Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1907 lines (1907 sloc)
127 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// [A] SHADER PORTABILITY 1.20190530 | |
// | |
//============================================================================================================================== | |
// LICENSE | |
// ======= | |
// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. | |
// Copyright (c) <2014> <Michal Drobot> | |
// ------- | |
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation | |
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, | |
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the | |
// Software is furnished to do so, subject to the following conditions: | |
// ------- | |
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the | |
// Software. | |
// ------- | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE | |
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// ABOUT | |
// ===== | |
// Common central point for high-level shading language and C portability for various shader headers. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// DEFINES | |
// ======= | |
// A_CPU ..... Include the CPU related code. | |
// A_GPU ..... Include the GPU related code. | |
// A_GLSL .... Using GLSL. | |
// A_HLSL .... Using HLSL. | |
// A_GCC ..... Using a GCC compatible compiler (else assume MSVC compatible compiler by default). | |
// ======= | |
// A_BYTE .... Support 8-bit integer. | |
// A_HALF .... Support 16-bit integer and floating point. | |
// A_LONG .... Support 64-bit integer. | |
// A_DUBL .... Support 64-bit floating point. | |
// ======= | |
// A_WAVE .... Support wave-wide operations. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// To get #include "ffx_a.h" working in GLSL use '#extension GL_GOOGLE_include_directive:require'. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// SIMPLIFIED TYPE SYSTEM | |
// ====================== | |
// - All ints will be unsigned with exception of when signed is required. | |
// - Type naming simplified and shortened "A<type><#components>", | |
// - H = 16-bit float (half) | |
// - F = 32-bit float (float) | |
// - D = 64-bit float (double) | |
// - P = 1-bit integer (predicate, not using bool because 'B' is used for byte) | |
// - B = 8-bit integer (byte) | |
// - W = 16-bit integer (word) | |
// - U = 32-bit integer (unsigned) | |
// - L = 64-bit integer (long) | |
// - Using "AS<type><#components>" for signed when required. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// TODO | |
// ==== | |
// - Make sure 'ALerp*(a,b,m)' does 'b*m+(-a*m+a)' (2 ops). | |
// - Add subgroup ops. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// CHANGE LOG | |
// ========== | |
// 20190531 - Fixed changed to llabs() because long is int on Windows. | |
// 20190530 - Updated for new CPU/GPU portability. | |
// 20190528 - Fix AU1_AH2_x() on HLSL (had incorrectly swapped x and y), fixed asuint() cases. | |
// 20190527 - Added min3/max3 for low precision for HLSL. | |
// 20190526 - Updated with half approximations, added ARsq*(), and ASat*() for CPU. | |
// 20190519 - Added more approximations. | |
// 20190514 - Added long conversions. | |
// 20190513 - Added the real BFI moved the other one to ABfiM(). | |
// 20190507 - Added extra remap useful for 2D reductions. | |
// 20190507 - Started adding wave ops, add parabolic sin/cos. | |
// 20190505 - Added ASigned*() and friends, setup more auto-typecast, GLSL extensions, etc. | |
// 20190504 - Added min3/max3 for 32-bit integers. | |
// 20190503 - Added type reinterpretation for half. | |
// 20190416 - Added min3/max3 for half. | |
// 20190405 - Misc bug fixing. | |
// 20190404 - Cleaned up color conversion code. Switched "splat" to shorter naming "type_". Misc bug fixing. | |
//============================================================================================================================== | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// COMMON | |
//============================================================================================================================== | |
#define A_2PI 6.28318530718 | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// | |
// CPU | |
// | |
// | |
//============================================================================================================================== | |
// Requires standard C types: stdint.h | |
// Requires a collection of standard math intrinsics. | |
// - Requires VS2013 when not using GCC to get exp2() and log2(). | |
// - https://blogs.msdn.microsoft.com/vcblog/2013/07/19/c99-library-support-in-visual-studio-2013/ | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// This provides a minimum subset of functionality compared to the GPU parts. | |
//============================================================================================================================== | |
#ifdef A_CPU | |
// Supporting user defined overrides. | |
#ifndef A_RESTRICT | |
#define A_RESTRICT __restrict | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifndef A_STATIC | |
#define A_STATIC static | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Same types across CPU and GPU. | |
// Predicate uses 32-bit integer (C friendly bool). | |
typedef uint32_t AP1; | |
typedef float AF1; | |
typedef double AD1; | |
typedef uint8_t AB1; | |
typedef uint16_t AW1; | |
typedef uint32_t AU1; | |
typedef uint64_t AL1; | |
typedef int8_t ASB1; | |
typedef int16_t ASW1; | |
typedef int32_t ASU1; | |
typedef int64_t ASL1; | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AD1_(a) ((AD1)(a)) | |
#define AF1_(a) ((AF1)(a)) | |
#define AL1_(a) ((AL1)(a)) | |
#define AU1_(a) ((AU1)(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASL1_(a) ((ASL1)(a)) | |
#define ASU1_(a) ((ASU1)(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define A_TRUE 1 | |
#define A_FALSE 0 | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// CPU/GPU PORTING | |
// | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Hackary to get CPU and GPU to share all setup code, without duplicate code paths. | |
// Unfortunately this is the level of "ugly" that is required since the languages are very different. | |
// This uses a lower-case prefix for special vector constructs. | |
// - In C restrict pointers are used. | |
// - In the shading language, in/inout/out arguments are used. | |
// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]). | |
//============================================================================================================================== | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY | |
//============================================================================================================================== | |
#define retAD2 AD1 *A_RESTRICT | |
#define retAD3 AD1 *A_RESTRICT | |
#define retAD4 AD1 *A_RESTRICT | |
#define retAF2 AF1 *A_RESTRICT | |
#define retAF3 AF1 *A_RESTRICT | |
#define retAF4 AF1 *A_RESTRICT | |
#define retAL2 AL1 *A_RESTRICT | |
#define retAL3 AL1 *A_RESTRICT | |
#define retAL4 AL1 *A_RESTRICT | |
#define retAU2 AU1 *A_RESTRICT | |
#define retAU3 AU1 *A_RESTRICT | |
#define retAU4 AU1 *A_RESTRICT | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define inAD2 AD1 *A_RESTRICT | |
#define inAD3 AD1 *A_RESTRICT | |
#define inAD4 AD1 *A_RESTRICT | |
#define inAF2 AF1 *A_RESTRICT | |
#define inAF3 AF1 *A_RESTRICT | |
#define inAF4 AF1 *A_RESTRICT | |
#define inAL2 AL1 *A_RESTRICT | |
#define inAL3 AL1 *A_RESTRICT | |
#define inAL4 AL1 *A_RESTRICT | |
#define inAU2 AU1 *A_RESTRICT | |
#define inAU3 AU1 *A_RESTRICT | |
#define inAU4 AU1 *A_RESTRICT | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define inoutAD2 AD1 *A_RESTRICT | |
#define inoutAD3 AD1 *A_RESTRICT | |
#define inoutAD4 AD1 *A_RESTRICT | |
#define inoutAF2 AF1 *A_RESTRICT | |
#define inoutAF3 AF1 *A_RESTRICT | |
#define inoutAF4 AF1 *A_RESTRICT | |
#define inoutAL2 AL1 *A_RESTRICT | |
#define inoutAL3 AL1 *A_RESTRICT | |
#define inoutAL4 AL1 *A_RESTRICT | |
#define inoutAU2 AU1 *A_RESTRICT | |
#define inoutAU3 AU1 *A_RESTRICT | |
#define inoutAU4 AU1 *A_RESTRICT | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define outAD2 AD1 *A_RESTRICT | |
#define outAD3 AD1 *A_RESTRICT | |
#define outAD4 AD1 *A_RESTRICT | |
#define outAF2 AF1 *A_RESTRICT | |
#define outAF3 AF1 *A_RESTRICT | |
#define outAF4 AF1 *A_RESTRICT | |
#define outAL2 AL1 *A_RESTRICT | |
#define outAL3 AL1 *A_RESTRICT | |
#define outAL4 AL1 *A_RESTRICT | |
#define outAU2 AU1 *A_RESTRICT | |
#define outAU3 AU1 *A_RESTRICT | |
#define outAU4 AU1 *A_RESTRICT | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define varAD2(x) AD1 x[2] | |
#define varAD3(x) AD1 x[3] | |
#define varAD4(x) AD1 x[4] | |
#define varAF2(x) AF1 x[2] | |
#define varAF3(x) AF1 x[3] | |
#define varAF4(x) AF1 x[4] | |
#define varAL2(x) AL1 x[2] | |
#define varAL3(x) AL1 x[3] | |
#define varAL4(x) AL1 x[4] | |
#define varAU2(x) AU1 x[2] | |
#define varAU3(x) AU1 x[3] | |
#define varAU4(x) AU1 x[4] | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define initAD2(x,y) {x,y} | |
#define initAD3(x,y,z) {x,y,z} | |
#define initAD4(x,y,z,w) {x,y,z,w} | |
#define initAF2(x,y) {x,y} | |
#define initAF3(x,y,z) {x,y,z} | |
#define initAF4(x,y,z,w) {x,y,z,w} | |
#define initAL2(x,y) {x,y} | |
#define initAL3(x,y,z) {x,y,z} | |
#define initAL4(x,y,z,w) {x,y,z,w} | |
#define initAU2(x,y) {x,y} | |
#define initAU3(x,y,z) {x,y,z} | |
#define initAU4(x,y,z,w) {x,y,z,w} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// SCALAR RETURN OPS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// TODO | |
// ==== | |
// - Replace transcendentals with manual versions. | |
//============================================================================================================================== | |
#ifdef A_GCC | |
A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);} | |
A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);} | |
A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));} | |
A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_labs(ASL1_(a)));} | |
#else | |
A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);} | |
A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);} | |
A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));} | |
A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(llabs(ASL1_(a)));} | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_GCC | |
A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);} | |
A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);} | |
#else | |
A_STATIC AD1 ACosD1(AD1 a){return cos(a);} | |
A_STATIC AF1 ACosF1(AF1 a){return cosf(a);} | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];} | |
A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} | |
A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} | |
A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];} | |
A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} | |
A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_GCC | |
A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);} | |
A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);} | |
#else | |
A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);} | |
A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);} | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_GCC | |
A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);} | |
A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);} | |
#else | |
A_STATIC AD1 AFloorD1(AD1 a){return floor(a);} | |
A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);} | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);} | |
A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_GCC | |
A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);} | |
A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);} | |
#else | |
A_STATIC AD1 ALog2D1(AD1 a){return log2(a);} | |
A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);} | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;} | |
A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;} | |
A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;} | |
A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// These follow the convention that A integer types don't have signage, until they are operated on. | |
A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;} | |
A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a<b?a:b;} | |
A_STATIC AF1 AMinF1(AF1 a,AF1 b){return a<b?a:b;} | |
A_STATIC AL1 AMinL1(AL1 a,AL1 b){return a<b?a:b;} | |
A_STATIC AU1 AMinU1(AU1 a,AU1 b){return a<b?a:b;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AL1 AMinSL1(AL1 a,AL1 b){return (ASL1_(a)<ASL1_(b))?a:b;} | |
A_STATIC AU1 AMinSU1(AU1 a,AU1 b){return (ASU1_(a)<ASU1_(b))?a:b;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 ARcpD1(AD1 a){return 1.0/a;} | |
A_STATIC AF1 ARcpF1(AF1 a){return 1.0f/a;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AL1 AShrSL1(AL1 a,AL1 b){return AL1_(ASL1_(a)>>ASL1_(b));} | |
A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_GCC | |
A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);} | |
A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);} | |
#else | |
A_STATIC AD1 ASinD1(AD1 a){return sin(a);} | |
A_STATIC AF1 ASinF1(AF1 a){return sinf(a);} | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_GCC | |
A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);} | |
A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);} | |
#else | |
A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);} | |
A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// SCALAR RETURN OPS - DEPENDENT | |
//============================================================================================================================== | |
A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);} | |
A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));} | |
A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));} | |
A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));} | |
A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// VECTOR OPS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// These are added as needed for production or prototyping, so not necessarily a complete set. | |
// They follow a convention of taking in a destination and also returning the destination value to increase utility. | |
//============================================================================================================================== | |
A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;} | |
A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;} | |
A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;} | |
A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;} | |
A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} | |
A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} | |
A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} | |
A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} | |
A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;} | |
A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} | |
A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;} | |
A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} | |
A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;} | |
A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;} | |
A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;} | |
A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;} | |
A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;} | |
A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;} | |
A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;} | |
A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;} | |
A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;} | |
A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;} | |
A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;} | |
A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;} | |
A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;} | |
A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;} | |
A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;} | |
A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;} | |
A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} | |
A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} | |
A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} | |
A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} | |
A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} | |
A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} | |
A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} | |
A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} | |
A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;} | |
A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} | |
A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;} | |
A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} | |
A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} | |
//============================================================================================================================== | |
A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;} | |
A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;} | |
A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;} | |
A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;} | |
A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// HALF FLOAT PACKING | |
//============================================================================================================================== | |
// Convert float to half (in lower 16-bits of output). | |
// Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf | |
// Supports denormals. | |
// Conversion rules are to make computations possibly "safer" on the GPU, | |
// -INF & -NaN -> -65504 | |
// +INF & +NaN -> +65504 | |
A_STATIC AU1 AU1_AH1_AF1(AF1 f){ | |
static AW1 base[512]={ | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, | |
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100, | |
0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00, | |
0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, | |
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100, | |
0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00, | |
0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, | |
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff}; | |
static AB1 shift[512]={ | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, | |
0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, | |
0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, | |
0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, | |
0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, | |
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18}; | |
union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Used to output packed constant. | |
A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// | |
// GLSL | |
// | |
// | |
//============================================================================================================================== | |
#if defined(A_GLSL) && defined(A_GPU) | |
#ifndef A_SKIP_EXT | |
#ifdef A_HALF | |
#extension GL_EXT_shader_16bit_storage:require | |
#extension GL_EXT_shader_explicit_arithmetic_types:require | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_LONG | |
#extension GL_ARB_gpu_shader_int64:require | |
// TODO: Fixme to more portable extension!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
#extension GL_NV_shader_atomic_int64:require | |
#endif | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_WAVE | |
#extension GL_KHR_shader_subgroup_arithmetic:require | |
#extension GL_KHR_shader_subgroup_ballot:require | |
#extension GL_KHR_shader_subgroup_quad:require | |
#extension GL_KHR_shader_subgroup_shuffle:require | |
#endif | |
#endif | |
//============================================================================================================================== | |
#define AP1 bool | |
#define AP2 bvec2 | |
#define AP3 bvec3 | |
#define AP4 bvec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AF1 float | |
#define AF2 vec2 | |
#define AF3 vec3 | |
#define AF4 vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AU1 uint | |
#define AU2 uvec2 | |
#define AU3 uvec3 | |
#define AU4 uvec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASU1 int | |
#define ASU2 ivec2 | |
#define ASU3 ivec3 | |
#define ASU4 ivec4 | |
//============================================================================================================================== | |
#define AF1_AU1(x) uintBitsToFloat(AU1(x)) | |
#define AF2_AU2(x) uintBitsToFloat(AU2(x)) | |
#define AF3_AU3(x) uintBitsToFloat(AU3(x)) | |
#define AF4_AU4(x) uintBitsToFloat(AU4(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AU1_AF1(x) floatBitsToUint(AF1(x)) | |
#define AU2_AF2(x) floatBitsToUint(AF2(x)) | |
#define AU3_AF3(x) floatBitsToUint(AF3(x)) | |
#define AU4_AF4(x) floatBitsToUint(AF4(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AU1_AH2_AF2 packHalf2x16 | |
#define AU1_AW2Unorm_AF2 packUnorm2x16 | |
#define AU1_AB4Unorm_AF4 packUnorm4x8 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AF2_AH2_AU1 unpackHalf2x16 | |
#define AF2_AW2Unorm_AU1 unpackUnorm2x16 | |
#define AF4_AB4Unorm_AU1 unpackUnorm4x8 | |
//============================================================================================================================== | |
AF1 AF1_x(AF1 a){return AF1(a);} | |
AF2 AF2_x(AF1 a){return AF2(a,a);} | |
AF3 AF3_x(AF1 a){return AF3(a,a,a);} | |
AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} | |
#define AF1_(a) AF1_x(AF1(a)) | |
#define AF2_(a) AF2_x(AF1(a)) | |
#define AF3_(a) AF3_x(AF1(a)) | |
#define AF4_(a) AF4_x(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AU1_x(AU1 a){return AU1(a);} | |
AU2 AU2_x(AU1 a){return AU2(a,a);} | |
AU3 AU3_x(AU1 a){return AU3(a,a,a);} | |
AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} | |
#define AU1_(a) AU1_x(AU1(a)) | |
#define AU2_(a) AU2_x(AU1(a)) | |
#define AU3_(a) AU3_x(AU1(a)) | |
#define AU4_(a) AU4_x(AU1(a)) | |
//============================================================================================================================== | |
AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} | |
AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} | |
AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} | |
AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));} | |
AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} | |
// Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate. | |
AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){return bitfieldInsert(src,ins,0,ASU1(bits));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// V_FRACT_F32 (note DX frac() is different). | |
AF1 AFractF1(AF1 x){return fract(x);} | |
AF2 AFractF2(AF2 x){return fract(x);} | |
AF3 AFractF3(AF3 x){return fract(x);} | |
AF4 AFractF4(AF4 x){return fract(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return mix(x,y,a);} | |
AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return mix(x,y,a);} | |
AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return mix(x,y,a);} | |
AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return mix(x,y,a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// V_MAX3_F32. | |
AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));} | |
AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));} | |
AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));} | |
AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));} | |
AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));} | |
AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));} | |
AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));} | |
AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));} | |
AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));} | |
AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));} | |
AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));} | |
AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));} | |
AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Clamp has an easier pattern match for med3 when some ordering is known. | |
// V_MED3_F32. | |
AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));} | |
AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));} | |
AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));} | |
AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// V_MIN3_F32. | |
AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));} | |
AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));} | |
AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));} | |
AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));} | |
AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));} | |
AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));} | |
AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));} | |
AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));} | |
AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));} | |
AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));} | |
AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));} | |
AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));} | |
AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently. | |
// V_COS_F32. | |
AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));} | |
AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));} | |
AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));} | |
AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently. | |
// V_SIN_F32. | |
AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));} | |
AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));} | |
AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));} | |
AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ARcpF1(AF1 x){return AF1_(1.0)/x;} | |
AF2 ARcpF2(AF2 x){return AF2_(1.0)/x;} | |
AF3 ARcpF3(AF3 x){return AF3_(1.0)/x;} | |
AF4 ARcpF4(AF4 x){return AF4_(1.0)/x;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ARsqF1(AF1 x){return AF1_(1.0)/sqrt(x);} | |
AF2 ARsqF2(AF2 x){return AF2_(1.0)/sqrt(x);} | |
AF3 ARsqF3(AF3 x){return AF3_(1.0)/sqrt(x);} | |
AF4 ARsqF4(AF4 x){return AF4_(1.0)/sqrt(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ASatF1(AF1 x){return clamp(x,AF1_(0.0),AF1_(1.0));} | |
AF2 ASatF2(AF2 x){return clamp(x,AF2_(0.0),AF2_(1.0));} | |
AF3 ASatF3(AF3 x){return clamp(x,AF3_(0.0),AF3_(1.0));} | |
AF4 ASatF4(AF4 x){return clamp(x,AF4_(0.0),AF4_(1.0));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));} | |
AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} | |
AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} | |
AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// GLSL BYTE | |
//============================================================================================================================== | |
#ifdef A_BYTE | |
#define AB1 uint8_t | |
#define AB2 u8vec2 | |
#define AB3 u8vec3 | |
#define AB4 u8vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASB1 int8_t | |
#define ASB2 i8vec2 | |
#define ASB3 i8vec3 | |
#define ASB4 i8vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AB1 AB1_x(AB1 a){return AB1(a);} | |
AB2 AB2_x(AB1 a){return AB2(a,a);} | |
AB3 AB3_x(AB1 a){return AB3(a,a,a);} | |
AB4 AB4_x(AB1 a){return AB4(a,a,a,a);} | |
#define AB1_(a) AB1_x(AB1(a)) | |
#define AB2_(a) AB2_x(AB1(a)) | |
#define AB3_(a) AB3_x(AB1(a)) | |
#define AB4_(a) AB4_x(AB1(a)) | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// GLSL HALF | |
//============================================================================================================================== | |
#ifdef A_HALF | |
#define AH1 float16_t | |
#define AH2 f16vec2 | |
#define AH3 f16vec3 | |
#define AH4 f16vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AW1 uint16_t | |
#define AW2 u16vec2 | |
#define AW3 u16vec3 | |
#define AW4 u16vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASW1 int16_t | |
#define ASW2 i16vec2 | |
#define ASW3 i16vec3 | |
#define ASW4 i16vec4 | |
//============================================================================================================================== | |
#define AH2_AU1(x) unpackFloat2x16(AU1(x)) | |
AH4 AH4_AU2_x(AU2 x){return AH4(unpackFloat2x16(x.x),unpackFloat2x16(x.y));} | |
#define AH4_AU2(x) AH4_AU2_x(AU2(x)) | |
#define AW2_AU1(x) unpackUint2x16(AU1(x)) | |
#define AW4_AU2(x) unpackUint4x16(pack64(AU2(x))) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AU1_AH2(x) packFloat2x16(AH2(x)) | |
AU2 AU2_AH4_x(AH4 x){return AU2(packFloat2x16(x.xy),packFloat2x16(x.zw));} | |
#define AU2_AH4(x) AU2_AH4_x(AH4(x)) | |
#define AU1_AW2(x) packUint2x16(AW2(x)) | |
#define AU2_AW4(x) unpack32(packUint4x16(AW4(x))) | |
//============================================================================================================================== | |
#define AW1_AH1(x) halfBitsToUint16(AH1(x)) | |
#define AW2_AH2(x) halfBitsToUint16(AH2(x)) | |
#define AW3_AH3(x) halfBitsToUint16(AH3(x)) | |
#define AW4_AH4(x) halfBitsToUint16(AH4(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AH1_AW1(x) uint16BitsToHalf(AW1(x)) | |
#define AH2_AW2(x) uint16BitsToHalf(AW2(x)) | |
#define AH3_AW3(x) uint16BitsToHalf(AW3(x)) | |
#define AH4_AW4(x) uint16BitsToHalf(AW4(x)) | |
//============================================================================================================================== | |
AH1 AH1_x(AH1 a){return AH1(a);} | |
AH2 AH2_x(AH1 a){return AH2(a,a);} | |
AH3 AH3_x(AH1 a){return AH3(a,a,a);} | |
AH4 AH4_x(AH1 a){return AH4(a,a,a,a);} | |
#define AH1_(a) AH1_x(AH1(a)) | |
#define AH2_(a) AH2_x(AH1(a)) | |
#define AH3_(a) AH3_x(AH1(a)) | |
#define AH4_(a) AH4_x(AH1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AW1_x(AW1 a){return AW1(a);} | |
AW2 AW2_x(AW1 a){return AW2(a,a);} | |
AW3 AW3_x(AW1 a){return AW3(a,a,a);} | |
AW4 AW4_x(AW1 a){return AW4(a,a,a,a);} | |
#define AW1_(a) AW1_x(AW1(a)) | |
#define AW2_(a) AW2_x(AW1(a)) | |
#define AW3_(a) AW3_x(AW1(a)) | |
#define AW4_(a) AW4_x(AW1(a)) | |
//============================================================================================================================== | |
AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));} | |
AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));} | |
AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));} | |
AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 AFractH1(AH1 x){return fract(x);} | |
AH2 AFractH2(AH2 x){return fract(x);} | |
AH3 AFractH3(AH3 x){return fract(x);} | |
AH4 AFractH4(AH4 x){return fract(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return mix(x,y,a);} | |
AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return mix(x,y,a);} | |
AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return mix(x,y,a);} | |
AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return mix(x,y,a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// No packed version of max3. | |
AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));} | |
AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));} | |
AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));} | |
AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));} | |
AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));} | |
AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));} | |
AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// No packed version of min3. | |
AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));} | |
AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));} | |
AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));} | |
AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));} | |
AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));} | |
AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));} | |
AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ARcpH1(AH1 x){return AH1_(1.0)/x;} | |
AH2 ARcpH2(AH2 x){return AH2_(1.0)/x;} | |
AH3 ARcpH3(AH3 x){return AH3_(1.0)/x;} | |
AH4 ARcpH4(AH4 x){return AH4_(1.0)/x;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ARsqH1(AH1 x){return AH1_(1.0)/sqrt(x);} | |
AH2 ARsqH2(AH2 x){return AH2_(1.0)/sqrt(x);} | |
AH3 ARsqH3(AH3 x){return AH3_(1.0)/sqrt(x);} | |
AH4 ARsqH4(AH4 x){return AH4_(1.0)/sqrt(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ASatH1(AH1 x){return clamp(x,AH1_(0.0),AH1_(1.0));} | |
AH2 ASatH2(AH2 x){return clamp(x,AH2_(0.0),AH2_(1.0));} | |
AH3 ASatH3(AH3 x){return clamp(x,AH3_(0.0),AH3_(1.0));} | |
AH4 ASatH4(AH4 x){return clamp(x,AH4_(0.0),AH4_(1.0));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));} | |
AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));} | |
AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));} | |
AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// GLSL DOUBLE | |
//============================================================================================================================== | |
#ifdef A_DUBL | |
#define AD1 double | |
#define AD2 dvec2 | |
#define AD3 dvec3 | |
#define AD4 dvec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 AD1_x(AD1 a){return AD1(a);} | |
AD2 AD2_x(AD1 a){return AD2(a,a);} | |
AD3 AD3_x(AD1 a){return AD3(a,a,a);} | |
AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} | |
#define AD1_(a) AD1_x(AD1(a)) | |
#define AD2_(a) AD2_x(AD1(a)) | |
#define AD3_(a) AD3_x(AD1(a)) | |
#define AD4_(a) AD4_x(AD1(a)) | |
//============================================================================================================================== | |
AD1 AFractD1(AD1 x){return fract(x);} | |
AD2 AFractD2(AD2 x){return fract(x);} | |
AD3 AFractD3(AD3 x){return fract(x);} | |
AD4 AFractD4(AD4 x){return fract(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);} | |
AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);} | |
AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);} | |
AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;} | |
AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;} | |
AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;} | |
AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);} | |
AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);} | |
AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);} | |
AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));} | |
AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));} | |
AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));} | |
AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// GLSL LONG | |
//============================================================================================================================== | |
#ifdef A_LONG | |
#define AL1 uint64_t | |
#define AL2 u64vec2 | |
#define AL3 u64vec3 | |
#define AL4 u64vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASL1 int64_t | |
#define ASL2 i64vec2 | |
#define ASL3 i64vec3 | |
#define ASL4 i64vec4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AL1_AU2(x) packUint2x32(AU2(x)) | |
#define AU2_AL1(x) unpackUint2x32(AL1(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AL1 AL1_x(AL1 a){return AL1(a);} | |
AL2 AL2_x(AL1 a){return AL2(a,a);} | |
AL3 AL3_x(AL1 a){return AL3(a,a,a);} | |
AL4 AL4_x(AL1 a){return AL4(a,a,a,a);} | |
#define AL1_(a) AL1_x(AL1(a)) | |
#define AL2_(a) AL2_x(AL1(a)) | |
#define AL3_(a) AL3_x(AL1(a)) | |
#define AL4_(a) AL4_x(AL1(a)) | |
//============================================================================================================================== | |
AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));} | |
AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));} | |
AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));} | |
AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));} | |
AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));} | |
AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));} | |
AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));} | |
AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));} | |
AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));} | |
AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// WAVE OPERATIONS | |
//============================================================================================================================== | |
#ifdef A_WAVE | |
AF1 AWaveAdd(AF1 v){return subgroupAdd(v);} | |
AF2 AWaveAdd(AF2 v){return subgroupAdd(v);} | |
AF3 AWaveAdd(AF3 v){return subgroupAdd(v);} | |
AF4 AWaveAdd(AF4 v){return subgroupAdd(v);} | |
#endif | |
//============================================================================================================================== | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// | |
// HLSL | |
// | |
// | |
//============================================================================================================================== | |
#if defined(A_HLSL) && defined(A_GPU) | |
#define AP1 bool | |
#define AP2 bool2 | |
#define AP3 bool3 | |
#define AP4 bool4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AF1 float | |
#define AF2 float2 | |
#define AF3 float3 | |
#define AF4 float4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AU1 uint | |
#define AU2 uint2 | |
#define AU3 uint3 | |
#define AU4 uint4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASU1 int | |
#define ASU2 int2 | |
#define ASU3 int3 | |
#define ASU4 int4 | |
//============================================================================================================================== | |
#define AF1_AU1(x) asfloat(AU1(x)) | |
#define AF2_AU2(x) asfloat(AU2(x)) | |
#define AF3_AU3(x) asfloat(AU3(x)) | |
#define AF4_AU4(x) asfloat(AU4(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AU1_AF1(x) asuint(AF1(x)) | |
#define AU2_AF2(x) asuint(AF2(x)) | |
#define AU3_AF3(x) asuint(AF3(x)) | |
#define AU4_AF4(x) asuint(AF4(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);} | |
#define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a)) | |
#define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));} | |
#define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x)) | |
//============================================================================================================================== | |
AF1 AF1_x(AF1 a){return AF1(a);} | |
AF2 AF2_x(AF1 a){return AF2(a,a);} | |
AF3 AF3_x(AF1 a){return AF3(a,a,a);} | |
AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} | |
#define AF1_(a) AF1_x(AF1(a)) | |
#define AF2_(a) AF2_x(AF1(a)) | |
#define AF3_(a) AF3_x(AF1(a)) | |
#define AF4_(a) AF4_x(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AU1_x(AU1 a){return AU1(a);} | |
AU2 AU2_x(AU1 a){return AU2(a,a);} | |
AU3 AU3_x(AU1 a){return AU3(a,a,a);} | |
AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} | |
#define AU1_(a) AU1_x(AU1(a)) | |
#define AU2_(a) AU2_x(AU1(a)) | |
#define AU3_(a) AU3_x(AU1(a)) | |
#define AU4_(a) AU4_x(AU1(a)) | |
//============================================================================================================================== | |
AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} | |
AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} | |
AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} | |
AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1<<bits)-1;return (src>>off)&mask;} | |
AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} | |
AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1<<bits)-1;return (ins&mask)|(src&(~mask));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AFractF1(AF1 x){return x-floor(x);} | |
AF2 AFractF2(AF2 x){return x-floor(x);} | |
AF3 AFractF3(AF3 x){return x-floor(x);} | |
AF4 AFractF4(AF4 x){return x-floor(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return lerp(x,y,a);} | |
AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return lerp(x,y,a);} | |
AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return lerp(x,y,a);} | |
AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return lerp(x,y,a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));} | |
AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));} | |
AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));} | |
AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));} | |
AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));} | |
AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));} | |
AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));} | |
AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));} | |
AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));} | |
AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));} | |
AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));} | |
AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));} | |
AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));} | |
AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));} | |
AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));} | |
AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));} | |
AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));} | |
AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));} | |
AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));} | |
AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));} | |
AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));} | |
AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));} | |
AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));} | |
AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));} | |
AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));} | |
AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));} | |
AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));} | |
AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));} | |
AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));} | |
AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));} | |
AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));} | |
AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));} | |
AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));} | |
AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ARcpF1(AF1 x){return rcp(x);} | |
AF2 ARcpF2(AF2 x){return rcp(x);} | |
AF3 ARcpF3(AF3 x){return rcp(x);} | |
AF4 ARcpF4(AF4 x){return rcp(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ARsqF1(AF1 x){return rsqrt(x);} | |
AF2 ARsqF2(AF2 x){return rsqrt(x);} | |
AF3 ARsqF3(AF3 x){return rsqrt(x);} | |
AF4 ARsqF4(AF4 x){return rsqrt(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 ASatF1(AF1 x){return saturate(x);} | |
AF2 ASatF2(AF2 x){return saturate(x);} | |
AF3 ASatF3(AF3 x){return saturate(x);} | |
AF4 ASatF4(AF4 x){return saturate(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));} | |
AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} | |
AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} | |
AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// HLSL BYTE | |
//============================================================================================================================== | |
#ifdef A_BYTE | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// HLSL HALF | |
//============================================================================================================================== | |
#ifdef A_HALF | |
#define AH1 min16float | |
#define AH2 min16float2 | |
#define AH3 min16float3 | |
#define AH4 min16float4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AW1 min16uint | |
#define AW2 min16uint2 | |
#define AW3 min16uint3 | |
#define AW4 min16uint4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASW1 min16int | |
#define ASW2 min16int2 | |
#define ASW3 min16int3 | |
#define ASW4 min16int4 | |
//============================================================================================================================== | |
// Need to use manual unpack to get optimal execution (don't use packed types in buffers directly). | |
// Unpack requires this pattern: https://gpuopen.com/first-steps-implementing-fp16/ | |
AH2 AH2_AU1_x(AU1 x){AF2 t=f16tof32(AU2(x&0xFFFF,x>>16));return AH2(t);} | |
AH4 AH4_AU2_x(AU2 x){return AH4(AH2_AU1_x(x.x),AH2_AU1_x(x.y));} | |
AW2 AW2_AU1_x(AU1 x){AU2 t=AU2(x&0xFFFF,x>>16);return AW2(t);} | |
AW4 AW4_AU2_x(AU2 x){return AW4(AW2_AU1_x(x.x),AW2_AU1_x(x.y));} | |
#define AH2_AU1(x) AH2_AU1_x(AU1(x)) | |
#define AH4_AU2(x) AH4_AU2_x(AU2(x)) | |
#define AW2_AU1(x) AW2_AU1_x(AU1(x)) | |
#define AW4_AU2(x) AW4_AU2_x(AU2(x)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AU1 AU1_AH2_x(AH2 x){return f32tof16(x.x)+(f32tof16(x.y)<<16);} | |
AU2 AU2_AH4_x(AH4 x){return AU2(AU1_AH2_x(x.xy),AU1_AH2_x(x.zw));} | |
AU1 AU1_AW2_x(AW2 x){return AU1(x.x)+(AU1(x.y)<<16);} | |
AU2 AU2_AW4_x(AW4 x){return AU2(AU1_AW2_x(x.xy),AU1_AW2_x(x.zw));} | |
#define AU1_AH2(x) AU1_AH2_x(AH2(x)) | |
#define AU2_AH4(x) AU2_AH4_x(AH4(x)) | |
#define AU1_AW2(x) AU1_AW2_x(AW2(x)) | |
#define AU2_AW4(x) AU2_AW4_x(AW4(x)) | |
//============================================================================================================================== | |
// TODO: These are broken!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
#define AW1_AH1(x) AW1(asuint(AF1(x))) | |
#define AW2_AH2(x) AW2(asuint(AF2(x))) | |
#define AW3_AH3(x) AW3(asuint(AF3(x))) | |
#define AW4_AH4(x) AW4(asuint(AF4(x))) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// TODO: These are broken!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
#define AH1_AW1(x) AH1(asfloat(AU1(x))) | |
#define AH2_AW2(x) AH2(asfloat(AU2(x))) | |
#define AH3_AW3(x) AH3(asfloat(AU3(x))) | |
#define AH4_AW4(x) AH4(asfloat(AU4(x))) | |
//============================================================================================================================== | |
AH1 AH1_x(AH1 a){return AH1(a);} | |
AH2 AH2_x(AH1 a){return AH2(a,a);} | |
AH3 AH3_x(AH1 a){return AH3(a,a,a);} | |
AH4 AH4_x(AH1 a){return AH4(a,a,a,a);} | |
#define AH1_(a) AH1_x(AH1(a)) | |
#define AH2_(a) AH2_x(AH1(a)) | |
#define AH3_(a) AH3_x(AH1(a)) | |
#define AH4_(a) AH4_x(AH1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AW1_x(AW1 a){return AW1(a);} | |
AW2 AW2_x(AW1 a){return AW2(a,a);} | |
AW3 AW3_x(AW1 a){return AW3(a,a,a);} | |
AW4 AW4_x(AW1 a){return AW4(a,a,a,a);} | |
#define AW1_(a) AW1_x(AW1(a)) | |
#define AW2_(a) AW2_x(AW1(a)) | |
#define AW3_(a) AW3_x(AW1(a)) | |
#define AW4_(a) AW4_x(AW1(a)) | |
//============================================================================================================================== | |
AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));} | |
AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));} | |
AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));} | |
AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// V_FRACT_F16 (note DX frac() is different). | |
AH1 AFractH1(AH1 x){return x-floor(x);} | |
AH2 AFractH2(AH2 x){return x-floor(x);} | |
AH3 AFractH3(AH3 x){return x-floor(x);} | |
AH4 AFractH4(AH4 x){return x-floor(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return lerp(x,y,a);} | |
AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return lerp(x,y,a);} | |
AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return lerp(x,y,a);} | |
AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return lerp(x,y,a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));} | |
AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));} | |
AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));} | |
AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));} | |
AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));} | |
AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));} | |
AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));} | |
AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));} | |
AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));} | |
AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));} | |
AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));} | |
AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));} | |
AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ARcpH1(AH1 x){return rcp(x);} | |
AH2 ARcpH2(AH2 x){return rcp(x);} | |
AH3 ARcpH3(AH3 x){return rcp(x);} | |
AH4 ARcpH4(AH4 x){return rcp(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ARsqH1(AH1 x){return rsqrt(x);} | |
AH2 ARsqH2(AH2 x){return rsqrt(x);} | |
AH3 ARsqH3(AH3 x){return rsqrt(x);} | |
AH4 ARsqH4(AH4 x){return rsqrt(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ASatH1(AH1 x){return saturate(x);} | |
AH2 ASatH2(AH2 x){return saturate(x);} | |
AH3 ASatH3(AH3 x){return saturate(x);} | |
AH4 ASatH4(AH4 x){return saturate(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));} | |
AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));} | |
AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));} | |
AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// HLSL DOUBLE | |
//============================================================================================================================== | |
#ifdef A_DUBL | |
#define AD1 double | |
#define AD2 double2 | |
#define AD3 double3 | |
#define AD4 double4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 AD1_x(AD1 a){return AD1(a);} | |
AD2 AD2_x(AD1 a){return AD2(a,a);} | |
AD3 AD3_x(AD1 a){return AD3(a,a,a);} | |
AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} | |
#define AD1_(a) AD1_x(AD1(a)) | |
#define AD2_(a) AD2_x(AD1(a)) | |
#define AD3_(a) AD3_x(AD1(a)) | |
#define AD4_(a) AD4_x(AD1(a)) | |
//============================================================================================================================== | |
AD1 AFractD1(AD1 a){return a-floor(a);} | |
AD2 AFractD2(AD2 a){return a-floor(a);} | |
AD3 AFractD3(AD3 a){return a-floor(a);} | |
AD4 AFractD4(AD4 a){return a-floor(a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);} | |
AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);} | |
AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);} | |
AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ARcpD1(AD1 x){return rcp(x);} | |
AD2 ARcpD2(AD2 x){return rcp(x);} | |
AD3 ARcpD3(AD3 x){return rcp(x);} | |
AD4 ARcpD4(AD4 x){return rcp(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ARsqD1(AD1 x){return rsqrt(x);} | |
AD2 ARsqD2(AD2 x){return rsqrt(x);} | |
AD3 ARsqD3(AD3 x){return rsqrt(x);} | |
AD4 ARsqD4(AD4 x){return rsqrt(x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD1 ASatD1(AD1 x){return saturate(x);} | |
AD2 ASatD2(AD2 x){return saturate(x);} | |
AD3 ASatD3(AD3 x){return saturate(x);} | |
AD4 ASatD4(AD4 x){return saturate(x);} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// HLSL LONG | |
//============================================================================================================================== | |
#ifdef A_LONG | |
#endif | |
//============================================================================================================================== | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// | |
// GPU COMMON | |
// | |
// | |
//============================================================================================================================== | |
#ifdef A_GPU | |
// Negative and positive infinity. | |
#define A_INFN_F AF1_AU1(0x7f800000u) | |
#define A_INFP_F AF1_AU1(0xff800000u) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Copy sign from 's' to positive 'd'. | |
AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));} | |
AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));} | |
AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));} | |
AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Single operation to return (useful to create a mask to use in lerp for branch free logic), | |
// m=NaN := 0 | |
// m>=0 := 0 | |
// m<0 := 1 | |
// Uses the following useful floating point logic, | |
// saturate(+a*(-INF)==-INF) := 0 | |
// saturate( 0*(-INF)== NaN) := 0 | |
// saturate(-a*(-INF)==+INF) := 1 | |
AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));} | |
AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));} | |
AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));} | |
AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));} | |
//============================================================================================================================== | |
#ifdef A_HALF | |
#define A_INFN_H AH1_AW1(0x7c00u) | |
#define A_INFP_H AH1_AW1(0xfc00u) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ACpySgnH1(AH1 d,AH1 s){return AH1_AW1(AW1_AH1(d)|(AW1_AH1(s)&AW1_(0x8000u)));} | |
AH2 ACpySgnH2(AH2 d,AH2 s){return AH2_AW2(AW2_AH2(d)|(AW2_AH2(s)&AW2_(0x8000u)));} | |
AH3 ACpySgnH3(AH3 d,AH3 s){return AH3_AW3(AW3_AH3(d)|(AW3_AH3(s)&AW3_(0x8000u)));} | |
AH4 ACpySgnH4(AH4 d,AH4 s){return AH4_AW4(AW4_AH4(d)|(AW4_AH4(s)&AW4_(0x8000u)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH1 ASignedH1(AH1 m){return ASatH1(m*AH1_(A_INFN_H));} | |
AH2 ASignedH2(AH2 m){return ASatH2(m*AH2_(A_INFN_H));} | |
AH3 ASignedH3(AH3 m){return ASatH3(m*AH3_(A_INFN_H));} | |
AH4 ASignedH4(AH4 m){return ASatH4(m*AH4_(A_INFN_H));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// HALF APPROXIMATIONS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// These support only positive inputs. | |
// Did not see value yet in specialization for range. | |
// Using quick testing, ended up mostly getting the same "best" approximation for various ranges. | |
// With hardware that can co-execute transcendentals, the value in approximations could be less than expected. | |
// However from a latency perspective, if execution of a transcendental is 4 clk, with no packed support, -> 8 clk total. | |
// And co-execution would require a compiler interleaving a lot of independent work for packed usage. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// The one Newton Raphson iteration form of rsq() was skipped (requires 6 ops total). | |
// Same with sqrt(), as this could be x*rsq() (7 ops). | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// IDEAS | |
// ===== | |
// - Polaris hardware has 16-bit support, but non-double rate. | |
// Could be possible still get part double rate for some of this logic, | |
// by clearing out the lower half's sign when necessary and using 32-bit ops... | |
//============================================================================================================================== | |
#ifdef A_HALF | |
// Minimize squared error across full positive range, 2 ops. | |
// The 0x1de2 based approximation maps {0 to 1} input maps to < 1 output. | |
AH1 APrxLoSqrtH1(AH1 a){return AH1_AW1((AW1_AH1(a)>>AW1_(1))+AW1_(0x1de2));} | |
AH2 APrxLoSqrtH2(AH2 a){return AH2_AW2((AW2_AH2(a)>>AW2_(1))+AW2_(0x1de2));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Lower precision estimation, 1 op. | |
// Minimize squared error across {smallest normal to 16384.0}. | |
AH1 APrxLoRcpH1(AH1 a){return AH1_AW1(AW1_(0x7784)-AW1_AH1(a));} | |
AH2 APrxLoRcpH2(AH2 a){return AH2_AW2(AW2_(0x7784)-AW2_AH2(a));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Medium precision estimation, one Newton Raphson iteration, 3 ops. | |
AH1 APrxMedRcpH1(AH1 a){AH1 b=AH1_AW1(AW1_(0x778d)-AW1_AH1(a));return b*(-b*a+AH1_(2.0));} | |
AH2 APrxMedRcpH2(AH2 a){AH2 b=AH2_AW2(AW2_(0x778d)-AW2_AH2(a));return b*(-b*a+AH2_(2.0));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Minimize squared error across {smallest normal to 16384.0}, 2 ops. | |
AH1 APrxLoRsqH1(AH1 a){return AH1_AW1(AW1_(0x59a3)-(AW1_AH1(a)>>AW1_(1)));} | |
AH2 APrxLoRsqH2(AH2 a){return AH2_AW2(AW2_(0x59a3)-(AW2_AH2(a)>>AW2_(1)));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// FLOAT APPROXIMATIONS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN", | |
// - Idea dates back to SGI, then to Quake 3, etc. | |
// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf | |
// - sqrt(x)=rsqrt(x)*x | |
// - rcp(x)=rsqrt(x)*rsqrt(x) for positive x | |
// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// These below are from perhaps less complete searching for optimal. | |
// Used FP16 normal range for testing with +4096 32-bit step size for sampling error. | |
// So these match up well with the half approximations. | |
//============================================================================================================================== | |
AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));} | |
AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));} | |
AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));} | |
AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// PARABOLIC SIN & COS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Approximate answers to transcendental questions. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// TODO | |
// ==== | |
// - Verify packed math ABS is correctly doing an AND. | |
//============================================================================================================================== | |
// Valid input range is {-1 to 1} representing {0 to 2 pi}. | |
// Output range is {-1/4 to -1/4} representing {-1 to 1}. | |
AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD. | |
AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#ifdef A_HALF | |
// For a packed {sin,cos} pair, | |
// - Native takes 16 clocks and 4 issue slots (no packed transcendentals). | |
// - Parabolic takes 8 clocks and 8 issue slots (only fract is non-packed). | |
AH2 APSinH2(AH2 x){return x*abs(x)-x;} // AND,FMA | |
AH2 APCosH2(AH2 x){x=AFractH2(x*AH2_(0.5)+AH2_(0.75));x=x*AH2_(2.0)-AH2_(1.0);return APSinH2(x);} // 3x FMA, 2xFRACT, AND | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// COLOR CONVERSIONS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// These are all linear to/from some other space (where 'linear' has been shortened out of the function name). | |
// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'. | |
// These are branch free implementations. | |
// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion. | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// TRANSFER FUNCTIONS | |
// ================== | |
// 709 ..... Rec709 used for some HDTVs | |
// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native | |
// Pq ...... PQ native for HDR10 | |
// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type | |
// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// FOR PQ | |
// ====== | |
// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2. | |
// All constants are only specified to FP32 precision. | |
// External PQ source reference, | |
// - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// PACKED VERSIONS | |
// =============== | |
// These are the A*H2() functions. | |
// There is no PQ functions as FP16 seemed to not have enough precision for the conversion. | |
// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors. | |
// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least). | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// NOTES | |
// ===== | |
// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case. | |
//============================================================================================================================== | |
AF1 ATo709F1(AF1 c){return max(min(c*AF1_(4.5),AF1_(0.018)),AF1_(1.099)*pow(c,AF1_(0.45))-AF1_(0.099));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma(). | |
AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,rcpX);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302)); | |
return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AToSrgbF1(AF1 c){return max(min(c*AF1_(12.92),AF1_(0.0031308)),AF1_(1.055)*pow(c,AF1_(0.41666))-AF1_(0.055));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AToTwoF1(AF1 c){return sqrt(c);} | |
//============================================================================================================================== | |
AF1 AFrom709F1(AF1 c){return max(min(c*AF1_(1.0/4.5),AF1_(0.081)), | |
pow((c+AF1_(0.099))*(AF1_(1.0)/(AF1_(1.099))),AF1_(1.0/0.45)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,x);} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833)); | |
return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AFromSrgbF1(AF1 c){return max(min(c*AF1_(1.0/12.92),AF1_(0.04045)), | |
pow((c+AF1_(0.055))*(AF1_(1.0)/AF1_(1.055)),AF1_(2.4)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF1 AFromTwoF1(AF1 c){return c*c;} | |
//============================================================================================================================== | |
#ifdef A_HALF | |
AH2 ATo709H2(AH2 c){return max(min(c*AH2_(4.5),AH2_(0.018)),AH2_(1.099)*pow(c,AH2_(0.45))-AH2_(0.099));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH2 AToGammaH2(AH2 c,AH1 rcpX){return pow(c,AH2_(rcpX));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH2 AToSrgbH2(AH2 c){return max(min(c*AH2_(12.92),AH2_(0.0031308)),AH2_(1.055)*pow(c,AH2_(0.41666))-AH2_(0.055));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH2 AToTwoH2(AH2 c){return sqrt(c);} | |
#endif | |
//============================================================================================================================== | |
#ifdef A_HALF | |
AH2 AFrom709H2(AH2 c){return max(min(c*AH2_(1.0/4.5),AH2_(0.081)), | |
pow((c+AH2_(0.099))*(AH2_(1.0)/(AH2_(1.099))),AH2_(1.0/0.45)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH2 AFromGammaH2(AH2 c,AH1 x){return pow(c,AH2_(x));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH2 AFromSrgbH2(AH2 c){return max(min(c*AH2_(1.0/12.92),AH2_(0.04045)), | |
pow((c+AH2_(0.055))*(AH2_(1.0)/AH2_(1.055)),AH2_(2.4)));} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AH2 AFromTwoH2(AH2 c){return c*c;} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// CS REMAP | |
//============================================================================================================================== | |
// Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear. | |
// 543210 | |
// ====== | |
// ..xxx. | |
// yy...y | |
AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));} | |
//============================================================================================================================== | |
// More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions. | |
// 543210 | |
// ====== | |
// .xx..x | |
// y..yy. | |
// Details, | |
// LANE TO 8x8 MAPPING | |
// =================== | |
// 00 01 08 09 10 11 18 19 | |
// 02 03 0a 0b 12 13 1a 1b | |
// 04 05 0c 0d 14 15 1c 1d | |
// 06 07 0e 0f 16 17 1e 1f | |
// 20 21 28 29 30 31 38 39 | |
// 22 23 2a 2b 32 33 3a 3b | |
// 24 25 2c 2d 34 35 3c 3d | |
// 26 27 2e 2f 36 37 3e 3f | |
AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));} | |
#endif | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// REFERENCE | |
// | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// IEEE FLOAT RULES | |
// ================ | |
// - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1 | |
// - {+/-}0 * {+/-}INF = NaN | |
// - -INF + (+INF) = NaN | |
// - {+/-}0 / {+/-}0 = NaN | |
// - {+/-}INF / {+/-}INF = NaN | |
// - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN) | |
// - 0 == -0 | |
// - 4/0 = +INF | |
// - 4/-0 = -INF | |
// - 4+INF = +INF | |
// - 4-INF = -INF | |
// - 4*(+INF) = +INF | |
// - 4*(-INF) = -INF | |
// - -4*(+INF) = -INF | |
// - sqrt(+INF) = +INF | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// FP16 ENCODING | |
// ============= | |
// fedcba9876543210 | |
// ---------------- | |
// ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals) | |
// .eeeee.......... 5-bit exponent | |
// .00000.......... denormals | |
// .00001.......... -14 exponent | |
// .11110.......... 15 exponent | |
// .111110000000000 infinity | |
// .11111nnnnnnnnnn NaN with n!=0 | |
// s............... sign | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// FP16/INT16 ALIASING DENORMAL | |
// ============================ | |
// 11-bit unsigned integers alias with half float denormal/normal values, | |
// 1 = 2^(-24) = 1/16777216 ....................... first denormal value | |
// 2 = 2^(-23) | |
// ... | |
// 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value | |
// 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers | |
// 2047 .............................................. last normal value that still maps to integers | |
// Scaling limits, | |
// 2^15 = 32768 ...................................... largest power of 2 scaling | |
// Largest pow2 conversion mapping is at *32768, | |
// 1 : 2^(-9) = 1/128 | |
// 1024 : 8 | |
// 2047 : a little less than 16 | |
//============================================================================================================================== | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// | |
// | |
// GPU/CPU PORTABILITY | |
// | |
// | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// This is the GPU implementation. | |
// See the CPU implementation for docs. | |
//============================================================================================================================== | |
#ifdef A_GPU | |
#define A_TRUE true | |
#define A_FALSE false | |
#define A_STATIC | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY | |
//============================================================================================================================== | |
#define retAD2 AD2 | |
#define retAD3 AD3 | |
#define retAD4 AD4 | |
#define retAF2 AF2 | |
#define retAF3 AF3 | |
#define retAF4 AF4 | |
#define retAL2 AL2 | |
#define retAL3 AL3 | |
#define retAL4 AL4 | |
#define retAU2 AU2 | |
#define retAU3 AU3 | |
#define retAU4 AU4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define inAD2 in AD2 | |
#define inAD3 in AD3 | |
#define inAD4 in AD4 | |
#define inAF2 in AF2 | |
#define inAF3 in AF3 | |
#define inAF4 in AF4 | |
#define inAL2 in AL2 | |
#define inAL3 in AL3 | |
#define inAL4 in AL4 | |
#define inAU2 in AU2 | |
#define inAU3 in AU3 | |
#define inAU4 in AU4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define inoutAD2 inout AD2 | |
#define inoutAD3 inout AD3 | |
#define inoutAD4 inout AD4 | |
#define inoutAF2 inout AF2 | |
#define inoutAF3 inout AF3 | |
#define inoutAF4 inout AF4 | |
#define inoutAL2 inout AL2 | |
#define inoutAL3 inout AL3 | |
#define inoutAL4 inout AL4 | |
#define inoutAU2 inout AU2 | |
#define inoutAU3 inout AU3 | |
#define inoutAU4 inout AU4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define outAD2 out AD2 | |
#define outAD3 out AD3 | |
#define outAD4 out AD4 | |
#define outAF2 out AF2 | |
#define outAF3 out AF3 | |
#define outAF4 out AF4 | |
#define outAL2 out AL2 | |
#define outAL3 out AL3 | |
#define outAL4 out AL4 | |
#define outAU2 out AU2 | |
#define outAU3 out AU3 | |
#define outAU4 out AU4 | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define varAD2(x) AD2 x | |
#define varAD3(x) AD3 x | |
#define varAD4(x) AD4 x | |
#define varAF2(x) AF2 x | |
#define varAF3(x) AF3 x | |
#define varAF4(x) AF4 x | |
#define varAL2(x) AL2 x | |
#define varAL3(x) AL3 x | |
#define varAL4(x) AL4 x | |
#define varAU2(x) AU2 x | |
#define varAU3(x) AU3 x | |
#define varAU4(x) AU4 x | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define initAD2(x,y) AD2(x,y) | |
#define initAD3(x,y,z) AD3(x,y,z) | |
#define initAD4(x,y,z,w) AD4(x,y,z,w) | |
#define initAF2(x,y) AF2(x,y) | |
#define initAF3(x,y,z) AF3(x,y,z) | |
#define initAF4(x,y,z,w) AF4(x,y,z,w) | |
#define initAL2(x,y) AL2(x,y) | |
#define initAL3(x,y,z) AL3(x,y,z) | |
#define initAL4(x,y,z,w) AL4(x,y,z,w) | |
#define initAU2(x,y) AU2(x,y) | |
#define initAU3(x,y,z) AU3(x,y,z) | |
#define initAU4(x,y,z,w) AU4(x,y,z,w) | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// SCALAR RETURN OPS | |
//============================================================================================================================== | |
#define AAbsD1(a) abs(AD1(a)) | |
#define AAbsF1(a) abs(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ACosD1(a) cos(AD1(a)) | |
#define ACosF1(a) cos(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ADotD2(a,b) dot(AD2(a),AD2(b)) | |
#define ADotD3(a,b) dot(AD3(a),AD3(b)) | |
#define ADotD4(a,b) dot(AD4(a),AD4(b)) | |
#define ADotF2(a,b) dot(AF2(a),AF2(b)) | |
#define ADotF3(a,b) dot(AF3(a),AF3(b)) | |
#define ADotF4(a,b) dot(AF4(a),AF4(b)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AExp2D1(a) exp2(AD1(a)) | |
#define AExp2F1(a) exp2(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AFloorD1(a) floor(AD1(a)) | |
#define AFloorF1(a) floor(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ALog2D1(a) log2(AD1(a)) | |
#define ALog2F1(a) log2(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AMaxD1(a,b) min(a,b) | |
#define AMaxF1(a,b) min(a,b) | |
#define AMaxL1(a,b) min(a,b) | |
#define AMaxU1(a,b) min(a,b) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define AMinD1(a,b) min(a,b) | |
#define AMinF1(a,b) min(a,b) | |
#define AMinL1(a,b) min(a,b) | |
#define AMinU1(a,b) min(a,b) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASinD1(a) sin(AD1(a)) | |
#define ASinF1(a) sin(AF1(a)) | |
//------------------------------------------------------------------------------------------------------------------------------ | |
#define ASqrtD1(a) sqrt(AD1(a)) | |
#define ASqrtF1(a) sqrt(AF1(a)) | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// SCALAR RETURN OPS - DEPENDENT | |
//============================================================================================================================== | |
#define APowD1(a,b) pow(AD1(a),AF1(b)) | |
#define APowF1(a,b) pow(AF1(a),AF1(b)) | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//_____________________________________________________________/\_______________________________________________________________ | |
//============================================================================================================================== | |
// VECTOR OPS | |
//------------------------------------------------------------------------------------------------------------------------------ | |
// These are added as needed for production or prototyping, so not necessarily a complete set. | |
// They follow a convention of taking in a destination and also returning the destination value to increase utility. | |
//============================================================================================================================== | |
#ifdef A_DUBL | |
AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;} | |
AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;} | |
AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;} | |
AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;} | |
AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;} | |
AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;} | |
AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;} | |
AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;} | |
AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;} | |
AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;} | |
AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;} | |
AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;} | |
AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;} | |
AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;} | |
AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;} | |
AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;} | |
AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;} | |
AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;} | |
AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;} | |
AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;} | |
AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;} | |
AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;} | |
AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;} | |
#endif | |
//============================================================================================================================== | |
AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;} | |
AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;} | |
AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;} | |
AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;} | |
AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;} | |
AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;} | |
AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;} | |
AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;} | |
AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;} | |
AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;} | |
AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;} | |
AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;} | |
AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;} | |
AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;} | |
AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;} | |
AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;} | |
AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;} | |
AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;} | |
AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;} | |
AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;} | |
AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;} | |
//------------------------------------------------------------------------------------------------------------------------------ | |
AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;} | |
AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;} | |
AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;} | |
#endif |