GPUSPH User Guide

version 4.0 — October 2016

Contents
1 Introduction
2 Anatomy of a project

3 Specific pre-processing for semi-analytical boundaries
3.1 Preparing the geometry with SALOME
3.2 Check the triangles’ dimensions with testTriangle
3.3 Fill the geometry with particles using CRIXUS

4 Setting up the simulation
4.1 Problem Examples
4.2 Generic Example oL
4.2.1 Framework setup
4.2.2 Generic simulation parameters
4.2.3 SPH parameters. L.
4.2.4 Physical parameters 0L
4.2.5 Results parameters oL
4.3 Building and initializing the particle system

5 Running your simulation

6 Visualizing the results

1 Introduction

To run simulations with your own setup, you must create a new Problem. This is done
by creating a new cusource file, with the associated header (e.g. MyProject.cu and
MyProject.h), placing them under src/problems/user. Beginners should use one
of the provided sample files in src/problems as a template for their project. There
are two main samples available in the src/problems directory: ProblemExample (for
Lennard-Jones or dynamic boundaries) and CompleteSaExample (for semi-analytical
boundaries).

2 Anatomy of a project

Below are the steps required to build a new project and run it with GPUSPH:

1. In case you use semi-analytical boundary conditions, follow the steps described
in section 3 for the pre-processing;

2. Create MyProject.cu and MyProject.h files in the src/problems/user direc-
tory.

3. In the GPUSPH folder, compile the code for your project:

make problem=MyProject

4. Execute GPUSPH:
./ GPUSPH

5. Follow the steps described in section 6 to visualize and post-process the results.

3 Specific pre-processing for semi-analytical bound-
aries

Several types of boundary conditions are available in GPUSPH. They are described
in the theory guide. With classical boundary conditions (Lennard-Jones, dynamic
boundaries) the problem geometries are defined and filled with particles by GPUSPH
itself. For simulations involving complex objects and/or open boundaries, the semi-
analytical boundaries can be used. They make it possible to import a geometry in

2

h5sph format. These geometries are generated using a mesher (e.g. SALOME) and
CRIXUS, an open-source software which is able to fill the computational domain with
particles.

The pre-processing steps specific to semi-analytical boundaries are the following;:

1. create a mesh of the boundaries in SALOME and export it as a binary STL
file;

2. run the testTriangle script to know the minimum interparticle distance to
set in the simulation, with the following syntax:

testTriangle NameOfTheSTLFile.stl 0.1

where 0.1 could be any number (the program just checks if the distance between
the center and the vertex of a triangle is bigger than the specified number, and
returns the maximum and minimum found for that dimension);

3. run CRIXUS to fill the domain with particles:
Crixus NameOfTheINIFile.ini

4. copy the resulting h5sph file(s) containing the initial particles to the directory
data_files.

These steps are described with more detail below.

3.1 Preparing the geometry with SALOME
The input files for CRIXUS are meshes of:

e the total domain’s boundaries
e the free-surface
e the special boundaries (for moving objects and/or open boundaries)

These meshes must be composed of triangles and can be generated using SALOME,
which is an open source software very useful for 3D modeling and meshing.

It is important to generate meshes with homogeneous triangle size, oth-
erwise the quality of results may be affected.

In order to start a new project in SALOME;, click on File/New. When you save
your project, SALOME creates a file with the .hdf extension, which stores all the
geometry elements and meshes that you design for your project.

Building the geometry

The complete SALOME documentation for the GEOMETRY module can be found
here:
http://docs.salome-platform.org/7/gui/GEOM/

Designing is easy in SALOME. To start building the geometry elements, click on the
“Geometry” module. There are 7 types of basic geometrical elements:

1. VERTEX: it can be created by providing its coordinates, by clicking on the ver-
tex of another geometry element, by using another point as reference. .. There
are many ways which are described in the “Point Construction” window which
appears when we click on “Create a point”

2. SEGMENT: it can be created providing two points that were previously stated,
or using the intersection of two planar elements.

3. WIRE: a wire is just a series of segments. It can be a closed wire or if the end
matches the start, or an open one.

4. FACE: a face is just a limited plane

5. SHELL: a shell is a series of faces. SALOME would consider it a closed shell
when it encloses a volume

6. SOLID: a solid is just a limited part of the 3D space; it can be easily created
on the basis of a closed shell

7. COMPOUND: a compound is just the combination of two or more elements of
different type, merged into one single element

Apart from these basic geometry types, we can find three special types, which are
DIVIDED DISK, DIVIDED CYLINDER, and SMOOTHING SURFACE. Among
these three special types, the most interesting is the smoothing surface, as it is useful
to create 3D surfaces from a point cloud. Finally, we can find auxiliary geometry
elements such as circles, ellipses, arcs, vectors, sketches, polylines, cylinders, cones,
spheres, cubes, torus, disks, T shape pipes, etc.

4

http://docs.salome-platform.org/7/gui/GEOM/

SALOME makes it possible to import geometries from a wide range of file types:
STL, BREP, STEP,etc. It is possible to import a geometry in STL format (gener-
ated with another 3D modeling software, such as Autocad, SolidWorks, Catia, etc.).

Caution: STL files are ASCII or binary files in which geometry is described by
triangles. Each element of an STL file is composed by the 3 coordinates of each 3
vertex of the triangle, and the 3 components of the triangle’s normal vector. This
means that when we export some geometry elements in STL format, triangles would
be automatically created. When importing this file in SALOME, the geometry is
then composed of triangular faces and that the meshing operations to be imple-
mented afterwards are influenced by this previous and automatic discretization of
the geometry. This results in bad mesh quality. So when importing geometry on a
STL format, a redesigning of it is necessary in order to obtain a good mesh quality.

Other very useful tools of SALOME are the boolean operations on solids. It is pos-
sible to fuse, intersect solid objects, use a solid object as a cutting tool for another
one, etc. It is also possible to perform operations like rotation, translation, etc. on
the geometrical objects.

Generating the mesh

The complete SALOME documentation for the MESH module can be found here:
http://docs.salome-platform.org/latest/gui/SMESH/index.html

Once the geometry is defined, it can be meshed using SALOME. In order to access
the meshing tools, change from the Geometry module to the Mesh module. To create
a mesh from a geometry element, click on Create Mesh, and a window opens (see
Figure 1) in which the following options are available:

e Name: the name of the mesh which is going to be created
o Geometry: the geometry element that we want to mesh

e 3D/2D/1D/0D: it’s the nature of the mesh that we are going to create, it
automatically chooses the correct one depending on the type of element that
we have specified in Geometry

e Algorithm: is the meshing method’s algorithm. Netgen 1D-2D works well for
shell meshing.

http://docs.salome-platform.org/latest/gui/SMESH/index.html

e Hypothesis: here we can specify the hypothesis to be used by the algorithm
method. Clicking on the first icon on the right, we can specify the parameters
of the algorithm. See the SALOME documentation for more details about the
options. For example, for the Netgen 1D-2D algorithm, a window opens with
all the options shown in the Figure 2.

Name Mesh_1 |
Geometry ’7 Shell_ConflB |
Mesh type Any 3 |
3D 2D 1D oD
Algorithm =None> 4,|
Hypothesis | ﬂ Q
Add. Hypothesis | ﬂ Q
Bl &l

Assign a set of hypotheses |

Apply and Close | Apply | Close | Help |

Figure 1: Screenshot of the mesh options window in SALOME.

The most relevant mesh options with the Netgen 1D-2D algorithm are Max Size and
Minimum Size. It is important to note that SALOME usually respects the Max Size,
whereas the minimum size is often ignored due to geometry-mesh adaptation prob-
lems. In addition, the minimum size would be always delimited by the characteristic
size of the geometry, that is to say, the minimum length of the faces composing the
shell. Regarding the option Fineness, Fine works usually well. Once we press OK
and then Apply, an element of mesh type will appear in the Object Browser on the
left side of the screen. The icon will appear with an exclamation mark on it: that
means that the mesh has not been computed yet. To do so, we click on the icon
Compute or we just do right click and we select the option Compute. The algorithm
will now begin iterating until a solution has been found. The mesh is then prepared
to be exported as an STL file in order to be used as an input for CRIXUS.

Caution: STL files for CRIXUS need to be binary, so when exporting the mesh,
make sure you choose the correct file format at the bottom tab.

6

(] Hypothesis Construction
ﬁ Netgen 2D

Arguments Local sizes

Name NETGEN 2D Parameters 7 |
Max. Size 0.768893 £
Min. Size 0.221505 =

[Second Order

Fineness Moderate 3 |

Growth Rate 0.3 |

Nb. Segs per Edge | 15 |

Nb. Segs per Radius | 2 |

[#f Limit Size by Surface Curvature

O Allow Quadrangles

[Optimize

[Fuse Coincident Nodes on Edges and Vertices

OK | Cancel | Help |

Figure 2: Screenshot of the Netgen 1D-2D hypothesis window in SALOME.

3.2 Check the triangles’ dimensions with testTriangle

In order to know the triangle dimensions that we have just created in SALOME, we

can run the TESTTRIANGLE script, available with CRIXUS.
To compile TESTTRIANGLE, use this command in the Crixus.git/scripts di-
rectory:

gcc test-triangle-size.c -1lm -o testTriangle

It is recommended to add the path to the TESTTRIANGLE binary to your $PATH
environment variable. Add this line in ~/.bashrc:

export PATH=/your_path/Crixus.git/scripts/testTriangle:$PATH

where /your_path is your path to the CRIXUS directory.

To work correctly, the distance between particles (dr) of a given simulation should not
be less than the maximum distance between the center and the vertex of a triangle.
This is why TESTTRIANGLE is used to get the maximum value of this magnitude
for all triangles of the main geometry STL file. Run the program with the command:

./testTriangle NameOfTheSTLFile.stl 0.1

Where 0.1 could be any number. The program just checks for each triangle of
the mesh whether the radius is bigger than the specified number, and returns the
maximum and the minimum value found for the radius of each triangle. The user
is supposed to set the dr of the simulation equal or superior to the maximum value
got by TESTTRIANGLE. However, it should not be much bigger, as the number
of neighbors would increase enormously, driving the simulation slower in terms of
computation time.

3.3 Fill the geometry with particles using CRIXUS

CRIXUS is an open source software which performs the initialization of the fluid as
a previous step for GPUSPH. As input, it basically needs the STL files describing
the model geometry and, if necessary, an STL file describing the free-surface and/or
the special boundary meshes. In addition, we have to specify the distance between
particles of the simulation and other options as described below.

Remark: what follows is just a summary of the CRIXUS manual, available in the
README file of CRIXUS.

CRIXUS takes an INI file as an input. This is essentially a text file with .ini
extension where we specify all the necessary STL files and other parameters. The
INT file follows the following structure:

[mesh]
stlfile=salome_box_0.02_with_floating_box.stl
dr=0.017634
fshape=sa_box_fshape.stl

[special_boundary_grids]
meshl=sa_box_sbgrid_1.stl
mesh2=sa_box_sbgrid_2.stl

[fill 0]
option=geometry
xseed=0.5
yseed=0.5
zseed=0.2
dr wall=0.018

[output]
format=hb5sph
name=xcomplete_sa_example

split=yes

Every section of the file starts with the title [XXX] and all following statements refer
to that section. These sections are described below.

Section [mesh]

Here is where the main geometry STL file will be specified. The value of stlfile is the
name of the STL file containing the geometry of the walls and other elements limiting
the movement of the fluid. The value of dr is the distance between particles which
CRIXUS will use to fill the domain with fluid. swap_normals enables the user to
change the orientation of the shell’s faces of the STL file. Faces should be inner-fluid
oriented for the simulation to work correctly. fshape is optional and specifies the free
surface of the fluid which we want the simulation to start with. The geometry of the
surface has to be represented by a STL file, whose name is the value of fshape. If no
initial surface is specify, CRIXUS would fill the domain until the Z limit is reached.
Note that this time the STL file need to be binary, but its meshing is irrelevant since
its only goal is to limit the domain’s filling.

Section [fill__number]|

In this section we tell CRIXUS how to fill the domain. There are two ways of
doing that: we can fill the domain by boxes (option=box) or by a seed point (op-
tion=geometry). The first one just fills the specified box with fluid, whereas the
second one starts filling the domain from the specified seed point and only stops if it
reaches a wall or the free surface. We can call the filling algorithm as many times as
wished, even with different filling option. This is useful when we want to initialize
the fluid in two areas which are not self connected.

Section [special__boundary_ grids|

Here we are able to specify which boundaries of the domain are open boundaries,
that is to say, boundaries where the fluid can get in and out. It is important to note
that these boundaries have to be part of the geometry represented by the STL file
specified as stlfile at the beginning. Then, the open boundaries will be implemented
by specifying the names of their STL files.

Section [output]

In this section we simply choose the format of the output file. This could be either
.h6sph or .vtu format. The first one is a table ready to be used as the ¢ = 0 param-
eters for the simulation in GPUSPH, whereas the second one is the file format that
can be read by ParaView. In a normal situation, in this section we would always

9

write format=h5sph, since this gives us the file to be implemented on GPUSPH. Nev-
ertheless, if we want first to observe the results of the filling processes in ParaView,
we would write format=vtu. The H5SPH files can be opened in HDF, a program
to visualize data in tables. It is important to know, once again, that these are just
the basic options for CRIXUS, sufficient to launch most of the simulations. It could
happen, however, that we needed to specify more options in order to customize our
filling process: in this case, the rest of the information, including the developer’s
e-mail can be found in the mentioned README file.

In order to run CRIXUS, follow these steps:
1. Open the Linux Terminal

2. Place the directory in the folder where we have all the STL files used by
CRIXUS, as well as the INI file:

cd Directory/0f/The/Files

3. Launch Crixus:

Crixus NameOfTheINIFile.ini

4. Once Crixus has finished, copy the resulting H5SPH files to the data_files
directory of GPUSPH. The geometry (i.e., the H5SPH file) is now ready to be
used by GPUSPH.

4 Setting up the simulation

As said before, the simulation setup only involves manipulating the .cu and the .h
files of your problem in order to specify all its parameters before running GPUSPH.
The structure of a problem, is in fact the structure of the .cu file, which could be
defined as follows:

1. GEOMETRY. As the mesh geometry has previously been created by CRIXUS,
we only have to specify the file containing this information: the .h5sph file.

2. SIMULATION PARAMETERS. There are several simulation parameters that
need to be specified, concerning the time, the frequency of output writing or
specific SPH parameters.

10

3. INITTAL CONDITIONS. We need to specify an initial value for each of the
fields to be implemented on each particle.

4. BOUNDARY CONDITIONS. Boundary conditions have also to be stated be-
fore running GPUSPH.

In the following sections we develop each section to help the readers write the .cu
file in order to build their own simulation.

Creating new problems in GPUSPH is done using the XProblem class. XProblem
does much of the work of defining and placing objects of common shape (cubes or
parallelepipeds, spheres, etc) in the domain. These shapes can be solid or fluid
or filled with fluid. Xproblem takes care of filling the appropriate volume(s) with
particles. It can also insert hbsph objects coming from the Crixus preprocessing step.
It has the added feature of taking care of the setup for floating or moving bodies that
are handled through a dynamics library: Project Chrono. It also takes care of the
open boundaries identification, and their type (pressure driven or velocity driven).
Simple initializations can be automatically performed by XProblem, in particular to
prescribe an initial hydrostatic pressure or to change the mass of some objects.

The prescription of the moving bodies velocities can be done in the function:
moving bodies_callback

while an advanced user initialization can be coded in the function:
initializeParticles.

4.1 Problem Examples

The supplied Problem examples are located in the src/problems directory:

e AccuracyTest:
schematic single-fluid dam break case on a flat bottom;

e Bubble:
two-phase flow case, representing the motion of a bubble lighter than the sur-
rounding fluid;

e BuoyancyTest.cu:
a rectangular tank of still water with a submerged torus that is released when
the problem begins;

e DamBreak3D.cu:
schematic single-fluid dam break case with an obstacle;

11

DamBreakGate:
same case as the previous one but the dam break is managed by a vertically
sliding gate;

DynBoundsExample:
double-periodic channel flow;

InputProblem:
several problems are included in this one, all based on the semi-analytical
boundaries.

OffshorePile:
waves propagating in a y-periodic channel and hitting a cylinder;

OilJet:
oil contained in a tube propelled by a piston towards the top and flowing on a
plate;

OpenChannel:
channel flow (with y-periodicity or side walls);

Seiche:
sloshing case;

SolitaryWave:
solitary wave generated by a piston. Possibility to add cylinders on the waves
path;

Spheric2LJ:
schematic dam break case on a obstacle (available measurements) — Lennard-
Jones boundary conditions;

Spheric2SA:
schematic dam break case on a obstacle (available measurements) — semi-
analytical boundary conditions;

StillWater:
still water case;

TestTopo:
example of use of a topography file for the geometry;

12

e WaveTank:
wave generation on an inclined bed;

e (Objects:
example showing how to handle moving objects;

e CompleteSaExample.cu:
generic example for semi-analytical boundaries;

e ProblemExample.cu:
generic example for dynamic and Lennard-Jones boundaries.

Each of these examples can be run by typing make problem=ProblemName, in the
top level GPUSPH directory. It is recommended that the user try them to ensure
everything checks out in terms of CUDA and GPUSPH.

Some of the problems are described with more details below.

BuoyancyTest.cu includes a rectangular tank of still water with a submerged torus
(or by changing object_type, a cube or sphere) that is released when the problem
begins. As time advances, the torus rises through the water column as it has a den-
sity half that of water and then it reaches the free surface and floats.

The output of BuoyancyTest is written every 0.01 seconds into a file in the directory
tests designated by the problem name and the date and time. The files are in VT'U
format that can be read by ParaView. Alternative formats, such as text, can be
chosen by changing the writer in the add_writer command.

ProblemExample. cu shows how a matrix of objects can easily be added to a problem.
The basic problem is a semi-infinite domain with a plane used as a floor (addPlane).
A 4 x 4 array of solid cubes is set-up using the addCube command multiple times.
The GT_FIXED_BOUNDARY (GT=Geometry Type) means that the cubes are solid.
The cubes are also rotated 45 degrees by a rotate command. Then a smaller array
of spheres of fluid are defined. GT_FLUID is used in the addSphere command. Note
for the fluid the setDensityByMass establishes the fluid density.

In DamBreak3D. cumakeUniverseBox (), which has as its arguments two opposite cor-
ners of the project domain—the first corner is the origin. This command sets up the
domain using analytical planes as boundaries. These planes do not require the use of
particles. Water is added to the domain with the addBox () command — note that the
fluid is denoted by GT_FLUID (GT=GeometryType). The fluid behind the dam is 0.4

13

m deep. A variety of obstacles can be added in front of the dam. As provided, there is
just a single object, but by invoking the model with ./GPUSPH --num_obstacles 3
three obstacles will be in front of the dam. These obstacles can be rotated from their
original position by ./GPUSPH --num_obstacles 3 --rotate_obstacle true

Another run-time option includes --wet true or false, which puts a 0.1m layer
of water around the obstacles (and in front of the dam).

CompleteSaExample.cu is an example using the Semi-Analytical boundary condi-
tions (SA). This type of boundary condition was chosen in the SETUP_FRAMEWORK,
which is a class that contains the various simulation choices. For example it contains
boundary<SA_BOUNDARY> as the choice. This example consists of a tank with a free
surface and a submerged inlet. There is a floating cube as well. The example requires
data files that are available on the www.gpusph.org web site:

wget http://www.gpusph.org/downloads/data_files_XCompleteSaExample.tgz

or, in your browser,
www . gpusph.org/downloads/data_files_XCompleteSaExample.tgz

The file (data_files_XCompleteSaExample.tgz) is uncompressed in the root GPUSPH
directory. It will create a directory data_files, containing four .h5sph to set up
the fluid and boundaries and one .stl file to define the cube. (In addition there
are five files that were used to generate the input files using Crixus, an open source
pre-processor). The problem is large and will take some time as it involves the semi-
analytical boundaries. There are 122,642 particles in total, of which 56821 are fluid
particles and the rest are boundary and vertex particles.

4.2 Generic Example

To write your own example, you can use one of the examples as a template, but
they all have a similar format as Example. For example, looking at the text file,
BuoyancyTest.cu in the directory src/problems, we see that, after the appropri-
ate includes, including BuoyancyTest.h, the example is defined as a child of the
XProblem class. Then the setup is done following the structure below.

4.2.1 Framework setup

The SETUP_FRAMEWORK function enables to change the general options of the simula-
tion:

14

www.gpusph.org

SETUP_FRAMEWORK (

kernel <WENDLAND >,

formulation<SPH F1>,

viscosity <DYNAMICVISC>,

boundary <SA_BOUNDARY >,

periodicity <PERIODIC_NONE>,

add_flags<ENABLE_INLET_OUTLET | ENABLE_DENSITY_SUM
| ENABLE MOVING_BODIES | ENABLE FERRARI>

The first item enables to choose the type of kernel:
QUADRATIC

CUBICSPLINE

WENDLAND

GAUSSIAN

The second item enables to choose the type of SPH formulation:

SPH F1

SPH F2

SPH GRENIER

where SPH_F1 is a WCSPH single-fluid formulation, SPH_F2 is a WCSPH
multi-fluid formulation and SPH GRENIER is another mutli-fluid formulation
based on the Grenier formulation.

The third parameter is the viscosity model. There are 5 options for this term:
ARTVISC

KINEMATICVISC

DYNAMICVISC

SPSVISC

KEPSVISC

The fourth parameter is the type of boundary. There are 4 options for this
term:

LJ_BOUNDARY

MK_BOUNDARY

DYN_BOUNDARY

SA__BOUNDARY

15

5. The fifth item makes it possible to enable periodicity:
PERIODIC _NONE
PERIODIC_X
PERIODIC_Y
PERIODIC XY
PERIODIC Z
PERIODIC X7
PERIODIC _YZ
PERIODIC_XYZ

6. Finally, the add_flags term enables the implementation of some extra func-
tions in the simulation, such as the extra Ferrari diffusion term, the in & out
boundaries or the water depth function, which computes the flow depth at a
given set of X, Y:

ENABLE DTADAPT
ENABLE_XSPH

ENABLE_ PLANES
ENABLE_DEM
ENABLE_MOVING_BODIES
ENABLE_INLET OUTLET
ENABLE_WATER_DEPTH
ENABLE_FERRARI

ENABLE DENSITY DIFFUSION
ENABLE_DENSITY_ SUM
ENABLE _GAMMA_ QUADRATURE
ENABLE_INTERNAL_ENERGY

4.2.2 Generic simulation parameters

// Initialization of simulation parameters

m_name = "XCompleteSaExample";

set_deltap(0.02f);

physparams () ->r0 = m_deltap;

// Set world size and origin.

// HDF5 file loading does mnot support bounding boz
// detection yet

const double MARGIN = 0.1;

16

const double INLET _BOX_LENGTH = 0.25;

// stze of the main cube, exzcluding the

// inlet and any margin

double box_1, box_w, box_h;

box_1 = box_w = box_h = 1.0;

// world stize

double world 1 = box_ 1 + INLET BOX_LENGTH
+ 2 * MARGIN; // length ts 1 (boz) + 0.2 (inlet boxz length)

double world w = box_w + 2 * MARGIN;

double world_h box_h + 2 * MARGIN;

m_origin = make_double3 (- INLET BOX_LENGTH - MARGIN,
- MARGIN, - MARGIN);

m_size = make_double3(world 1, world w ,world_h);

// time parameters

simparams ()->tend = 40.0;

simparams () ->dt = 0.00004f;

simparams () ->dtadaptfactor = 0.3;

// open boundary information

simparams () ->numOpenBoundaries=2;

e m_name is the problem name

e deltap is the distance between particles used in the current simulation. For
consistency reasons, it has to be the same that we have set in the INI file for

CRIXUS.

e m_size and m_origin are the size and the origin of the domain (defined in
SALOME in case semi-analytical boundaries are used).

e tend is the time at which the simulation should stop.

e dt is the size of the first time-step or the time-step size if the ENABLE__DTADAPT
flag is not activated.

e dtadaptfactor is the CFL coefficient, usually taken as 0.3.

e numOpenBoundaries is the number of open boundaries in the simulation.

4.2.3 SPH parameters

17

// Initialization of SPH parameters

simparams () ->maxneibsnum = 352;

// buildneibs at every iteration
simparams () ->buildneibsfreq = 1;

// Slightly extend kernel radius for gamma computation
simparams () ->nlexpansionfactor = 1.1;

// Ferrari correction

simparams () ->ferrari = 1.0;

e maxneibsnum is simply a limit for the number of neighbors computed in the
SPH method. It allows the user control the amount of calculus done for each
particle at each iteration. If the mesh of the geometry is coherent with deltap,
the maximum neighbor number should not be over 280, so setting this number
to 300 would be a good choice.

e buildneibsfreq is the neighbor counting frequency, in terms of number of
time steps.

e nlexpansionfactor is the factor increasing the area where we count the neigh-
bor particles for the computation of v with SA boundaries.

e ferrari is the Ferrari diffusion coefficient, which is used to potentiate diffusion
dissipation (0 for no extra diffusion, 1 for the maximum)

4.2.4 Physical parameters

physparams () ->gravity = make_float3(0.0, 0.0, -9.81);
size_t water = add_f1luid (1000.0);
set_kinematic_visc(0, 1.0e-2f);
set_equation_of_state(water, 7.0f, 50.0f);
setHydrostatic ();

This specifies the gravity field, the fluid density (through the add_fluid function),
and the equation of state to be used through set_equation_of_state. In this
function, the first argument is the fluid considered, the second one is the exponent in
the equation of state (usually 7), and the third one is the numerical speed of sound.
The numerical speed of sound can also be set by specifying reference velocity and
water height:

// Reference quantities for speed of sound computation
setWaterLevel (0.5);

18

setMaxParticleSpeed (7.0);

An initial hydrostatic pressure is prescribed in the domain. The code automatically
finds out which is the highest particle in the domain, and initializes the pressure
based on that value. To change the water level to be considered in the initialization,
the function setWaterLevel can be used. To disable the hydrostatic initialization,
set:

m_hydrostaticFilling = false;

4.2.5 Results parameters

// Drawing and saving times
add writer (VTKWRITER, 1le-1f);

The writer (for the output data) is chosen with the add_writer command (usually
the VTK writer, which provides files to be read by ParaView). The file writing fre-
quency (in terms of simulated seconds) can also be specified. That is, in this case,
we will have a VTU file every 0.1 simulated second for example. It is important to
note that, since some simulations could become too large, this frequency is essential
in order to limit the size of the result files.

4.3 Building and initializing the particle system

With classical boundary conditions:

With DYNAMIC or LENNARD-JONES boundary conditions, the problem geom-
etry and the filling with particles is done inside GPUSPH. An example of gen-
eration of arrays of cubes and spheres in the computational domain is given in
XProblemExample.cu. The geometrical objects can be added using functions like:

addCube (GT_FIXED BOUNDARY, FT_BORDER,
Point (X,Y,Z),cube_size);

The geometry type (GT) may be fluid, fixed boundary, open boundary, floating body,
moving body, plane, and testpoint, eg. GT_OPENBOUNDARY. They are enumerated in
XProblem.h.

GPUSPH has a variety of geometrical objects that can be used to generate Problems.
The geometrical objects are defined in the src/geometry folder. The XProblem class
makes it possible to rotate or shift them after they were defined. They can be assigned
a mass and a center of gravity. In two dimensions, the objects (in C++ terms, classes)

19

include Point, Vector, Segment, Rect (rectangle), Circle. In three dimensions, there
are additional objects: Cone, Cube, Cylinder, Sphere and TopoCube. Using these
objects, many types of Problems can be constructed. For the three dimensional case,
the bottom (bathymetry) of the problem domain can be input via a file, using the
TopoCube object and a dem file.

The Point object is usually used as a three dimensional object containing the location
of a point in three dimensions. All numbers are double precision. Associated with
the Point object are functions that determine distance (or distance squared) of a
point from the origin or the distance from another point.

A Vector object is a three dimensional double precision object of three space coor-
dinates, x,y, and z. Vector has a number of associated and useful functions, such as
Vector.norm, for the length of the vector.

The Cube object is really a parallelepipeds, defined by an origin, given by a Point
object, and three vectors are used to define the size and orientation of the cube.
For example, here is a box that delimits an experimental domain (taken from the
DamBreak3D.cc example), called experiment box.

experiment_ box = Cube(Point (0, 0, 0),Vector(1.6, 0, 0),Vector(0, 0.67, 0), Vector(0,
0, 0.4));

This box has a corner located at the origin of the domain, with (z,y, z) = (0,0,0),
and three vectors from this point describe the cube, which happens to be 1.6 m long
in the x direction, 0.67 m long in the y direction, and 0.4 in the z direction.

So far we have only defined the cube experimentboz, we have given it no properties.
For this particular box, which bounds the computational domain, its bottom and
four sides will be set as boundary particles, as we will see later.

Associated with the Cube object are commands to fill the inner part of the box with
particles, or to fill the boundaries as with boundary particles.

The Cylinder object is defined by a point that determines the location of the center
of the disk that forms its base, a vector that defines the radius about the point, and
then another vector that defined the height of the cylinder. The cylinder object also
has fill and FillBorder commands. For example,

jet = Cylinder(Point(0.,0.,0.), Vector(0.5,0.,0.), Vector(0.,0.,1.));
would define a cylinder located at the origin with radius 0.5 and height 1.0 with

the name jet. The Cylinder object can be used to define a cylindrical column of
fluid, using the jet.Fill command for the defined cylinder, jet. The mass of the

20

particles forming jet is set by jet.SetPartMass function. If the jet was supposed
to be a pipe, the jet.FillBorder, with suitable arguments, would use boundary
particles for the pipe called jet. Two of the arguments (Booleans: true or false) of
the method determine if the cylinder is closed on the bottom or the top.

The Sphere object is defined by a point that determines the center of the sphere,
a vector that determines its radius (and equatorial normal), and a vector pointing
to the sphere’s pole. For a sphere, these two vectors have equal magnitude and are
normal to each other. The Sphere object uses the Circle object in layers to create a
sphere.

A TopoClube object is used to define a domain that has the bottom of the cube pro-
vided by a data file. The geometry of the TopoCube is determined the same was as
in the Cube object. The data file has a strict format; for example:

north: 13.2

south: -0.2

east: 43.2

west: 0.54

rows: 134

cols: 432

{data in 134 rows with 432 entries per line; numbers space separated }

The numbers following the compass directions are the length of the domain de-
scribed by the data, in meters. (North and south correspond to the +Y axis and the
-Y axis, while E and W are aligned with the +X and -X directions.) The internal
variables (see problem TestTopo.cc) nsres and ewres are grid resolutions determined
by nsres = (north — south)/(nrows — 1) and ewres = (east — west)/(ncols — 1).

The data file is read using the TopoCube.SetCubeDem function, which is called with
arguments (float H, float *dem, int ncols, int nrows, float nsres, float ewres, bool
interpol), where H is the depth of the cube, *dem points to the array of bathymetric
data in the data file, ncols and nrows are the number of columns and rows in the
dem data set, nsres and ewres is the spacing between the bathymetric data in the
north/south direction and the east/west direction, and interpol (not the police) is
the boolean variable for interpolation. FillBorder will fill a face with particles—the
particular face is determined by face num, which takes on the values of (0,1,2,3),
for the front face, the right side face, the back face, and the left side face (facing the
-z direction) for a rectangular box.

Other objects can be defined and added to the source directory to allow for additional
flexibility.

21

With semi-analytical boundary conditions:

The fluid initialization performed by CRIXUS and stored in the H5SPH files is used
by GPUSPH to start the simulation. The specification of the file containing the fluid
particles occurs with the following statement:

addHDF5File (GT_FLUID, Point(0,0,0),
"./data_files/XCompleteSaExample/O.my_project.fluid.hbsph",
NULL) ;

The specification of the file containing the special boundary particles occurs with the
following statement:

// Main container

GeometryID container =

addHDF5File (GT _FIXED BOUNDARY, Point(0,0,0),
"./data_files/MyProject/0.my_project.boundary.kentO.hb5sph",
NULL) ;

disableCollisions (container);

// Inflow boundary

GeometryID inlet =
addHDF5File (GT_OPENBOUNDARY, Point (0,0,0),
"./data_files/MyProject/0.my_project.boundary.kentl.hb5sph",
NULL) ;

disableCollisions (inlet);

GeometryID cube =
addHDF5File (GT_FLOATING_BODY, Point (0,0,0),
"./data_files/MyProject/0.my_project.boundary.kent2.hb5sph",
"./data_files/MyProject/MyProject_object_file.stl");

// output forces on the cube

enableFeedback (cube) ;

// set the cube denstity

setMassByDensity (cube, 500);

In order to specify whether the open boundary is pressure driven or velocity driven,
the following lines are used:

setVelocityDriven(inlet, 1);
setVelocityDriven (outlet, 0);

22

Once again the GT (GeometryType) can be fluid, fixed boundary, open boundary,
floating body, moving body, plane, or testpoint, eg. GT_OPENBOUNDARY.

5 Running your simulation

To run your simulation you first need to compile GPUSPH for your problem. To do
so, in the GPUSPH folder, run:

make problem=MyProblem

Remark:

e If you are running a multi-node simulation, do not forget to add the option
mpi=1.

e [f your are running a simulation with moving objects, do not forget to add the
option chrono=1.

See the installation guide or run make --help for the complete list of compilation
options.

6 Visualizing the results

The results of the simulation are stored in a directory under tests, named after the
used Problem and the date of execution (e.g. tests/DamBreak3D_2014-6-12T13h23).
Data files (found in a data sub-directory of the specific test directory) are normally
written in VTK Unstructured Grid format (.vtu) and can be visualized with Par-
aView.

The files necessary to hotstart the simulation are also stored in the
tests/MyProject_2014-6-12T13h23/data folder.

The run directories and their content are preserved until manually removed. The
scripts/rmtests auxiliary script can be used to clean up the tests directory.

A tutorial to start using ParaView is available here:
http://www.paraview.org/Wiki/Beginning ParaView

To open a file, click on the first upper icon on the left. The VTU files are named
as PART_00025.vtu where the number corresponds to the output files numbering.
PARAVIEW allows the user to visualize at the same time all the VTU files, just
clicking on VTUinp.pvd or selecting the all set of PART_. .vtu files (see the Figure

23

http://www.paraview.org/Wiki/Beginning_ParaView

3). The set of VTU files can be analyzed as a movie by clicking on the play buttons
at the top of the screen.

Open File: (open multiple Files with <ctrl> key.)

Look in: [;home}nomade{SOFl’WAREfgpusphftestsNanneLaRanceConflRestart2_2l]16—[)3—14T1l]h16.!data£ |v] & ¢ A B
[Home Filename |
~| | energyitxt
|| 10flux.txt

D.P

il data
il data
il data
il data
il data

File name: [WUiﬂp.p\fd]

Files of type: [Supported Files (*.cml *.Flash *.flash *.boundary *.hierarchy *.ncdf *.nc *.pop.l|v]

Figure 3: Screenshot of the window for file opening in PARAVIEW.

After selecting the VTUinp.pvd or the desired PART files, a window appears at the
bottom-left part of the screen. Press Apply to confirm the file opening: the set of
particles appears at the center of the screen. When pressing Apply, a window opens
with three main sections: Properties, Display and Information. The second one
enables the user to decide which field should be printed (first tab of the section
Coloring). With the Show option, we can make the color legend appear, and with
the Edit one, we can customize it. Below this section we find a set of options that
enables us to manage the plotting as desired. The Information section provides
information like the total size of the dataset.

Below some useful filters of ParaView are listed. The filters are all available through
the Filters tab at the top of the screen, in the section Alphabetical, or through
shortcuts in the main window.

e Find Data
Find data by scalar value makes it possible to select particles on the basis of
the value of their fields. When activating a filter a window opens. In order to

24

select the particles we want, in that window (see the Figure 4), we have to set
the Find tab on Point in that window. In the left tab we can choose the desired
field, whereas in the right one we can set the value (note that there are several
conditions: >=, <=, =, between, etc.). Once we have set all the options, we
press on Run Selection Query and we will be able to see a table containing all
the particles that match the imposed condition. In addition; we will be able
to see these particles on the Layout, colored with the chosen Selection Color.

0 Find Data

Find [Point |v] from [VTUinp.p\.rd |v]

[Pressure |v] [is >= |v] [1e4]
I Run Selection Query |
Query Results

Pressure Density Mass Gamma TKE Epsilon | ==
0 10712.7 1004.23 0.0145071 0 0.00114127 0.000191994 0| |
1 10639.6 1004.2 0.0145071 0 0.00113772 0.000192972 0
2 10560.2 1004.17 0.0145071 0 0.00113586 0.000194064 0
3 10472.5 1004.14 0.0145071 0 0.0011362 0.000195411 0
4 10376.2 1004.1 0.0145071 0 0.00113928 0.00019718 0 @
3 AN3ITA D L WaTal. Wal=4 A NATASATY n N NANTITAERY A NANNTANEIS
i | I

. Selection Color | Labels [None |'] @ Lzbel Color
[Extract Selecti onl [Plot Selection Over Timel Freeze Selection ¥ Close

Figure 4: Screenshot of the Find Data window in PARAVIEW.

e Clip

In order to visualize a section of the domain, since the fields are discrete, we
are obliged to perform a Clip. The Clip window is shown in the Figure 5.
By changing the Clip Type tab into Box, it is possible to set the dimensions
and position of the box. It is important to click on the Inside Out button to
select the particles that are inside the box. Once ready, click on Apply to get
a new Clip object in the Pipeline Browser. You can manipulate it in the same
way as the main dataset. You can also perform clips with planes.

Remark: the Slice option does not work because the flow fields are not con-
tinuous. To make a slice, we currently apply a thin box-type clip to the dataset.

25

Properties | Information

Properties
(5 apply ||) reset | 3¢ Delete]
[Search..]

[= Properties (Clipl)

Clip Type Box -
(%] Show Box
Translate[0][0][0]
Rotate [0 [0 [0 |
Scale (1 [[|

Reset Bounds

[%] Inside Out
["] Crinkle clip

[= Display g

Figure 5: Screenshot of the Clip window in PARAVIEW.

e Other useful filters are the Threshold, Calculator, Scatter Plot, etc.

Saving your results

Save Data

You can generate a table in CSV format containing the values of the fields for each
particle for each PART file or filtered dataset. If you click on File/Save Data, a
window appears where you can set the name and other options for the result file.
There are many options for the format of the file, but the recommended one is .csv,
as you can visualize it on the Linux LibreOffice Calc or Windows Excel. In addition,
you can change the format of the file to .dat in order to open it with a text editor.
Save State

You can save your PARAVIEW postprocessing state in a file by clicking on File/Save State.
The state file is in ascii format so you can edit it with a text editor. You can also
apply it to other datasets than the original one, which is very useful in order to avoid
having to repeatedly perform the same filtering operations.

26

	Introduction
	Anatomy of a project
	Specific pre-processing for semi-analytical boundaries
	Preparing the geometry with SALOME
	Check the triangles' dimensions with [language=sh]testTriangle
	Fill the geometry with particles using CRIXUS

	Setting up the simulation
	Problem Examples
	Generic Example
	Framework setup
	Generic simulation parameters
	SPH parameters
	Physical parameters
	Results parameters

	Building and initializing the particle system

	Running your simulation
	Visualizing the results

