Skip to content
This repository has been archived by the owner. It is now read-only.
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

README.md

Restricted Boltzmann Machines (RBMs) in PyTorch

Author: Gabriel Bianconi

Overview

This project implements Restricted Boltzmann Machines (RBMs) using PyTorch (see rbm.py). Our implementation includes momentum, weight decay, L2 regularization, and CD-k contrastive divergence. We also provide support for CPU and GPU (CUDA) calculations.

In addition, we provide an example file applying our model to the MNIST dataset (see mnist_dataset.py). The example trains an RBM, uses the trained model to extract features from the images, and finally uses a SciPy-based logistic regression for classification. It achieves 92.8% classification accuracy (this is obviously not a cutting-edge model).

About

Restricted Boltzmann Machines (RBMs) in PyTorch

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.