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1 Introduction
In the present document the SPH formulations realized in GPUSPH will be de-
scribed. While this section is as complete as necessary we recommend to read the
cited literature in order to gain a full understanding of the respective methods.
The basic premise is that GPUSPH approximates solutions to the Navier-Stokes
equations which are given by

dv
dt = −1

ρ
∇p+∇ ·

[
ν(∇v + ∇vT )

]
+ g, (1)

where v is the velocity, ρ the density, p the pressure, ν the kinematic viscosity and
g an external force. These equations are coupled with the continuity equation

dρ
dt = −ρ∇ · v. (2)

In order to close the system of equations a weakly-compressible formulation is chosen
which uses the Cole Equation of State given by

p = c0ρ0

ξ

( ρ
ρ0

)ξ
− 1

 , (3)

where c0 is the speed of sound, ρ0 the reference density and ξ is the polytropic index,
equal to 7 in the case of water.

2 The SPH approximation
At the heart of the SPH method is an interpolation that defines a physical quantity
at a certain position. This interpolation consists in two steps: a kernel approximation
followed by a particle approximation.

2.1 Kernel approximation
Let f be a field then

f(r) =
∫
f(r′)δ(‖r − r′|)dr′, (4)

where δ is the Dirac delta distribution. The continuous SPH approximation can be
written as

< f > (r) =
∫

Ω
f(r′)W (|r − r′|, h)dr′, (5)
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where the Dirac delta function was replaced by a weight or kernel function W , Ω is
the computational domain and h is the smoothing length. For this approximation
to be consistent, two conditions are required:

• lim
h→0

W (., h) = δ(.), i.e. the kernel function converges to the delta function,

•
∫
W (r − r′, h)dr′ = 1, i.e. the kernel function has unitary integral.

Additional constraints are imposed to the SPH kernels, in order to simplify the
physical modelling:

• W (r − r′, h) = W (r′ − r, h), i.e. the kernel is symmetric,

• the kernel has compact support.

From now one we will assume that the kernel fulfill this additional properties.

2.2 Particle approximation
The kernel approximation of Eq. (5) does not yet contain any spatial discretization.
The spatial discretization is based on a the subdivision of the simulation domain using
particles with each particle representing a small volume of the simulation domain.
Each particle carry his one physical quantities (mass, density, velocity, ...). SPH
being a purely Lagrangian method there is no need for any connectivity between
particles.
For a given particle a, ra will denote the particle position and fa the value of f at
the particle.
Now that the space has been discretized we can apply the particle approximation to
the kernel one : approximating Eq. (5) by the following sum

[f ](ra) =
∑
b∈F

mb

ρb
fbWab, (6)

where F is the set of all particles, m the mass and Wab = W (|ra − rb|/h, h). It
should be noted that [f ] 6= f .

3 SPH kernels
Currently GPUSPH features four different kernels.

• CUBICSPLINE: the cubic spline kernel
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• QUADRATIC: the quadratic splain kernel

• WENDLAND: the quintic Wendland kernel

• GAUSSIAN: the Gaussian kernel

The formulae for the different kernels and their derivatives are given below. The
variable q is defined by:

q = |r − r
′|

h
(7)

The B-splines kernels are widely used in the SPH literature. The quadratic spline is
defined, in three-dimensions, by:

W (q, h) = α2

h3 f2(q) (8)

with:

f2(q) =


1
4q

2 − q + 1 0 ≤ q ≤ 2
0 2 < q

(9)

where α2 = 15
16π and its derivative by

f ′2(q) =


1
2q − 1 0 ≤ q ≤ 2
0 2 < q

(10)

The cubic spline is defined, in three-dimensions, by:

W (q, h) = α3

h3 f3(q) (11)

with:

f3(q) =


1− 3

2q
2 + 3

4q
3 0 ≤ q ≤ 1

1
4 (2− q)3 1 ≤ q ≤ 2
0 2 < q

(12)

where α3 = 1/π and its derivative by

f ′3(q) =


−3q + 9

4q
2 0 ≤ q ≤ 1

−3
4 (2− q)2 1 ≤ q ≤ 2

0 2 < q

(13)
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The Wendland kernel is given by

W (q, h) =


αW
h3

(
1− q

2

)4
(1 + 2q) 0 ≤ q ≤ 2

0 if2 < q
(14)

where αW = 21/(16π) and its derivative by

|∇W (q, h)| =


−5αW
h5 q

(
1− q

2

)3
0 ≤ q ≤ 2

0 2 < q
(15)

The truncated Gaussian kernel is defined by

W (q, h) =


αG
h3

(
e−q

2 − e−( 3
h)2)

0 ≤ q ≤ 3
0 3 < q

(16)

where αG = 1
π(√π−36e−9) .

|∇W (q, h)| =

 −2qαG
h3

(
e−q

2 − e−( 3
h)2)

0 ≤ q ≤ 3
0 3 < q

(17)

3.1 First-order derivatives
In order to approximate derivatives the continuous SPH interpolation Eq. (5) is used
as follows

< ∇f > (r) =
∫

Ω
∇f(r′)W (|r − r′|, h)dr′ (18)

Applying integration by parts yields

< ∇f > (r) = −
∫

Ω
f(r′)∇r′W (|r−r′|, h)dr′ +

∫
Ω

∇(f(r′)W (|r−r′|, h))dr′ (19)

As W is symmetric the kernel is antisymmetric and thus

∇r′W (|r − r′|, h) = −∇rW (|r − r′|, h) (20)

Furthermore, using Stokes theorem the last term in Eq. (19) can be rewritten as
integral over the boundary of the computational domain, denoted by ∂Ω which yields

< ∇f > (r) =
∫

Ω
f(r′)∇rW (|r−r′|, h)dr′−

∫
∂Ω

(f(r′)W (|r−r′|, h))nr′dΓ(r′) (21)

6



where nr′ is the inward pointing normal. As a convention for the remainder of this
document all normals will point inward the domain. If the domain Ω is unbounded
then the last term of Eq. (21) will vanish due to the compact support of the kernel
W . Thus, in a continuous sense the first derivative can be approximated as

< ∇f > (r) =
∫

Ω
f(r′)∇rW (|r − r′|, h)dr′ (22)

The discretization in space again replaces the integral by a sum over all particles and
so

[∇f ](ra) =
∑
b∈F

Vbfb∇aWab (23)

where Vb = mb/ρb is the volume of a particle b. It is common in SPH practice to
write the gradient operator slightly different as it is used to compute the pressure
gradient and thus Newtons third law of equal but opposite forces should be obeyed.
This can be achieved by defining the SPH gradient as

Ga(f) = [∇f ](ra) + [∇f(ra)](ra) (24)

where the latter derivative is that of a constant, thus equal to zero in the continuous
framework. However, the SPH discretisation of the gradient as defined by equation
(23) does not yield zero when applied to constants. The second term will thus have
a non-zero contribution in this newly-defined SPH gradient.
The principle of energy conservation requires the gradient and divergence operators
to be skew-adjoint, i.e.

< Ga(f),F >= − < f,Da(F ) > (25)

where < ., . > is a scalar product on all particles. As a result of this constraint the
divergence can be shown to be

Da(F ) = [∇ · F ]a − [∇ · Fa]a (26)

This allows to write the gradient and divergence as

Ga(f) =
∑
b∈F

Vb(fb + fa)∇aWab (27)

and
Da(F ) =

∑
b∈F

Vb(Fb − Fa) ·∇aWab (28)

respectively.
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3.2 Second-order derivatives
In theory second-order derivatives could simply be derived from first order ones, but
that would cause second derivatives to appear which are numerically unstable. Thus,
the preferred approach is to use a combination of a SPH first order derivative and a
finite difference first order derivative.
The goal of this section is to derive a discretization for ∇·(f∇⊗F ). To approximate
the interior gradient, a Taylor Series of F can be used as follows

Fb = Fa − (∇a ⊗ F )T · rab +O(rab) (29)
where rab = ra − rb, a convention that will be used throughout this document also
for quantities different from r. The above can be rewritten to obtain an expression
for the interior gradient

(∇a ⊗ F )T · rab
|rab|

≈ 1
|rab|

Fab (30)

and similarly
(∇b ⊗ F )T · rab

|rab|
≈ 1
|rab|

Fab (31)

As the kernel is radially symmetric

∇aWab = rab
|rab|
|∇aWab| (32)

The Divergence similar to the one given by Eq. (28) but with a + instead of the −
yields

∇ · (f∇⊗ F ) =
∑
b∈F

Vb(fb∇⊗ F + fa∇⊗ F ) rab
|rab|
|∇Wab| (33)

which, with Eqs. (30), (31) and (32), can be used to define the Laplacian

La(f,F ) = ∇ · (f∇⊗ F ) =
∑
b∈F

Vb(fb + fa)Fab
1
|rab|
|∇Wab| (34)

3.3 Discretization of the Navier-Stokes equations
With the definition of the three operators G, D and L as given by Eqs. (27), (28)
and (34), respectively, the Navier-Stokes equations (1) and (2) can be discretized in
space as

dva
dt = − 1

ρa
Ga(p) + La(ν,v) + g (35)

dρa
dt = −ρaDa(v) (36)
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The final step to a full discretization is the implementation of a time integration
scheme. GPUSPH currently features a predictor-corrector scheme that is given by

un+1/2 = un + ∆t
2 NS(un) (37)

un = un + ∆tNS(un+1/2)

where u is the state vector and NS are the right-hand sides of the discretized Navier-
Stokes equations. Furthermore, the superscripts refer to the time instances. Written
out in detail the full discretization reads

vn+1/2
a = vna + ∆t

2

(
− 1
ρna
Ga(pn) + La(νn,vn) + g

)
(38)

rn+1/2
a = rna + ∆t

2 v
n
a

ρn+1/2
a = ρna −

∆t
2 ρnaDa(vn)

pn+1/2
a = c0ρ0

ξ

(ρn+1/2
a

ρ0

)ξ
− 1


vn+1
a = vna + ∆t

(
− 1
ρ
n+1/2
a

Ga(pn+1/2) + La(νn+1/2,vn+1/2) + g
)

rn+1
a = rna + ∆tvn+1/2

a

ρn+1
a = ρna −∆t ρn+1/2

a Da(vn+1/2)

pn+1
a = c0ρ0

ξ

(ρn+1
a

ρ0

)ξ
− 1



3.3.1 Alternative continuity equation

The density can alternatively be computed by

[ρ]a =
∑
b∈F

VbρbWab (39)

which simplifies to
[ρ]a =

∑
b∈F

mbWab (40)
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To be consisten with the time-stepping and to preserve initial density values the
following time dependent version is used

ρn+1
a = ρna −

∑
b∈F

mbWab

n +
∑
b∈F

mbWab

n+1

(41)

where the sums inside the brackets are with respect to the positions of the particles
at the respective time step indicated by the superscript. It can be shown that this
is equivalent to the continuity equation based on the divergence (see Vila (1999)).
However, as the formulation depends only on the particle position it is numerically
more stable.

4 Wall boundary conditions
Several different boundary conditions are available for the SPH method and a few
selected ones are implemented in GPUSPH. Currently the following options are im-
plemented

• LJ_BOUNDARY: Lennard-Jones boundary conditions

• MK_BOUNDARY: Monaghan-Kajtar boundary conditions

• SA_BOUNDARY: Semi-analytical boundary conditions

• DYN_BOUNDARY: Dynamic boundary conditions

In the following these boundary conditions and their formulations will be described
in detail.

4.1 Lennard-Jones boundaries
With this type of boundaries, the walls are discretised with particles and repul-
sive forces are imposed between boundary particles and fluid particles (that move
according to the SPH equations). The repulsive force employed derives from the
Lennard-Jones potential (see Monaghan (2005)).
This method is computationally cheap, but may lead to spurious behaviours of the
particles close to the walls. Indeed, none of the consistency issues related to bound-
aries are addressed by this method and although the impermeability of the walls is
ensured, the SPH equations are inaccurately solved close to the boundaries. One
effect is that the fluid does not remain still near the walls in a hydrostatic case.
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4.2 Dynamic boundaries
Section under construction.

4.3 Semi-analytical boundaries
The semi-analytical wall boundary conditions developed by Ferrand et al. (2012)
have shown promising results in the simulation of flows with complex boundaries
using the Smoothed Particle Hydrodynamics (SPH) method. Recent efforts have
pushed these boundary towards practical applications (see Mayrhofer et al. (2014);
Leroy et al. (2014)). While the accuracy of these boundary conditions is outstanding,
one of their downsides is their comparably high computational cost. The domain Ω

Figure 1: Different particle types

which is the fluid domain is discretized using three different sets of particles:

1. f ∈ F : the fluid particles,

2. p ∈ P : the vertex particles,

3. s ∈ S: the boundary elements.

The boundary segments are triangles, in the 3-D case, that are located at the bound-
ary ∂Ω of the domain. At each vertex of such a boundary elements is a vertex particle
that has a mass that is related to the boundary shape as shown in Fig. 1. These
particles, in a finite volume sense, represent the near-wall cells and are moving only
if the solid wall is. The fluid particles on the other hand are typical SPH particles
that move in a Lagrangian fashion and occupy Ω. The union of fluid and vertex
particles will be denoted with P .
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The SPH interpolation in the context of the semi-analytical boundary conditions is
given by

[f ]a = 1
γa

∑
b∈P

VbfbWab (42)

where γa is the kernel renormalization parameter defined as

γa =
∫

Ω
W (|r − rb|) (43)

which is computed following the idea by Violeau et al. (2014). However, instead of
analytically evaluating the integral over the boundary element, a 5th-order quadra-
ture rule is used. Note that currently this is implemented only for the Wendland
kernel and so the semi-analytical boundary conditions can only be used using this
kernel.
The differential operators gradient and divergence are given as

Ga(p) = 1
γa

∑
b∈P

Vb(pa + pb)∇Wab −
1
γa

∑
s∈S

(pa + ps)∇γas (44)

Da(v) = 1
γa

∑
b∈P

Vb(vb − va) ·∇Wab −
1
γa

∑
s∈S

(vs − va) ·∇γas (45)

respectively. ∇γas is the surface integral of the kernel on a triangle s which is solved
using the same 5th-order quadrature rule. The derivation of these operators can be
found in Ferrand et al. (2012). The basic idea is to not drop the surface integral
term in Eq. (21) but instead replace it with a discrete approximation, i.e. the sum
over the segments. The Laplacian operator, required to discretize the viscous term
of the momentum equation, is given by

La(ν,v) = 1
γa

∑
b∈P

mb

(
νa
ρb

+ νb
ρa

)
vab
|rab|2

rab ·∇Wab −
2νava
γa

∑
s∈S

|∇γas|
δras

(46)

where the laminar shear stress was used in the boundary term in Ferrand et al.
(2012), rab = ra − rb and δras = max(ras · ns,∆r). Finally the Dirichlet boundary
condition v = 0 is applied at no-slip boundaries by imposing va = 0 ∀a ∈ V ∪ S.
The Neumann boundary condition ∂ρ/∂n = 0 is imposed using the approximation

ρa = 1
αa

∑
b∈F

mbWab (47)

with
αa =

∑
b∈F

VbWab (48)
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for all vertex particles and boundary elements (for details see Mayrhofer et al.
(2013b)).
The alternative continuity equation can also be extended in order to take boundaries
into account via

ρn+1
a = 1

γn+1
a

γnaρna −
∑
b∈F

mbWab

n +
∑
b∈F

mbWab

n+1

(49)

5 Corrections

5.1 Velocity smoothing: XSPH
Under construction

5.2 Sheppard filtering on density
Considering that ∑

b∈F

mb

ρb
Wab 6= 1

the standard SPH summation cannot achieve zeroth order consistency. We can
restore zeroth order consistency by using

W̃ab = Wab∑
b∈F

mb
ρb
Wab

instead of W .
Applied to density summation this lead to the Sheppard correction:

ρ∗a =

∑
b∈F

mbWab∑
b∈F

mb
ρb
Wab

(50)

In GPUSPH this correction can be periodically enabling Sheppard filtering. Note:
Sheppard correction leads to a volume increase. Thus this correction should not be
used in for long term simulation. In the later it’s preferable to use one of stabilizing
method described in the next section.

5.3 MLS filtering on density
Under construction

13



6 Stabilizing methods
Due to the collocated nature of the SPH method it is unavoidable that spurious
pressure modes are created. In order to prevent the numerical solution from becoming
unstable several stabilizing methods can be employed.

6.1 Ferrari
The Ferrari correction is based on the work by Ferrari et al. (2009) and modifies the
continuity equation with an additional term given by

dρa
dt = −ρaDa(v) + ηF

∑
b∈F

Vbca,b
rab
rab

ρab ·∇Wab (51)

where
ca,b = max(ca, cb) (52)

and

ca = c0

√√√√(ρa
ρ0

)ξ−1

(53)

Note that in the case of the semi-analytical boundaries the formulation is the same
and not boundary term needs to be added.
In certain flows (e.g. direct numerical simulation of turbulent flow, see Mayrhofer
et al. (2013a)) the induced diffusivity can be too high. A more appropriate damping
can be introduced by using a damping coefficient ηF different from one. Mayrhofer
et al. (2013b) have shown that it should be chosen according to

ηF = L

103∆r (54)

where L is a typical length-scale of the flow. In GPUSPH L can be set directly using
the ferrariLengthScale variable.

6.2 Rhie and Chow
Similar to the Ferrari correction is the correction in the spirit of Rhie and Chow.
Again an additional term is added to the continuity equation. However, the density
at time n+ 1 is computed first, denoted by ρ̃n+1, by solving the continuity equation
and then a correction is applied to obatin ρn+1. This correction is given by

ρn+1
a = ηRC ρ̃

n+1
[
La
(

∆t
ρ̃
, ρ̃

)
− La(∆t, g · r)

]
(55)

14



Cµ σk σε Cε1 Cε2 κ
0.09 1.0 1.3 1.44 1.92 0.41

Table 1: Constants of the k − ε model

where ηRC governs the strength of this correction, but is usually equal to one.

7 Turbulence modelling

7.1 The k − ε model
The k − ε model is a Reynolds-Averaged Navier Stokes (RANS) model that uses
two additional differential equations to close the equations Pope (2001). The RANS
equations modify the momentum equations as follows:

dv
dt = −1

ρ
∇p+ ∇ · ((ν + νT )∇⊗ v) + g (56)

where νT is the turbulent viscosity. This in turn is given by

νT = Cµ
k2

ε
(57)

where k is the turbulent kinetic energy and ε the turbulent dissipation. The con-
stants, such as Cµ are summarized in Table 1. Both k and ε are given by two
differential equations:

dk
dt = P − ε+∇ ·

[(
ν + νT

σk

)
∇k

]
(58)

and
dε
dt = ε

k
[Cε1P − Cε2ε] +∇ ·

[(
ν + νT

σε

)
∇k

]
(59)

where P is the production, given by

P = min(
√
CµkS, νTS

2), (60)

with S is the scalar mean rate-of-strain S =
√

2S : S. Finally, the boundary condi-
tions for k and ε at solid walls need to be prescribed. For k a von Neumann boundary
condition is imposed

∂k

∂n
= 0. (61)

15



ε close to the wall can be approximated via the theoretical relation

ε = u3
k

κz
(62)

where uk = C1/4
µ

√
k and z is the normal distance to the wall. Clearly, this formula

is singular at the wall and ε varies strongly when close to the wall. The flow is
rather sensitive to this value and thus proper boundary conditions are essential. In
the following section about the implementation of the k − ε model with the semi-
analytical boundary model this can be taken into account.

7.1.1 Semi-analytical boundaries

The discretization presented in the present section is based on the work by Leroy
et al. (2014) and for the exact derivation the interested reader is referred to this
paper.
To discretize the equations for k and ε the production term requires the computations
of the strain rate, which can be achieved by using the gradient operator. However,
not the one of Eq. (44) is used, but instead the zero-order accurate version given by

G−a (v) = − 1
γa

∑
b∈P

Vbvab ⊗∇Wab + 1
γa

∑
s∈S
vab ⊗∇γas (63)

One important change compared to the laminar simulation is that the vertex particles
now also carry a velocity which is evolved according to the viscous term, i.e.

dvv
dt = L(ν + νT ,v) (64)

The normal component of this velocity is set to zero to avoid particles penetrating
the wall. The laplacian of the viscous term presented in Eq. (46) assumes a laminar
flow profile and thus needs to be modified for turbulent flows in order to properly
take the log law into account. This is achieved by setting the Laplacian to

La(ν,v) = 1
γa

∑
b∈P

mb

(
νa
ρb

+ νb
ρa

)
vab
|rab|2

rab ·∇Wab −
2
γa

∑
s∈S

u2
∗,astas|∇γas| (65)

where u∗,as is the friction velocity at the wall seen by particle a computed iteratively
from the implicit equation

vas · tas
u∗,as

= 1
κ

ln
(
δrasu∗,as

ν

)
+ 5.2 (66)
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where
tas = vas − (vas · ns)ns

|vas − (vas · ns)ns|
(67)

The other term in the governing equations for k and ε is the Laplacian which are
discretized as follows:

La(ν + νT
σk
, k) = 1

γa

∑
b∈P

Vb

(
2ν + νT,a + νT,b

σk

)
kab
r2
ab

rab ·∇Wab (68)

and

La(ν+ νT
σε
, ε) = 1

γa

∑
b∈P

Vb

(
2ν + νT,a + νT,b

σε

)
εab
r2
ab

rab ·∇Wab+ 4Cµ
σεγa

∑
s∈S

k2
a

δras
|∇γas| (69)

The compatible values on the boundary are given by

kv = 1
αv

∑
b∈F

VbkbWvb (70)

and

εv = 1
αv

∑
b∈F

Vb

εb +
4C3/4

µ k
3/2
b

κδrbv

Wvb (71)

where αv is given according to Eq. (48).

8 Open boundaries
GPUSPH currently implements two different types of open boundaries. One of them
is for the dynamic boundary conditions and uses a buffer zone approach. The other
can only be used in conjunction with the semi-analytical boundary conditions and
uses flat open boundaries, which allows for in- and outflow to be at the same wall
(e.g. waves).

8.1 Semi-analytical open boundaries
The open boundaries are based around the idea of vertex particles with varying mass.
The mass of these vertex particles can change due to three different reasons:

• Flux through the boundary

• Fluid particle crossing boundary
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• Creation of new fluid particle

An open boundary has either a prescribed velocity or a prescribed pressure and in
the following these two options will be denoted with velocity and pressure bound-
ary, respectively. The quantity that is not prescribed needs to be computed using
Riemann invariants which is detailed in the following.

8.1.1 Riemann invariants for velocity boundaries

The imposed normal velocity at the open boundary is denoted with uext. The normal
velocity inside the flow is extrapolated to the wall by

uint,a = 1
αa

∑
b∈F

Vbvb · naWab (72)

Similary, the pressure is extrapolated according to

pint,a = 1
αa

∑
b∈F

VbpbWab (73)

ρint can easily be computed using the inverse Equation of State (EOS−1). The aim of
this section will be to compute pext,a from the extrapolated and imposed quantities.
The main idea is that there is an internal and an external state with the interface at
the open boundary. Due to the discontinuity of the internal and external fields and
the assumption of a 1-D problem the Riemann problem is recovered and a solution
is known that can be divided into three different states.
Let

ψ(ρ) = 2c0

ξ − 1

(
ρ

ρ0

) ξ−1
2

if ξ > 1 or ψ(ρ) = c0 ln
(
ρ

ρ0

)
if ξ = 1 (74)

and ψ−1 the respective inverse function. The three states yield the following densities

• Expansion wave:
ρext,e = ψ−1(ψ(ρint) + uext − uint) (75)

• Shock wave:
ρext,s = EOS−1(pint + ρintuint(uint − uext)) (76)

• Contact discontinuity
ρext,c = ρint (77)
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To decide which state needs to be considered the speed of sound as function of density
needs to be defined as

c(ρ) = c0

(
ρ

ρ0

) ξ−1
2

(78)

to be able to compute the celerities λ. They are given as

λ = uint + c(ρint) (79)
λe = uext + c(ρext,e) (80)
λs = uext + c(ρext,s) (81)

Based on these celerities the states occur according to

• λe ≤ λ⇒ expansion wave

• λs > λ⇒ shock wave

• λe > λ ≥ λs ⇒ contact discontinuity

Depending on the computed state the pressure pext is set according to the corre-
sponding density in Eqs. (75), (76) or (77).

8.1.2 Riemann invariants for pressure boundaries

Compared to the velocity boundary, this time uext needs to be computed and pext is
imposed. Similar to the previous section three different fluxes, uext, can be computed
according to the different states

• Expansion wave:
uext,e = uint + ψ(ρext)− ψ(ρint) (82)

• Shock wave:
uext,s = uint + pint − pext

ρint max(uint, 10−5c0) (83)

• Contact discontinuity:
uext,c = uint (84)

The celerities λ{e,s} = uext,{e,s} + c(ρext) can then be used equivalently as above to
determine the appropriate state and thus to set uext.
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8.1.3 Mass update

Assuming that both velocity uext and pressure pext are known at both segments and
vertices of an open boundary the mass update of a vertex particle can be performed.
Each segment has three vertices associated with it and similarly, each vertex has a
defined set of segments that it is associated with it. The latter set will be denoted
with Sv for a specific vertex v. The principal mass change comes from the flux
through segments and reads

m̃v = mn
v + ṁv (85)

where
ṁv = ∆t

∑
s∈Sv

ρext,suext,sAsβv(rs) (86)

where As represents the area of the segment s and βv(rs) is the mass repartition
factor that will be described below.
Next some mass clippings occur in the sequence listed below

• If no fluid particle is in the support of v and ṁv < 0 then m̃v = 0.

• Ensure that |m̃v| < 2mref , where mref = ρ0∆r3 is the reference mass.

• If ṁv < 0 ensure that |m̃v| < m0
v, where m0

v is the initial mass of the vertex v.

After these clippings have been made, a new fluid particle is created if m̃v >
1
2mref .

This new fluid particle has exactly the same properties as the vertex particle and a
mass equal to the reference mass. Note that this can only happen in the corrector
step of the time-stepping scheme. Further conditions are that uext,v and pext,v are
both greater than zero. If a fluid particle is created than m̃v has mref subtracted.
If a fluid particle a has crossed a segment s ∈ Sv then the mass of the fluid particle
is redistributed to the vertex particles associated to that segment. If v is one such
segment then

m̃v = m̃v + βv(ra)mref (87)
Finally the new mass of the vertex particle mn+1

v = m̃v.

8.1.4 The corners

Vertex particles that are part of the open boundary but have associated segments
that are not part of a boundary are labeled as corner vertices. These vertices have
several special properties that are detailed below.
First, they do not change their mass and due to that also never create new fluid
particles. If a corner vertex is part of a velocity boundary, then both its velocity
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and pressure is set to that of the solid wall. If instead the corner vertex is part of a
pressure boundary, then the velocity is set to that of the solid wall and the imposed
pressure of the open boundary is used.

8.1.5 Modified continuity equation

The open boundaries are restricted to use with the alternative continuity equation
given by Eq. (49). In the following So and Vo denote the segments and vertices
respectively that are associated with open boundaries.

ρn+1
a = 1

γn+1
a

γnaρna +
∑
b∈P

mn
b (W n+1

ab −W n
ab)+ (88)

+
∑
v∈Vo

mn
v [W n

av − w (rnav + δrov(∆t))]

+ρ
n
a

2
∑
s∈So

[∇γas (rnas + δros(∆t)) + ∇γas(rnas)] · δros(∆t)
}

where

δroa(∆t) = ∆t(una + vna ) (89)

where u and v are the Eulerian and Lagrangian velocity, respectively.
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8.1.6 Time integration

The full time-stepping scheme including for open boundaries reads

vn+1/2
a = vna + ∆t

2

(
− 1
ρna
Ga(pn) + La(νn,vn) + g

)
(90)

rn+1/2
a = rna + ∆t

2 v
n
a

γn+1/2
a = γna + 1

2(rn+1/2
a − rna ) · (∇γna + ∇γn+1/2

a )

ρn+1/2
a = 1

γ
n+1/2
a

γnaρna +
∑
b∈P

mn
b (W n+1/2

ab −W n
ab)+

+
∑
v∈Vo

mn
v [W n

av − w (rnav + δrov(∆t/2))]

+ρ
n
a

2
∑
s∈So

[∇γas (rnas + δros(∆t/2)) + ∇γas(rnas)] · δros(∆t/2)
}

pn+1/2
a = c0ρ0

ξ

(ρn+1/2
a

ρ0

)ξ
− 1


Boundary conditions & mass update

vn+1
a = vna + ∆t

(
− 1
ρ
n+1/2
a

Ga(pn+1/2) + La(νn+1/2,vn+1/2) + g
)

rn+1
a = rna + ∆tvn+1/2

a

γn+1
a = γna + 1

2(rn+1 − rna ) · (∇γna + ∇γn+1
a )

ρn+1
a = 1

γn+1
a

γnaρna +
∑
b∈P

mn
b (W n+1

ab −W n
ab)+

+
∑
v∈Vo

mn
v [W n

av − w (rnav + δrov(∆t))]

+ρ
n
a

2
∑
s∈So

[∇γas (rnas + δros(∆t)) + ∇γas(rnas)] · δros(∆t)
}

pn+1
a = c0ρ0

ξ

(ρn+1
a

ρ0

)ξ
− 1


Boundary conditions & mass update
Create and delete particles if required
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9 Solid bodies
GPUSPH fully integrates moving and floating bodies. A moving body as an user
prescribed by user while the movement of a floating body is controlled by the forces
acting on it.

9.1 Reference frame and orientation
Under construction.

9.2 Moving bodies
Under construction

9.3 Floating bodies
All the floating bodies dynamics is solved using Chrono engine. Basically GPUSPH
computes force and torque on each body and feed them to Chrono engine that inte-
grate the movement.
Details under construction.
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