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Abstract 

Background/Objectives 

Traditional statistical methods (TSM) are widely used in epidemiologic research. Novel machine 

learning (ML) approaches have the potential to expand clinical understanding and further facilitate 

complex statistical analysis. This project aims to compare the accuracy, strengths, and limitations 

of traditional statistical methods and machine learning approaches for predictive modeling of 

clinical intervention outcomes in a synthetic electronic health records (EHR) dataset based on 

United States veterans.  

Methods 

The data was cleaned and harmonized, descriptive statistics were generated and assessed, 

imputation was performed, and multiple models were trained and validated. The machine learning 

models included support vector machine, decision tree classifier, boosted trees, and random 

forest. These were compared against logistic regression, a well-known traditional statistical 

algorithm for data analysis. 

Results 

Models performed comparatively, with subtle differences in accuracy, precision, and recall. The 

random forest and boosted tree models performed marginally better than logistic regression and 

decision tree classifier models. Findings for this project indicate that both ML and TSM models 

perform similarly, with regard to the size and scope of the dataset used. 

Discussion 

This work expands on existing knowledge regarding the use of ML in epidemiologic and public 

health research. Despite their limitations, predictive models have significant potential to improve 

clinical decision-making in the context of precision medicine. The closeness of model 

performance may not be present when large datasets are used.  



Introduction 

Epidemiologic research primarily relies on traditional statistical methods (TSM) to 

adequately assess causal relationships between variables of interest.1 In recent years, 

epidemiologists have begun to incorporate an application of artificial intelligence (AI), known as 

machine learning (ML), into their analyses.2 With the new age of ML and AI, these sophisticated 

algorithmic models hold great potential for improving not only our understanding of causal 

relationships, but also common practices in epidemiologic research. Machine learning algorithms, 

as the name implies, are designed to continuously learn and improve based on the data provided 

to them.3,4 Several types of ML exist, perhaps the most common of which are supervised and 

unsupervised learning. Supervised learning models are given a training dataset with clear 

parameters. The ML techniques used in the scope of this project are supervised learning models. 

Unsupervised learning is a type of ML where clear parameters are not provided, and the algorithm 

identifies associations and naturally occurring patterns. Reinforcement and Deep Learning are 

other types of Machine Learning.3  

ML techniques have recently been employed to predict mortality outcomes related to 

peripheral artery disease, non-metastatic prostate cancer, and heart failure with preserved 

ejection fraction.5-7 Additionally, various types of ML algorithms—Including support vector 

machine, decision tree, and random forest—have been employed at various stages of the drug 

discovery process and have shown promise in improving current clinical trial methodology.4 The 

use of ML in other sectors of public health research and practice, such as policy and surveillance, 

is widespread.8,9 To increase understanding of the commonalities, differences, and potential of 

both statistical approaches, we will conduct a comparative analysis of multiple ML model types 

and binary logistic regression.  

Prediabetes, a condition characterized by impaired glucose levels, is of growing global 

concern.10 It is commonly known as a precursor to type 2 diabetes mellitus (T2DM). Despite 

substantial research into T2DM, additional research into pre-diabetic conditions is needed to 



understand the multifactorial etiology of the disease and its progression.11 Though a consensus 

has not been reached, diet-based interventions for the management of diabetes have been 

explored.12,13 This project aims to utilize data from patients with prediabetes, which can expand 

upon existing research into associations between diet interventions and the pre-diabetic state. 

Specific Aim 1: To compare machine learning approaches and traditional statistical 

analysis methods using synthetic EHR data for the prediction of a five percent minimum 

reduction in weight following a ‘dietary counseling and surveillance’ intervention for 

individuals at risk of progression to diabetes from prediabetes. Binary logistic regression 

and random forest, decision tree classifier, support vector machine, and boosted trees machine 

learning models will be trained on the synthetic dataset and pre-specified outcome metrics will be 

compared. The models aim to accurately predict a 5% reduction in weight or, conversely, a weight 

gain or reduction of less than 5%, for individuals who underwent a ‘dietary counseling and 

surveillance’ intervention. It is hypothesized that ML approaches will outperform logistic 

regression in the primary metrics used for comparison - accuracy and the area under the receiver 

operating characteristic (AUROC) curve.  

Specific Aim 2: To produce a functional and highly performing model for single-

patient predictions of a five percent minimum reduction in weight following a ‘dietary 

counseling and surveillance intervention. The highest-performing model is planned to be 

integrated into the PredictMod platform for clinical use. Accuracy will be measured by the fewest 

numbers of false positive and false negative predictions when the model is tested, as illustrated 

by a confusion matrix.  

 

Methods 

A comparison of ML and TSM was conducted using synthetic data made available from 

the MDClone platform (www.mdclone.com). This data is representative of real veteran patient 

data gathered from Veterans Affairs (VA) medical centers across the United States.14 The 

http://www.mdclone.com/


synthetic dataset is comprised of individuals at least 18 years old with prediabetes and a body 

mass index (BMI) of greater than or equal to 30 who underwent a ‘dietary counseling and 

surveillance’ intervention. The outcome of interest is responder status (responder(R)/non-

responder (NR)) which is defined as a 5% reduction in weight within the 6-month timeframe 

following the initiation of the ‘dietary counseling and surveillance’ intervention. This intervention 

is associated with ICD-10 code Z71.3. 

The MDClone dataset consists of 19,902 observations and 27 variables, which are listed 

in Table A1 of the appendix. A query to generate the synthetic data was created in MDClone and 

the data was extracted from the platform and then cleaned in preparation for analysis. For many 

of the variables in MDClone, data points are not readily available when building the query using 

the associated Logical Observation Identifiers Names and Codes (LOINC) values. For example, 

a LOINC search for Hemoglobin A1c (HbA1c) would use the code 4548-4, but many HbA1c levels 

are associated with the keyword “HbA1c” or “Hemoglobin A1c” instead. So, to obtain a large 

quantity of high-quality observations for each patient, an additional variable based on an internal 

keyword search was generated. The data points for both columns were merged during cleaning, 

taking the keyword search as a priority. 

Each instance of synthetic data created in MDClone is accompanied by documentation of 

the comparative statistics to the real MDClone patient dataset. Prior to data cleaning, the 

comparative statistics were examined to confirm the synthetic data is representative of the real 

patient data.  

Statistical Analysis Software (SAS, Cary, NC) version 9.4 and Visual Studio Code version 

1.87 were used for data cleaning, analysis, and model training. This process included renaming 

the extracted variables according to the existing PredictMod data dictionary and mapping 

properties. Text string values, such as race and ethnicity, were replaced with categorical integer 

values and converted to binary columns via one-hot encoding. The response status was 

calculated by comparing the weight at the pre-intervention and six-month follow-up time intervals. 



Unused variables were removed from the dataset. The clean dataset is maintained as a comma 

separated values (CSV) document within the PredictMod team’s private SharePoint site. 

Once the data has been cleaned and prepared for model training, it was used to train both 

the ML and TSM models. The model training process was as follows:  

Descriptive statistics were generated, including means and standard deviations for 

continuous variables as well as frequencies and percentages for categorical variables. The 

distribution of each variable was evaluated. The descriptive statistics were compared against the 

ranges expected from each data property as described in the PredictMod data dictionary. The 

ranges in the data dictionary are based on LabCorp values and the VA’s CIPHER tool. This was 

done to ensure data quality and to obtain an accurate understanding of the cohort characteristics.  

For some variables, extreme or unrealistic values were identified as erroneously queued from the 

MDClone database. This was not unexpected and likely due to unassociated keywords or 

mistakes when the data was entered into the EHR system. To ameliorate this, values outside of 

the expected ranges determined in the data dictionary for calcium, cholesterol, carbon dioxide, 

creatinine, high-density lipoprotein, heart rate, platelet, low-density lipoprotein, protein, and 

sodium were dropped prior to imputation. The descriptive statistics for the dataset with the 

dropped outliers (dataset v2.0) are described in Table 1.  

The descriptive statistics were also stratified based on response to the intervention. For 

dataset v2.0, these are described in Table 2. Stratified descriptive statistics for the dataset with 

erroneous outliers (dataset v1.0) are available in the Appendix (Table A2). Missing values were 

resolved via nearest neighbor (KNN) imputation. Multiple imputation was initially done, but likely 

due to the complexity of the data, it generated impossible, even negative values for certain 

variables. Nearest neighbor imputation was recommended by members of the PredictMod team 

and it performed well. This method of imputation replaces missing values with predictions based 

on neighboring rows with existing values for the missing cell. Descriptive statistics (of the full 

variables and stratified by status) were compared to verify that the imputation did not generate 



impossible values. Descriptive statistics for the dataset that included imputed values (dataset 

v3.0) are described in Table 3.  

Model fitting was initially conducted using logistic regression, via a stepwise method at 

both 5% and 1% thresholds to enter/stay in the model. These fitted variables were compared to 

feature selection conducted using two machine learning algorithms: decision tree classifier and 

random forest. A summary table of model fitting techniques is shown in Table 4. Both of the 

decision tree classifier and random forest techniques included variables identified as 

multicollinear, so the logistic regression selections were used to train the fitted models.  

A logistic regression (LOGR) model was compared with the following machine learning 

algorithms: decision tree classifier (DTC), random forest (RF), boosted tree (XGB), and support 

vector machine (SVM). Decision trees are an early ML method and are known for their user-

friendly, tree-based classification approach.15,16 Random forest is an ensemble learning method 

that creates multiple decision trees from random subsets of the data.17 Support vector machines 

are skilled at classifying data using hyperplanes designated by mathematically theorized 

margins.18 These ML model types have been found to be high performing and suited for prediction 

modeling.7,15,19-21 Given that logistic regression is a well-known and widely used predictive 

modeling approach for epidemiological research, it is a good fit for comparison against ML 

models.22-26 Direct and stepwise model fitting techniques were employed to ensure the highest-

quality models were used in the comparison. Model training was first done for the tree-based 

models (DTC, RF, XGB) on the dataset with dropped outliers (v2.0). These models can handle 

missing data and can potentially identify important predictors that would otherwise be undetected. 

Additional models for all algorithms were trained on the imputed (direct fit) dataset (v3.0), and 

then again as threshold model fitting techniques of 5% (0.05 fit) and 1% (0.01 fit) were employed. 

Logistic regression assumptions of no perfect collinearity and linearity were tested prior to model 

training.27 Multiplicative interaction analysis was conducted to identify potential interactions. The 



interactions explored were selected based on residual regression plots from the logistic 

regression models that indicated non-linear or complex relationships.  

The models were assessed to ensure high-quality discrimination and calibration. 

Discrimination was determined by reviewing the C-Statistic and the AUROC curve, which have 

been used to successfully identify the quality of logistic regression model discrimination.26,28,29 

Calibration was assessed using the Hosmer-Lemeshow statistic and Brier score. These 

techniques for reviewing calibration are widely used in biostatistics research.30,31 Prediction 

accuracy, and AUROC curves were the primary metrics used to compare the ML and TSM 

models. Confusion matrices for each model were also considered in the comparison. In addition 

to the model training, hyperparameter tuning techniques such as random search, grid search, 

cross validation, and class weights were employed to the best performing model (v2.0, v3.0 

(direct), 1% fit, or 5% fit) for each algorithm before comparison. 

The ML and TSM models were compared across several metrics. Accuracy indicates how 

many outcomes were correctly predicted. The area under the receiving operator curve (AUROC) 

is indicative of how well the model differentiates between responder/non-responder status. 

Training and testing scores indicate the accuracy of the model on the training portion of the data 

(75%) and the testing portion (25%). Precision is the proportion of responders that were correctly 

predicted out of all predicted responders. Recall, otherwise known as sensitivity, indicates the 

model’s ability to correctly predict responders out of all actual responders. The f1-score is a metric 

used to balance precision and recall. Higher f1-scores are desirable when assessing model 

performance. Confusion matrices are another metric used to assess model accuracy. They 

categorize the number of predicted and actual outcomes in the training dataset into true positive 

(lower right), false positive (upper right), true negative (upper left), and false negative (lower left) 

sections.  



Given the synthetic nature of the dataset, institutional review board (IRB) review was not 

required as part of this project. Nevertheless, the proposed project was submitted to the Student 

Oversight Portal for review and they determined IRB review was not necessary. 

 

Results 

Weight and race were identified as potential confounders based on a comparison of the 

variable distribution when stratified by responder/non-responder status. With regard to model 

fitting, the 5% threshold fit included weight, hematocrit, race, heart rate, blood urea nitrogen, 

diastolic blood pressure, chloride, carbon dioxide, sodium, cholesterol, low-density lipoprotein, 

and potassium. The 1% threshold fit included weight, hematocrit, race, heart rate, blood urea 

nitrogen, diastolic blood pressure, chloride, and carbon dioxide. Model fit diagnostics did not 

indicate any high-leverage outliers. Model fit statistics are based on the logistic regression model. 

Based on Cook’s D statistics, there were several influential observations; this was likely due to 

the number of observations and the number of variables included in the dataset. The model fit 

histogram and Q-Q plot indicated a normal residual distribution. Residual regression plots for 

blood urea nitrogen, chloride, creatinine, fasting glucose, HbA1c, sodium, and triglycerides 

showed signs of heteroscedasticity. BMI, weight, and height showed significant signs of 

multicollinearity (variance inflation factors of 17.18, 27.98, and 12.78, respectively), which was 

expected. Chloride and sodium showed moderate signs of multicollinearity (variance inflation 

factors of 6.73 and 6.00, respectively). Multiplicative interaction analysis revealed significant 

interactions between weight and chloride (p-value 0.001) and weight and blood urea nitrogen (p-

value 0.023). The Hosmer-Lemeshow Goodness-of-Fit test was conducted for the logistic 

regression model and was not significant (p-value 0.45), indicative of sufficient calibration. The 

brier score of 0.17 further substantiated this claim.  

 All models performed comparatively. RF had the among the highest test and train scores 

at 96% and 79%. SVM had the lowest with 69% and 70%. The LOGR model had the highest 



AUROC at 56%. In terms of accuracy, the RF and XGB models performed the best with 79%. 

SVM performed the worst at 70%. The RF model performed the best in precision and recall with 

scores of 73% and 79%, respectively. XGB and LOGR both had precision scores of 71%, with 

XGB having a slightly higher recall (79%) compared to LOGR (78%). For f1-score, XGB and 

LOGR performed best at 71%, DTC and RF had 70%, and SVM had 69%. While many of these 

scores were quite similar, the RF and XGB models outperformed the other models in 71% of the 

performance metrics. A summary of the model comparison is shown in Table 5. Confusion 

matrices for each of the models are shown in Figure 1. The model with the highest number of true 

positives was SVM with 187, as compared to 4 from the RF model. The model with the highest 

number of false positives was SVM with 617, as compared to 4 from the RF model. This indicates 

that the SVM model had the highest number of both correctly and incorrectly identified 

responders. With regard to false negatives, the RF model performed the worst and incorrectly 

identified 1052 non-responders, compared to SVM’s 869 incorrectly identified non-responders. 

On the other hand, the RF model correctly identified the most non-responders, with 3916 correct 

predictions. The SVM model performed poorly, correctly identifying only 3303 non-responders. 

Due to the nature of these interventions and the overall positive benefits associated with dietary 

counseling, the model’s ability to correctly identify non-responders (true negatives) holds slightly 

more weight than the ability to identify responders (true positives). Health risks associated with 

withholding dietary counseling have greater potential to be damaging than those associated with 

recommending an improved diet. These results indicate that, with regard to the MDClone dataset 

in question, both ML and TSM models perform similarly when predicting intervention outcomes. 

 

Discussion 

This comparison reports on methods used for predictive modeling in an epidemiological 

context. The scope is a descriptive effort to obtain baseline characteristics of both ML and TSM 

model accuracy and understand the benefits and drawbacks of the algorithms used, as well as a 



functional model for single-patient predictions. The use of ML in epidemiologic research can be a 

highly efficient and effective tool, as long as the appropriate algorithms are used, and their 

parameters are well-understood. These types of models have significant potential to improve 

public health research as well as clinical decision-making in the realm of precision medicine.  

This project incorporates the use of high-quality data prepared for model training through 

an established data ingestion pipeline, as well as a critical analysis of several ML and TSM 

models. While this analysis is not exhaustive, it is inclusive of highly relevant algorithms used for 

predictive modeling in the context of public health research. Quality control measures imposed 

on the data used and models generated strengthened the validity of the results.  

Limitations for this project include the generalizability of results outside of veteran patients 

comprising the MDClone database, the broad interpretations of the ‘dietary counseling and 

surveillance’ intervention of interest, and limitations associated with the algorithms used. The tree-

based models (DTC, RF, and XGB) are prone to overfitting and there was strong evidence of this 

prior to model tuning. Unlike the tree-based models, SVM and LOGR models do not handle 

missing data well. SVM models are computationally more exhaustive than tree-based classifiers, 

and hyperparameter tuning of the model did not yield improved results. While both ML and TSM 

models performed adequately on the existing dataset, this balance may shift when scaling up to 

larger datasets. The following future directions for this project are recommended: utilizing a 

generative adversarial network to expand on the existing synthetic data and compare model 

performance on a larger scale, as well as a further analysis of the features included and potential 

biological pathways present. Additional hyperparameter tuning may occur prior to model 

integration in the PredictMod tool.  



Table 1. Descriptive statistics for synthetic dataset, from the MDClone database, n=19,902. 
Variable Unit N Mean (Std.) Freq. (%) 

Age yrs 19,902 57.90 (12.35)  
Diastolic BP mm[Hg] 19,238 78.42 (9.56)  
Systolic BP mm[Hg] 19,238 130.06 (14.86)  
BMI kg/m2 19,902 36.89 (5.98)  
BUN mg/dL 17,193 15.95 (7.42)  
Calcium mg/dL 16,281 9.31 (0.49)  
Chloride mmol/L 17,259 103.68 (3.31)  
CO2 mmol/L 15,582 26.21 (2.62)  
Creatinine mg/dL 16,471 1.04 (0.35)  
Fasting Glucose mg/dL 157 115.27 (33.51)  
HbA1C % 16,329 6.21 (0.81)  
HDL mg/dL 14,078 43.84 (12.05)  
Heart Rate bpm 19,110 77.86 (13.89)  
Height in 19,902 68.73 (3.60)  
Hematocrit % 15,904 43.00 (4.36)  
LDL mg/dL 13,903 107.70 (37.03)  
Platelet Count 10*3/uL 15,336 247.80 (62.67)  
Potassium mmol/L 17.263 4.15 (0.41)  
Protein g/dL 14,266 7.30 (0.54)  
Sodium mmol/L 17.234 139.31 (2.64)  
Total Cholesterol mg/dL 14,971 177.77 (42.64)  
Triglycerides mg/dL 14,911 160.98 (114.34)  
Weight lbs 19,902 247.09 (48.02)  
Sex  19,902   
   Male    15,665 (78.71) 
   Female    4,232 (21.26) 
   Unknown    5 (0.03) 
Race  19,902   
   American Indian or Alaska Native   80 (0.40) 

    Asian    107 (0.54) 
   Black or African American   5,613 (28.20) 
   Native Hawaiian or Pacific Islander   90 (0.45) 

    White    10,406 (52.29) 
    Unknown    3,606 (18.12) 
Ethnicity  19,902   
   Hispanic or Latino   1,644 (8.26) 
   Not Hispanic or Latino   18,258 (91.74) 
Smoking Status  19,902   
   Yes    9,336 (46.91) 
   No    10,566 (53.09) 
Status  19,902   
     Responder    4,297 (21.59) 
     Non-Responder    15,605 (78.41) 
Abbreviations: N=Sample Size, Std=Standard Deviation, Freq=Frequency, %=Percentage, BP=Blood Pressure, BUN=Blood Urea Nitrogen, 
CO2=Carbon Dioxide, HbA1C=Hemoglobin A1C, HDL=High-Density Lipoprotein, LDL=Low-Density Lipoprotein, yrs=Years, mm[Hg]=millimeters 
of mercury, kg/m2=Kilograms per meter squared, mg/dL=milligrams per deciliter, mmol/L=millimoles per liter, 10*3/uL=thousands per microliter 
of blood, g/dL=grams per deciliter , lbs=Pounds 



Table 2. Descriptive statistics for dataset v2.0 (dropped outliers) stratified by status. Based on 
synthetic data from the MDClone database, n=19,902. 

Variable Unit Responder Non-Responder 
Mean (Std.) Freq. (%) Mean (Std.) Freq. (%) 

Age yrs 58.03 (12.61)  57.86 (12.28)  
Diastolic BP mm[Hg] 77.98 (9.73)  78.54 (9.51)  
Systolic BP mm[Hg] 129.79 (14.77)  130.13 (14.89)  
BMI kg/m2 37.44 (6.49)  36.74 (5.83)  
BUN mg/dL 16.43 (7.63)  15.81 (7.35)  
Calcium mg/dL 9.30 (0.50)  9.31 (0.49)  
Chloride mmol/L 103.53 (3.45)  103.73 (3.27)  
CO2 mmol/L 26.10 (2.67)  26.25 (2.60)  
Creatinine mg/dL 1.06 (0.41)  1.04 (0.33)  
Fasting Glucose mg/dL 108.57 (22.85)  116.92 (35.52)  
HbA1C % 6.22 (0.84)  6.20 (0.81)  
HDL mg/dL 43.59 (12.66)  43.91 (11.89)  
Heart Rate bpm 78.64 (14.24)  77.64 (13.78)  
Height in 68.84 (3.64)  68.70 (3.59)  
Hematocrit % 42.68 (4.62)  43.10 (4.28)  
LDL mg/dL 106.41 (38.11)  108.06 (36.72)  
Platelet Count 10*3/uL 248.86 (64.27)  247.50 (62.21)  
Potassium mmol/L 4.17 (0.42)  4.15 (0.41)  
Protein g/dL 7.29 (0.55)  7.31 (0.54)  
Sodium mmol/L 139.25 (2.77)  139.32 (2.60)  
Total Cholesterol mg/dL 175.46 (42.86)  178.40 (42.56)  
Triglycerides mg/dL 162.08 (110.61)  160.68 (115.34)  
Weight lbs 251.92 (53.85)  245.76 (46.20)  
Sex      
   Male   3,425 (79.71)  12,240 (78.44) 
   Female   872 (20.29)  3,360 (21.53) 
   Unknown   0 (0.00)  5 (0.03) 
Race      
   American Indian or Alaska Native  17 (0.40)  17 (0.40) 

    Asian   19 (0.44)  88 (0.56) 
   Black or African American  1,070 (24.90)  1,070 (24.90) 
   Native Hawaiian or Pacific Islander  13 (0.30)  13 (0.30) 

    White   2,393 (55.69)  8,013 (51.35) 
    Unknown   785 (18.27)  2,821 (18.08) 
Ethnicity      
   Hispanic or Latino  350 (8.15)  350 (8.15) 
   Not Hispanic or Latino  3,947 (91.85)  3,947 (91.85) 
Smoking Status      
   Yes   2,013 (46.85)  7,323 (46.93) 
   No   2,284 (53.15)  8,282 (53.07) 
Abbreviations: N=Sample Size, Std=Standard Deviation, Freq=Frequency, %=Percentage, BP=Blood Pressure, BUN=Blood Urea Nitrogen, CO2=Carbon Dioxide, 
HbA1C=Hemoglobin A1C, HDL=High-Density Lipoprotein, LDL=Low-Density Lipoprotein, yrs=Years, mm[Hg]=millimeters of mercury, kg/m2=Kilograms per meter 
squared, mg/dL=milligrams per deciliter, mmol/L=millimoles per liter, 10*3/uL=thousands per microliter of blood, g/dL=grams per deciliter, lbs=Pounds 



Table 3. Descriptive statistics for dataset v3.0 (imputed dataset) stratified by status. Based on 
synthetic data from the MDClone database, n=19,902. 

Variable Unit Responder Non-Responder 
Mean (Std.) Freq. (%) Mean (Std.) Freq. (%) 

Age yrs 58.03 (12.61)  57.86 (12.28)  
Diastolic BP mm[Hg] 78.02 (9.62)  78.56 (9.38)  
Systolic BP mm[Hg] 129.79 (14.58)  130.14 (14.70)  
BMI kg/m2 37.44 (6.49)  36.74 (5.83)  
BUN mg/dL 16.34 (7.39)  15.78 (7.02)  
Calcium mg/dL 9.31 (0.47)  9.31 (0.45)  
Chloride mmol/L 103.56 (3.27)  103.75 (3.09)  
CO2 mmol/L 26.16 (2.45)  26.28 (2.37)  
Creatinine mg/dL 1.05 (0.38)  1.04 (0.30)  
Fasting Glucose mg/dL 115.66 (14.84)  114.59 (14.48)  
HbA1C % 6.21 (0.77)  6.18 (0.74)  
HDL mg/dL 43.60 (11.10)  43.93 (10.59)  
Heart Rate bpm 78.60 (14.03)  77.67 (13.57)  
Height in 68.84 (3.64)  68.70 (3.59)  
Hematocrit % 42.84 (4.31)  43.15 (3.95)  
LDL mg/dL 107.64 (33.82)  108.91 (32.77)  
Platelet Count 10*3/uL 247.82 (58.83)  246.88 (56.57)  
Potassium mmol/L 4.17 (0.40)  4.15 (0.39)  
Protein g/dL 7.29 (0.50)  7.31 (0.48)  
Sodium mmol/L 139.26 (2.62)  139.32 (2.45)  
Total Cholesterol mg/dL 176.66 (38.64)  179.12 (38.60)  
Triglycerides mg/dL 161.24 (98.22)  160.93 (102.95)  
Weight lbs 251.92 (53.85)  245.76 (46.20)  
Sex      
   Male   3,425 (79.71)  12,240 (78.44) 
   Female   872 (20.29)  3,360 (21.53) 
   Unknown   0 (0.00)  5 (0.03) 
Race      
   American Indian or Alaska Native  17 (0.40)  63 (0.40) 

    Asian   19 (0.44)  88 (0.56) 
   Black or African American  1,070 (24.90)  4,543 (29.11) 
   Native Hawaiian or Pacific Islander  13 (0.30)  77 (0.49) 

    White   2,393 (55.69)  8,013 (51.35) 
    Unknown   785 (18.27)  2,821 (18.08) 
Ethnicity      
   Hispanic or Latino  350 (8.15)  350 (8.15) 
   Not Hispanic or Latino  3,947 (91.85)  3,947 (91.85) 
Smoking Status      
   Yes   2,013 (46.85)  7,323 (46.93) 
   No   2,284 (53.15)  8,282 (53.07) 
Abbreviations: N=Sample Size, Std=Standard Deviation, Freq=Frequency, %=Percentage, BP=Blood Pressure, BUN=Blood Urea Nitrogen, CO2=Carbon Dioxide, 
HbA1C=Hemoglobin A1C, HDL=High-Density Lipoprotein, LDL=Low-Density Lipoprotein, yrs=Years, mm[Hg]=millimeters of mercury, kg/m2=Kilograms per meter 
squared, mg/dL=milligrams per deciliter, mmol/L=millimoles per liter, 10*3/uL=thousands per microliter of blood, g/dL=grams per deciliter, lbs=Pounds 



 
Table 4. Summary of model fitting and feature selection techniques from the synthetic MDClone 
dataset. Both techniques were done with 5% and 1% thresholds. 

LOGR Model Fitting DTC Model Fitting RF Model Fitting 
5% 1% 5% 1% 5% 1% 

Weight Weight Age Age Age Age 
Hematocrit Hematocrit Heart Rate BMI Heart Rate BMI 

Race Race BMI Weight BMI Weight 
Heart Rate Heart Rate Weight Platelet Weight Platelet 

BUN BUN Systolic BP Fast. Glucose Systolic BP Fast. Glucose 
Diastolic BP Diastolic BP Platelet LDL Platelet LDL 

Chloride Chloride Fast. Glucose Hematocrit Fast. Glucose Hematocrit 
CO2 CO2 LDL Triglycerides LDL Triglycerides 

Sodium  Hematocrit  HDL  
T. Cholesterol  Creatinine  Hematocrit  

LDL  T. Cholesterol  T. Cholesterol  
Potassium  Triglycerides  Triglycerides  

Abbreviations: LOGR=Logistic Regression, DTC=Decision Tree Classifier, RF=Random Forest, %=Percentage, 
BUN=Blood Urea Nitrogen, BP=Blood Pressure, CO2=Carbon Dioxide, T=Total, LDL=Low-Density Lipoprotein, 
BMI=Body Mass Index, Fast=Fasting 
 
 
Table 5. Summary of model performance metrics. Precision, recall, and f1-score are based on 
weighted averages, which account for the class imbalance in status. Models were trained on 
synthetic data from the MDClone database. 
Metric DTC (direct fit) RF (5% fit) XGB (5% fit) SVM (direct fit) LOGR (5% fit) 
Training score 0.76 0.96 0.79 0.69 0.78 
Testing score 0.72 0.79 0.79 0.70 0.78 
AUROC 0.53 0.53 0.55 0.51 0.56 
Accuracy 0.72 0.79 0.79 0.70 0.78 
Precision 0.68 0.73 0.71 0.67 0.71 
Recall 0.72 0.79 0.79 0.70 0.78 
f1-score 0.70 0.70 0.71 0.69 0.71 
Abbreviations: DTC=Decision Tree Classifier, RF=Random Forest, XGB=Boosted Trees, SVM=Support Vector 
Machine, LOGR=Logistic Regression, AUROC=Area Under the Receiving Operator Characteristic Curve, %=percent 
 



Figure 1. Confusion matrices for each model. Figure 1a: DTC model; Figure 1b: RF model; 
Figure 1c: XGB model; 1d: SVM model; 1e: LOGR model. 

1a. DTC 1b. RF 

1c. XGB 1d. SVM 

1e. LOGR 
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Appendix 
 
Table A1. Variables included in the MDClone dataset. All variables, with the exception of weight, 

were measured at the pre-intervention time interval. Weight was provided for the pre-intervention 

and six-month follow-up windows. Responder status was calculated during data cleaning based 

on the pre-intervention and six-month follow-up weight measurements. 

 Property Definition 
1 Age Age 
2 Blood Pressure (diastolic) Diastolic blood pressure 
3 Blood Pressure (systolic) Systolic blood pressure 
4 BMI Body mass index (BMI) [Ratio] 
5 BUN (blood urea nitrogen) Urea nitrogen [Mass/volume] in Blood 
6 Calcium Calcium [Mass/volume] in Blood 
7 Chloride Chloride [Moles/volume] in Blood 
8 CO2 (carbon dioxide) Carbon dioxide, total [Moles/volume] in Blood 
9 Creatinine Creatinine [Mass/volume] in Blood 
10 Ethnicity Ethnicity (Hispanic or Latino/Not Hispanic or Latino) 
11 Fasting Glucose Fasting glucose [Mass/volume] in Serum or Plasma 
12 HbA1C (Hemoglobin A1C) Hemoglobin A1c/Hemoglobin.total in Blood 
13 HDL (high-density lipoprotein) High Density Lipoprotein Cholesterol 
14 Heart Rate Heart rate 
15 Height Body height 
16 Hematocrit Hematocrit [Volume Fraction] of Blood by Automated count 
17 LDL (low-density lipoprotein) Cholesterol in LDL [Mass/volume] in Serum or Plasma 
18 Platelet Count Platelets [#/volume] in Blood by Automated count 
19 Potassium Potassium [Moles/volume] in Blood 
20 Protein Protein [Mass/volume] in Serum or Plasma 

21 Race Race (American Indian or Alaska Native, Asian, Black or African 
American, Native Hawaiian or Pacific Islander, White) 

22 Sex Sex (Male/Female) 
23 Smoking Status Tobacco smoking status (Yes/No) 
24 Sodium Sodium [Moles/volume] in Blood 
25 Total Cholesterol Cholesterol [Mass/volume] in Serum or Plasma 
26 Triglycerides Triglyceride [Mass/volume] in Serum or Plasma 
27 Weight Body weight 
28 Status Responder Status (R/NR) 
 
 
  



Table A2. Descriptive statistics for dataset v1.0 (initial dataset) stratified by status, n=19,902. 

 

Variable Unit Responder Non-Responder 
Mean (Std.) Freq. (%) Mean (Std.) Freq. (%) 

Age yrs 58.03 (12.61)  57.86 (12.28)  
Diastolic BP mm[Hg] 77.98 (9.73)  78.54 (9.51)  
Systolic BP mm[Hg] 129.79 (14.77)  130.13 (14.89)  
BMI kg/m2 37.44 (6.49)  36.74 (5.83)  
BUN mg/dL 16.43 (7.63)  15.81 (7.35)  
Calcium mg/dL 9.30 (0.50)  9.31 (0.49)  
Chloride mmol/L 103.53 (3.45)  103.73 (3.27)  
CO2 mmol/L 26.10 (2.67)  26.25 (2.60)  
Creatinine mg/dL 1.06 (0.41)  1.04 (0.33)  
Fasting Glucose mg/dL 108.57 (22.85)  116.92 (35.52)  
HbA1C % 6.22 (0.84)  6.20 (0.81)  
HDL mg/dL 43.59 (12.66)  43.91 (11.89)  
Heart Rate bpm 78.64 (14.24)  77.64 (13.78)  
Height in 68.84 (3.64)  68.70 (3.59)  
Hematocrit % 42.68 (4.62)  43.10 (4.28)  
LDL mg/dL 106.41 (38.11)  108.06 (36.72)  
Platelet Count 10*3/uL 248.86 (64.27)  247.50 (62.21)  
Potassium mmol/L 4.17 (0.42)  4.15 (0.41)  
Protein g/dL 7.29 (0.55)  7.31 (0.54)  
Sodium mmol/L 139.25 (2.77)  139.32 (2.60)  
Total Cholesterol mg/dL 175.46 (42.86)  178.40 (42.56)  
Triglycerides mg/dL 162.08 

 
 160.68 (115.34)  

Weight lbs 251.92 (53.85)  245.76 (46.20)  
Sex      
   Male   3,425 (79.71)  12,240 

    Female   872 (20.29)  3,360 (21.53) 
   Unknown   0 (0.00)  5 (0.03) 
Race      
   American Indian or Alaska Native  17 (0.40)  63 (0.40) 

    Asian   19 (0.44)  88 (0.56) 
   Black or African American  1,070 (24.90)  4,543 (29.11) 
   Native Hawaiian or Pacific Islander  13 (0.30)  77 (0.49) 

    White   2,393 (55.69)  8,013 (51.35) 
    Unknown   785 (18.27)  2,821 (18.08) 
Ethnicity      
   Hispanic or Latino  350 (8.15)  1,294 (8.29) 
   Not Hispanic or Latino  3,947 (91.85)  14,311 

 Smoking Status      
   Yes   2,013 (46.85)  7,323 (46.93) 
   No   2,284 (53.15)  8,282 (53.07) 
Abbreviations: N=Sample Size, Std=Standard Deviation, Freq=Frequency, %=Percentage, BP=Blood Pressure, BUN=Blood Urea Nitrogen, 
CO2=Carbon Dioxide, HbA1C=Hemoglobin A1C, HDL=High-Density Lipoprotein, LDL=Low-Density Lipoprotein, yrs=Years, mm[Hg]=millimeters of 
mercury, kg/m2=Kilograms per meter squared, mg/dL=milligrams per deciliter, mmol/L=millimoles per liter, 10*3/uL=thousands per microliter of 
blood, g/dL=grams per deciliter, lbs=Pounds 


