimensional array which stores an index for each thread
which is writing to a pixel within a corresponding surface.
In one implementation, pixel dependency data structure 305
is 256-by-256 and is indexed by the 8 least significant bits
(LSBs) of the X and Y coordinate of each pixel. In this
implementation, pixels on the actual surface alias every 256
pixels in the X and Y directions. This aliasing results in
functionally correct but conservative dependencies and is
caused by limiting the footprint of pixel dependency data
structure 305 to a fixed size. In other implementations, pixel
dependency data structure 305 can be any of various other
sizes. Each entry of pixel dependency data structure 305
stores an 1D of the latest thread to have written to a given
pixel location. Pixel dependency data structure 305 acts as
the head of each linked list of thread dependency linked list
310 for a corresponding pixel location. In one implementa-
tion, a special NULL value is used to indicate that a pixel has
no outstanding threads writing to it.
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[0027] Inone implementation, each entry of thread depen-
dency linked list 310 includes an index field and a dependent
thread field to track dependencies between threads that are
writing to the same pixel of a given surface. In one imple-
mentation, thread dependency linked list 310 is sized to
contain one entry per thread per outstanding wave. Each
entry of thread dependency linked list 310 stores the ID of
the thread that the indexed thread is dependent on. In one
implementation, a special NULL value is stored in an entry
to indicate that the thread is not dependent on any other
threads. Each entry of thread dependency linked list 310 acts
as a node in the linked list.

[0028] Turning now to FIG. 4, a diagram of one imple-
mentation of a pixel dependency data structure 410 and
thread dependency linked list 415 for a primitive 405 being
rendered is shown. The pixels shown within pixel depen-
dency data structure 410 are labeled from O to 63 for the
pixels of a primitive 405 being rendered. The top-left pixel
is labeled 0 and the bottom right pixel is labeled 63. In one
implementation, each pixel is rendered by a separate thread,
such that there are 64 threads for rendering the 64 pixels of
primitive 405. In one implementation, each pixel of primi-
tive 405 has a corresponding entry in thread dependency
linked list 415. The arrows pointing from boxes in pixel
dependency data structure 410 to thread dependency linked
list 415 illustrate the relationship between entries in pixel
dependency data structure 410 and entries in thread depen-
dency linked list 415. It is noted that primitive 405 is also
labeled primitive A in FIG. 4.

[0029] Referring now to FIG. 5, a diagram of another
implementation of a pixel dependency data structure 515
and a thread dependency linked list 520 is shown. FIG. 5 is
intended to be a continuation of the example illustrated in
FIG. 4. Accordingly, primitive 505 is being partially over-
drawn by primitive 510 as shown on the left-side of FIG. 5.
Primitive 505 is also referred to as primitive A and primitive
510 is also referred to as primitive B. It is assumed for the
purposes of this implementation that primitive 510 is being
rendered after primitive 505. Boxes within pixel dependency
data structure 515 are shaded to indicate the locations
corresponding to the pixels of primitive 505 and 510. It is
assumed for the purposes of this discussion that pixel indices
64, 65, 66, and 67 of primitive 510 overlap pixel indexes 60,
61, 62, and 63, respectively, of primitive 505. The depen-
dencies between these threads are stored in the four corre-
sponding entries shown for thread dependency linked list
520. Accordingly, there is an entry for thread index 64 which
points to thread index 60. This entry will cause thread 64 to
wait until thread 60 has finished execution and becomes
inactive before thread 64 begins execution. Additionally,
there is an entry for thread index 65 pointing to thread index
61, an entry for thread index 66 pointing to thread index 62,
and an entry for thread index 67 pointing to thread index 63
to indicate the overlap for the corresponding pixels and
dependencies between the threads.

[0030] Turning now to FIG. 6, a block diagram of one
implementation of multiple waves 605, 610, 615, and 620
corresponding to overlapping primitives is shown. Each
wave 605, 610, 615, and 620 corresponds to a different
primitive A, B, C, and D, respectively. It is assumed for the
purposes of this discussion that the order in which the
primitives A, B, C, and D are rendered is in alphabetical
order such that primitive A will be drawn first, followed by
primitive B, then primitive C, and finally primitive D. This
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is illustrated with the way in which wave 620 overlaps wave
615, wave 615 overlaps wave 610, and wave 610 overlaps
wave 605. When waves 605, 610, 615, and 620 are launched
for execution, these waves will be launched on the parallel
processing unit (e.g., GPU) in the correct order. However,
the way in which the threads of these waves execute might
not match the way in which the waves were launched since
the threads will be executed in a parallel fashion. Accord-
ingly, the previously illustrated data structures are used to
ensure that the threads execute in raster order.

[0031] For example, in one implementation, entries in a
pixel dependency data structure will keep track of the latest
thread to write to each pixel of a given surface. The entries
of the pixel dependency data structure are updated in an
atomic fashion so that multiple threads do not try to update
the same entry at the same time. Then, an entry of the pixel
dependency data structure is used to locate the head of a
corresponding thread dependency linked list for a given
pixel. In one implementation, the thread dependency linked
list will store the relationship between threads which are
drawing overlapping pixels. These entries are created atomi-
cally so that multiple threads will not be simultaneously
altering the thread dependency linked list. The entries of the
thread dependency linked list are used to enforce an ordering
of threads which are drawing to the same pixel.

[0032] Referring now to FIG. 7, one example of pseudo-
code 700 for implementing a raster order view enforcement
mechanism in accordance with one implementation is
shown. In one implementation, pseudocode 700 uses a
sequence of atomic operations to build a linked list. This
sequencing allows waves hitting the same screen location to
interleave without affecting the final results which are gen-
erated after all waves have completed. As used herein, the
term “atomic operation” is defined as an operation which
cannot be interrupted by concurrent operations. Said in
another way, an “atomic operation” is an operation that
completes, or appears to complete, in a single step relative
to other threads.

[0033] Instruction 705 assigns a thread identifier (ID) for
the current wave and thread to the variable “my_thread_id”.
In one implementation, the thread ID is the concatenation of
the wave ID and the thread number within the wave. In one
implementation, the wave 1D is a monotonically increasing
integer number which is assigned to waves in logical order.
Next, instruction 710 assigns the thread ID to the pixel
dependency data structure at the pixel location (x,y), but
only if the current thread is the latest (i.e., most recent)
thread. In one implementation, instruction 710 is imple-
mented using the atomic instruction “atomic_max”. In other
implementations, instruction 710 can be implemented using
other suitable atomic instructions. Atomic_max(pointer,
new value) reads the value from the location pointed to by
“pointer”, computes the maximum of this value and “new
value”, and then stores the result at the location pointed to
by “pointer”. Atomic_max(pointer, new value) returns the
value from the location pointed to by “pointer”.

[0034] Next, instruction 715 is a while condition which
checks if the thread ID has been added to the pixel depen-
dency data structure. If the thread ID has not been added to
the pixel dependency data structure, instruction 720 tra-
verses the thread dependency linked list and adds the thread
ID to the thread dependency data structure. The loop of
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instructions 715 and 720 will not iterate much if waves
generally run in order or if there are few instances of
overdraw.

[0035] Next, instruction 725 assigns the next thread to the
thread dependency linked list but only if a newer thread has
not already been assigned. It is noted that in some cases,
another wave could have come in and updated the thread
dependency linked list but with a newer thread. Then,
instructions 730 and 735 implement a while loop to check if
the next thread 1D has been added to the thread dependency
linked list. If the next thread ID has not been added to the
thread dependency linked list, then the thread dependency
linked list is traversed until the next thread ID is added in.
Similar to the previous loop for instructions 715 and 720,
this loop will not iterate much if waves generally run in
order or if there are few instances of overdraw.

[0036] Turning now to FIG. 8, one implementation of a
method 800 for implementing a raster order view enforce-
ment mechanism in a multi-threaded environment is shown.
For purposes of discussion, the steps in this implementation
and those of FIG. 9 are shown in sequential order. However,
it is noted that in various implementations of the described
methods, one or more of the elements described are per-
formed concurrently, in a different order than shown, or are
omitted entirely. Other additional elements are also per-
formed as desired. Any of the various systems or apparatuses
described herein are configured to implement method 800.
[0037] A processor (e.g., GPU) marks threads of a current
wave as active (block 805). It is assumed for the purposes of
this discussion that a plurality of waves are launched and
being executed in parallel on the processor. Next, a depen-
dency chain is generated for each thread of the current wave
(block 810). In one implementation, the dependency chain is
generated in an atomic fashion. As used herein, the term
“dependency chain” is defined as a linked list tracking the
order in which threads that touch (i.e., are rendering) a
common pixel are required to execute. One example of
generating a dependency chain for a thread is described in
further detail below in the discussion associated with
method 900 of FIG. 9. If all threads of the current wave have
completed dependency chain generation (conditional block
815, “yes” leg), then the current wave is marked as having
completed dependency chain generation (block 820). If all
threads of the current wave have not completed dependency
chain generation (conditional block 815, “no” leg), then
method 800 returns to block 810.

[0038] After block 820, the current wave waits for all
older waves to complete their dependency chain generation
(block 825). If all older waves have completed their depen-
dency chain generation (conditional block 830, “yes” leg),
then for each thread of the current wave, the thread waits for
all other threads upon which the thread is dependent to
become inactive (block 835). If not all of the older waves
have completed their dependency chain generation (condi-
tional block 830, “no” leg), then method 800 returns to block
825. After block 835, for each thread of the current wave, if
all other threads upon which the thread is dependent have
become inactive (conditional block 840, “yes” leg), then the
thread executes its critical section code (block 845). In one
implementation, the critical section code includes instruc-
tions for rendering a given pixel. If not all other threads upon
which the thread is dependent have become inactive (con-
ditional block 840, “no” leg), then method 800 returns to
block 835. After block 845, the thread is marked as inactive
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after the thread finishes execution (block 850). After block
850, method 800 ends. It is noted that method 800 is
performed for each wave of a plurality of waves of a given
kernel and/or software application.

[0039] Referring now to FIG. 9, one implementation of a
method 900 for performing dependency chain generation is
shown. A thread of a wave is initiated (block 905). A given
pixel being rendered by the thread is identified (block 910).
Then, an entry for the given pixel in a pixel dependency data
structure is located (block 915). If a given thread ID for the
given thread is greater than a thread ID currently stored in
the entry (conditional block 920, “yes” leg), then an atomic
operation is performed to assign the given thread ID to the
entry for the given pixel in the pixel dependency data
structure (block 925). In one implementation, the atomic
operation is the atomic_max instruction. In other implemen-
tations, other types of atomic operations are used for block
925. Also, an atomic operation is performed to add an entry
with the given thread ID to a head of a thread dependency
linked list for the given pixel (block 930). After block 930,
method 900 ends.

[0040] If the given thread ID for the given thread is less
than the thread ID currently stored in the entry (conditional
block 920, “no” leg), then the head of the thread dependency
linked list for the given pixel is located using the entry for
the given pixel in the pixel dependency data structure (block
935). Next, using an atomic operation, the thread depen-
dency linked list for the given pixel is traversed to find
where to add an entry for the given thread ID (block 940).
Then, using an atomic operation, an entry for the given
thread ID is added to the thread dependency linked list in a
correct location based on a comparison of the given thread
ID to other thread IDs in the linked list entries for the given
pixel (block 945). After block 945, method 900 ends.
[0041] Turning now to FIG. 10, one example of pseudo-
code 1005 and 1010 to handle wrapping of wave IDs and the
NULL value in accordance with one implementation is
shown. Pseudocode 1005 illustrates one technique for han-
dling wrapping of a wave ID when implementing a raster
order view enforcement mechanism. In one implementation,
it is assumed that the wave 1D is four times larger than the
maximum number of waves that can be in-flight. For
example, if the maximum number of in-flight waves is 256,
then the wave II) would be 10 bits to provide up to 1024
unique wave IDs. When the wave 1D is four times larger
than the maximum number of waves that can be in-flight,
signed and unsigned atomic max and compare functions are
used to handle wrapping of the wave ID.

[0042] Whether signed or unsigned math is used with the
atomic max and compare functions is based on the value of
a particular wave ID, as shown in pseudocode 1005. For
example, in one implementation, if the current wave ID is in
the 0 to 255 range, then all other wave IDs in the data
structures can be at most 255 away from the current wave
ID. Thus, the other wave IDs will be in the -255 to 511
range. In this case, signed math is used. If the current wave
ID is in the 256 to 511 range, valid wave IDs can be
anywhere from 0 to 767, and so unsigned math is used. For
other values of the current wave 1D, this pattern of using
signed or unsigned math will be followed. Accordingly, if
the top 2 bits of the current wave ID are the same, then
signed math is used. Otherwise, if the top 2 bits of the
current wave ID are not the same, then unsigned math is
used.
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[0043] Additionally, in one implementation, special han-
dling is utilized to deal with the NULL value. In one
implementation, the NULL value is the constant
0x80000000, and so the unsigned atomic max function has
to first compare a thread ID to the NULL value before
executing the atomic max function as shown in pseudocode
1010. It should be understood that pseudocode 1005 and
1010 are merely examples of code for handling the wrapping
of wave Ms and handling the NULL value, respectively, in
accordance with one implementation. In other implementa-
tions, other arrangements of software instructions and/or
software functions can be utilized to handle wave ID wrap-
ping and the NULL value.

[0044] In various implementations, program instructions
of a software application are used to implement the methods
and/or mechanisms described herein. For example, program
instructions executable by a general or special purpose
processor are contemplated. In various implementations,
such program instructions are represented by a high level
programming language. In other implementations, the pro-
gram instructions are compiled from a high level program-
ming language to a binary, intermediate, or other form.
Alternatively, program instructions are written that describe
the behavior or design of hardware. Such program instruc-
tions are represented by a high-level programming language,
such as C. Alternatively, a hardware design language (HDL)
such as Verilog is used. In various implementations, the
program instructions are stored on any of a variety of
non-transitory computer readable storage mediums. The
storage medium is accessible by a computing system during
use to provide the program instructions to the computing
system for program execution. Generally speaking, such a
computing system includes at least one or more memories
and one or more processors configured to execute program
instructions.

[0045] It should be emphasized that the above-described
implementations are only non-limiting examples of imple-
mentations. Numerous variations and modifications will
become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the fol-
lowing claims be interpreted to embrace all such variations
and modifications.

What is claimed is:
1. A system comprising:
one or more memories; and
a plurality of compute units coupled to the one or more
memories, wherein the plurality of compute units are
configured to:
launch a plurality of waves for execution in parallel,
wherein each wave of the plurality of waves com-
prises a plurality of threads;
generate a dependency chain for each thread of each
wave;
wait for all older waves to complete dependency chain
generation prior to executing any threads with
dependencies;

responsive to all older waves completing dependency
chain generation, execute a given thread with a
dependency only if all other threads upon which the
given thread is dependent have become inactive; and

execute the plurality of waves to generate a plurality of
pixels to be driven to a display.

Jun. 25, 2020

2. The system as recited in claim 1, wherein the plurality
of compute units are further configured to generate a depen-
dency chain for each thread by executing one or more atomic
operations.

3. The system as recited in claim 1, wherein generating a
dependency chain for a thread comprises:

identifying a given pixel being rendered by the thread;

locating an entry for the given pixel in a pixel dependency

data structure;
performing an atomic operation to assign a given thread
identifier (ID) to the entry for the given pixel in the
pixel dependency data structure responsive to deter-
mining that the given thread ID is greater than a thread
ID currently stored in the entry, wherein the given
thread ID corresponds to the thread; and
performing an atomic operation to add a linked list entry
to a head of a thread dependency linked list for the
given pixel and store the given thread ID in the linked
list entry responsive to determining that the given
thread ID is greater than the thread ID currently stored
in the entry.
4. The system as recited in claim 3, wherein generating
the dependency chain for the thread further comprises:
locating the head of the thread dependency linked list for
the given pixel using a pointer in the entry for the given
pixel in the pixel dependency data structure responsive
to determining that the given thread ID is less than the
thread ID currently stored in the entry;
performing an atomic operation to traverse the thread
dependency linked list to find where to add a given
linked list entry for the given thread ID; and

performing an atomic operation to add the given linked
list entry for the given thread ID to the thread depen-
dency linked list in a correct location based on a
comparison of the given thread ID to other thread 1Ds
in other thread dependency linked list entries for the
given pixel.

5. The system as recited in claim 4, wherein the thread ID
is a concatenation of a wave ID and a thread number within
a corresponding wave.

6. The system as recited in claim 5, wherein the wave ID
is a monotonically increasing integer number.

7. The system as recited in claim 1, wherein the plurality
of threads of each wave render a plurality of pixels for a
corresponding primitive.

8. A method comprising:

launching, by a plurality of compute units, a plurality of

waves for execution in parallel, wherein each wave
comprises a plurality of threads;

generating a dependency chain for each thread of each

wave of the plurality of waves;

waiting for all older waves to complete dependency chain

generation prior to executing any threads with depen-
dencies;
responsive to all older waves completing dependency
chain generation, executing a given thread with a
dependency only if all other threads upon which the
given thread is dependent have become inactive; and

executing the plurality of waves to generate a plurality of
pixels to be driven to a display.

9. The method as recited in claim 8, further comprising
generating a dependency chain for each thread by executing
one or more atomic operations.
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10. The method as recited in claim 8, wherein generating
a dependency chain for a thread comprises:

identifying a given pixel being rendered by the thread;

locating an entry for the given pixel in a pixel dependency

data structure;
performing an atomic operation to assign a given thread
identifier (ID) to the entry for the given pixel in the
pixel dependency data structure responsive to deter-
mining that the given thread ID is greater than a thread
ID currently stored in the entry, wherein the given
thread ID corresponds to the thread; and
performing an atomic operation to add a linked list entry
to a head of a thread dependency linked list for the
given pixel and store the given thread ID in the linked
list entry responsive to determining that the given
thread ID is greater than the thread ID currently stored
in the entry.
11. The method as recited in claim 10, wherein generating
the dependency chain for the thread further comprises:
locating the head of the thread dependency linked list for
the given pixel using a pointer in the entry for the given
pixel in the pixel dependency data structure responsive
to determining that the given thread ID is less than the
thread ID currently stored in the entry;
performing an atomic operation to traverse the thread
dependency linked list to find where to add a given
linked list entry for the given thread ID; and

performing an atomic operation to add the given linked
list entry for the given thread ID to the thread depen-
dency linked list in a correct location based on a
comparison of the given thread ID to other thread 1Ds
in other thread dependency linked list entries for the
given pixel.

12. The method as recited in claim 11, wherein the thread
ID is a concatenation of a wave ID and a thread number
within a corresponding wave.

13. The method as recited in claim 12, wherein the wave
1D is a monotonically increasing integer number.

14. The method as recited in claim 8, wherein the plurality
of threads of each wave render a plurality of pixels for a
corresponding primitive.

15. An apparatus comprising:

a plurality of compute units; and

a memory for storing dependency chain data structures;

wherein the apparatus is configured to:

launch a plurality of waves for execution in parallel on
the plurality of compute units, wherein each wave
comprises a plurality of threads;

generate a dependency chain for each thread of each wave

of the plurality of waves;
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wait for all older waves to complete dependency chain
generation prior to executing any threads with depen-
dencies;
responsive to all older waves completing dependency
chain generation, execute a given thread with a
dependency only if all other threads upon which the
given thread is dependent have become inactive; and
execute the plurality of waves to generate a plurality of
pixels to be driven to a display.

16. The apparatus as recited in claim 15, wherein the
plurality of compute units are further configured to generate
a dependency chain for each thread by executing one or
more atomic operations.

17. The apparatus as recited in claim 15, wherein gener-
ating a dependency chain for a thread comprises:

identifying a given pixel being rendered by the thread;

locating an entry for the given pixel in a pixel dependency
data structure;
performing an atomic operation to assign a given thread
identifier (ID) to the entry for the given pixel in the
pixel dependency data structure responsive to deter-
mining that the given thread ID is greater than a thread
ID currently stored in the entry, wherein the given
thread ID corresponds to the thread; and
performing an atomic operation to add a linked list entry
to a head of a thread dependency linked list for the
given pixel and store the given thread ID in the linked
list entry responsive to determining that the given
thread ID is greater than the thread ID currently stored
in the entry.
18. The apparatus as recited in claim 17, wherein gener-
ating the dependency chain for the thread further comprises:
locating the head of the thread dependency linked list for
the given pixel using a pointer in the entry for the given
pixel in the pixel dependency data structure responsive
to determining that the given thread ID is less than the
thread ID currently stored in the entry;
performing an atomic operation to traverse the thread
dependency linked list to find where to add a given
linked list entry for the given thread ID; and

performing an atomic operation to add the given linked
list entry for the given thread ID to the thread depen-
dency linked list in a correct location based on a
comparison of the given thread ID to other thread 1Ds
in other thread dependency linked list entries for the
given pixel.

19. The apparatus as recited in claim 18, wherein the
thread ID is a concatenation of a wave ID and a thread
number within a corresponding wave.

20. The apparatus as recited in claim 19, wherein the wave
1D is a monotonically increasing integer number.
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