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Abstract
Ivory is a language that enforces memory safety and avoids most
undefined behaviors while providing low-level control of memory-
manipulation. Ivory is embedded in a modern variant of Haskell,
as implemented by the GHC compiler. The main contributions
of the paper are two-fold. First, we demonstrate how to embed
the type-system of a safe-C language into the type extensions of
GHC. Second, Ivory is of interest in its own right, as a powerful
language for writing high-assurance embedded programs. Beyond
invariants enforced by its type-system, Ivory has direct support
for model-checking, theorem-proving, and property-based testing.
Ivory’s semantics have been formalized and proved to guarantee
memory safety.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

Keywords Embedded Domain Specific Languages; Embedded
Systems

1. Introduction
Recent reports of car-hacking via software flaws [10] and insecure
low-level networking code [6] point toward the need for safe low-
level programming languages. Languages like C or C++ are still the
gold standard in embedded system development given the low-level
control they provide in terms of memory usage and timing behavior.
Unfortunately, these languages provide little support for creating
high assurance software—they are unsafe and unanalyzable.

In this paper we present the language Ivory.1 Ivory follows
in the footsteps of other “safe C” programming languages, like
Cyclone [19], BitC [33], and Rust [29]—languages that avoid many
of the pitfalls of C, particularly related to memory safety and
undefined behavior, while being suitable for writing low-level code
(e.g., device drivers), and having minimal runtime systems.

Ivory is particularly designed for safety-critical embedded pro-
gramming. Such a language should guarantee memory safety, pre-
vent most undefined behaviors, and provide integrated testing and

1 open-source (BSD3 license) and available at ivory-lang.org.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Haskell Symposium ’15, .
Copyright is held by the owner/author(s).
ACM .
http://dx.doi.org/10.1145/

verification tools. Typical C coding conventions for safe embedded
systems, such as those in use at NASA’s Jet Propulsion Labora-
tory [20], are enforced by Ivory’s type system. The major restric-
tions enforced by Ivory are restricted allocation for zero-overhead
garbage collection, enforcing loops to have constant upper bounds,
avoiding machine-dependent types (e.g., int), and safe (i.e., guar-
anteed non-null) dereferencing.

Ivory’s implementation, however, is unique compared to pre-
vious safe C languages: Ivory is implemented as an embedded
domain-specific language (EDSL) within Haskell. In addition to the
benefits of rapid language development, this gives Ivory a power-
ful templating system—the language Haskell—allowing low-level
programs to be written in a high-level style, despite some of the
languages restrictions.

Ivory’s type system is shallowly embedded within Haskell’s
type system, taking advantage of the extensions provided by
GHC [26]. Thus, well-typed Ivory programs are guaranteed to pro-
duce memory safe executables, all without writing a stand-alone
type-checker.

In contrast, the Ivory syntax is deeply embedded within Haskell.
This novel combination of shallowly-embedded types and deeply-
embedded syntax permits ease of development without sacrificing
the ability to develop various back-ends and verification tools: in
addition to the generation of embedded C for compilation, the Ivory
language suite includes an integrated SMT-based symbolic simula-
tor and a theorem-prover back-end. All these back-ends share the
same AST: Ivory verifies what it compiles.

Ivory is not a toy language: we have used Ivory to write
SMACCMPilot [18], a full-featured high-assurance autopilot for
a small unpiloted air vehicle. Furthermore, Boeing has used Ivory
to implement a level-of-interoperability for Stanag 4586 [16], a
unpiloted air vehicle communications standard. We know of a few
additional small projects by other developers in Ivory, as well.
There are well over 100 KLoC of Ivory in existence.

Contributions The main research contribution of this paper is
the design and implementation of Ivory: we show how to de-
sign a staged, type-safe, low-level language with a type system
which guarantees the absence of the sorts of run-time errors com-
mon in low-level code, along with a powerful type-safe macro
language. Previous safe-C languages have relied on specialized
type-checkers, whereas we show it can be done (for the most
part) within the type system of a general purpose functional pro-
gramming language, GHC’s implementation of Haskell (henceforth
“GHC”). In GHC, a powerful subset of dependent typing features
are available without sacrificing type-inference and decidable type-
checking [26]; our work demonstrates a practical application of
these extensions for a real-world language.

After providing a brief introduction to the Ivory language in
Section 2, we describe Ivory’s embedding in GHC’s type system
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in Section 3. We highlight the aspects of the language particularly
relevant to memory-safety (e.g., pointers, structures, and memory
allocation). We also highlight shortcomings of the approach, de-
scribing aspects of the language that cannot be checked by the host
language’s type system (e.g., Ivory’s module system).

Embedding a type system for a safe C language into GHC’s
type system is tricky business. To gain confidence that our embed-
ding is correct, we formalized a model of Ivory in the Isabelle the-
orem prover [30], and used the model to formally prove progress
and preservation properties for Ivory. In the process, we discovered
minor bugs in Ivory’s type embedding in GHC as well as general-
izations to Ivory that still preserve safety. We describe the formal-
ization, proofs, and extensions in Section 4.

Ivory goes beyond ensuring memory safety, the focus of most
other safe C programming languages, and also provides automated
support for preventing errors that result from other undefined be-
haviors in C (e.g., division by zero, left bit-shifts by a negative
value, etc.) as well as support for checking user-provided asser-
tions. Toward this end, Ivory supports writing user-supplied as-
sertions and pre- and post-conditions on functions, and includes
a built-in symbolic simulator targeting an SMT solver (CVC4 [9]),
as well as a theorem-prover back-end targeting ACL2 [21]. For au-
tomated testing, a QuickCheck-like property-based test-case gener-
ator is integrated into Ivory. These tools are described in Section 5.
In Section 6, we discuss some of the issues and our mitigations with
using a large EDSL for embedded programming projects.

We describe related work in safe C language and EDSLs in
Section 7 and provide concluding remarks in Section 8.

2. Ivory Overview
In this section, we give an illustrative overview of Ivory. An Ivory
program is a Haskell program producing a collection of Ivory
modules, each module containing type and procedure definitions.

Ivory is a staged language: the Haskell program compiles Ivory
modules to produce an AST which is then passed to one or more
back-ends. Thus, an executable is produced from an Ivory program
by compiling and running the Haskell code to produce a C program,
which is then compiled with a C compiler. Alternately, checking
of pre- and post-conditions is performed by running the Haskell
program in conjunction with the verification back-end.

In the following, we introduce both the types and values of Ivory
programs but postpone most discussion of the types to Section 3.
We focus on core aspects of the language in this introduction and
throughout the paper. Ivory contains a large number of operators
and standard libraries we elide. Examples include serialization, safe
type casts, nullable pointers (for inter-operation with legacy C),
function pointers, and bit operators.

2.1 Ivory Statements
Ivory statements are terms in the Ivory monad. This monad pro-
vides fresh variables, along with constructors for Ivory statements.
Unlike C, Ivory expressions must be pure, so side-effecting opera-
tions take place at the statement level, in the context of the monad.
This ensures a defined order for effects, eliminating large classes of
unintuitive and undefined behaviors.

Memory in Ivory is manipulated via non-nullable references [12].
References are read and written using the deref and store state-
ments, respectively. For example, the following Haskell function
takes a reference to a signed 32-bit integer value and constructs a
program fragment which increments the value of the reference.

incr_ref :: Ref s (Stored Sint32) -> Ivory eff ()
incr_ref r = do

v <- deref r
store r (v + 1)

A reference in Ivory may refer either to a global object, allocated
at compile time, or a local object, allocated dynamically. Dynamic
objects are created in ephemeral regions associated with the scope
of the containing procedure; operationally, local objects are allo-
cated on the stack, so regions are implicitly freed on procedure
return. Ivory reference types are indexed by region variables, the
parameter s seen in the type signatures above. Along with type
variable scoping, these region annotations on references ensure that
references do not escape the context in which they were allocated.

The definition incr ref is not a complete Ivory procedure.
Rather, it can be thought of as a template parameterised by a
reference. Ivory procedures must be explicitly defined and exported
through procedure definitions, such as
incr_def :: Def (’[Ref s (Stored Sint32)] :-> Sint32)
incr_def = proc "incr_def" $ \r -> body $ do
incr_ref r
v <- deref r
ret v

The procedure incr def, introduced by the use of proc, calls the
Haskell function incr ref above. The use of body indicates that
the procedure’s definition will follow. A more thorough treatment
of proc and body is given in section 3.5. The type of incr def
makes use of the data kinds extension, representing the argument
list as a promoted list. The ret statement returns a value from
the Ivory procedure (we use ret rather than return to avoid
conflicting with Haskell’s return function).

The Ivory monad tracks effects (the eff type parameter); see
Section 3.1. One of these effects is the current allocation region:
the allocation function local returns a reference that is tied to
that region. For example, the following constructs a zero initialized
reference to an integer; the ival constructs an initializer from a
value:
make_zero :: (GetAlloc eff ∼ Scope s)

=> Ivory eff (Ref s (Stored Sint32))
make_zero = local (ival 0)

2.2 Data structures
Ivory provides C-style arrays and structures. Array types are pa-
rameterised by their size and the type system ensures that array
accesses are within bounds. Structures are defined using a quasi-
quoter to specify the field names and their types. Arrays and struc-
tures belong to a special kind, Area, whose values are only ever
manipulated through references. In order to lift the types of values
that can be manipulated directly to Area, the Stored type con-
structor is used. Fields in structures are accessed via the ∼> opera-
tor which takes a reference to a struct and a field name, and returns
a reference at the field’s type. For example, the following code de-
clares a structure type named position, as well as a function that
will allocate an instance, and perform some basic operations on it.
[ivory|
struct position
{ latitude :: Stored IFloat
; longitude :: Stored IFloat
; altitude :: Stored Sint32
}

|]
struct_ex = do
s <- local (istruct [ latitude .= ival 45.52

, longitude .= ival (-122.68)
, altitude .= ival 1524 ])

lat <- deref (s ∼> latitude)
lon <- deref (s ∼> longitude)
incr_ref (s ∼> altitude)

2.3 Control structures
Ivory supports the usual control structures: the ifte statement
constructor takes a boolean argument and two statements, one for



each branch of the if-then-else, while the pure ternary operator, ?,
selects from two alternatives at the expression level.

abs :: Def(’[Sint16] :-> Sint16)
abs = proc "abs" $ \v -> body $ do
ifte_ (v <? 0)
(ret (-1*v))
(ret v)

abs2 :: Def(’[Sint16] :-> Sint16)
abs2 = proc "abs2" $ \v -> body $ do
ret $ (v <? 0) ? ((-1*v), v)

Ivory has two classes of iteration constructs: forever for non-
terminating loops such as OS tasks, and loops with constant
bounds. The prototypical bounded loop in Ivory is the arrayMap,
which iterates over the elements of an array. For example, the fol-
lowing procedure adds x to each element of the array arr, noting
that arr ! ix returns a reference to the ix-th element of arr.

mapProc = proc "mapProc"
$ \arr x -> body
$ arrayMap
$ \ix -> do

v <- deref (arr ! (ix :: Ix 4))
store (arr ! ix) (v + x :: Uint8)

Note that we do not need to pass arr to arrayMap to determine
the correct bounds on the loop; rather, as we explain in Section 3.4,
GHC can infer the bounds from the loop body!

2.4 Assertions
Ivory supports pre- and post-conditions, along with assertions. The
Ivory compiler can emit run-time assertions to enforce these condi-
tions, or the model checker back-end can be used to statically verify
these properties hold.

predicates_ex :: Def(’[ IFloat ] :-> IFloat)
predicates_ex = proc "predicates_ex" $

\i -> requires (i >? 0)
$ ensures (\r -> r >? 0)
$ body
$ do (assert (i /=? 0))

ret (i + 1))

An ensures clause takes a function, such that when applied to
the return value at any return point in the procedure, the predicate
should hold.

3. Ivory Embedding
In this section, we describe the implementation of Ivory, focusing
on embedding the Ivory type system in the GHC type system.

3.1 The Ivory Monad
Ivory statements have the type

Ivory (eff :: Effects) a

This type wraps a writer monad transformer over a state monad.
The writer monad writes statements into the Ivory abstract syntax
tree, and the state monad is used to generate fresh variable names.

Effects The eff type parameter is a phantom type that tracks
effects at the type level. (These effects have no relation to the recent
work on effects systems for monad transformers [23].) Currently,
we track three classes of effects for Ivory statement blocks:

• Returns: does the code block contain a ret statement, and is
the type of the returned value correct?

• Breaks: does the code block contain a break statement?
• Allocates: does the code block contain local memory alloca-

tion?

Intuitively, these effects matter because their safety depends on
the context in which the monad is used. For example, a ret state-
ment is safe when used within a procedure, to implement a func-
tion return. However, an Ivory code block can also be used to im-
plement an operating system task that should never return. Simi-
larly in Ivory, break statements are used to terminate execution
of an enclosing loop. (The other valid use of break in C99 is to
terminate execution in a switch block, but Ivory does not con-
tain switch.) By tracking break effects, we can ensure that an
Ivory block containing a break statement is not used outside of
a loop. Finally, allocation effects are used to guarantee that a ref-
erence to locally-allocated memory is not returned by a procedure,
which would result in undefined behavior; see Section 3.3 for de-
tails. Moreover, we can prohibit a code block from allocating mem-
ory simply by removing allocation effects from its type.

The Ivory effects system is implemented by a type-level tuple
where each of the three effects correspond to a field of the tuple. As
Ivory computations are always run with a concrete effect context,
type equality constraints enforce that a particular effect is (or is not)
allowed in a given setting.

We use GHC’s data kinds extension [34] to lift the following
type declaration to a kind declaration.

data Effects = Effects ReturnEff BreakEff AllocEff

The individual effect types are implemented similarly, using GHC
to derive a kind from the type definition. For example, the BreakEff
type/kind describes whether a break statement is allowed in a block
of statements.

data BreakEff = Break | NoBreak

Type families [32] are used to access and modify the types at each
field of the tuple. For example, the GetBreaks family extracts the
BreakEff field of an Effects tuple. 2

type family GetBreaks (effs :: Effects) :: BreakEff
type instance GetBreaks (’Effects r b a) = b

The AllowBreak and ClearBreak families turn the effect
“on” or “off”, respectively.

type family AllowBreak (effs :: Effects) :: Effects
type instance AllowBreak (’Effects r b a) =

’Effects r ’Break a

type family ClearBreak (effs :: Effects) :: Effects
type instance ClearBreak (’Effects r b a) =

’Effects r ’NoBreak a

With this machinery, we can now use a type equality constraint
to enforce the particular effects in a context. For example, Ivory’s
break statement has the type

break :: (GetBreaks eff ∼ ’Break) => Ivory eff ()

which requires that the ’Break effect be present in the current
effect context.

3.2 Types
Ivory uses two type classes to define its domain: IvoryType
and IvoryArea. IvoryType classifies all types that make up
valid Ivory programs. As Ivory programs build up the AST of
the program they represent when they are run, this class describes
the set of types that contain fragments of the Ivory AST. The
IvoryArea class serves to ensure that primitive types that are
stored in references also have an instance of IvoryType. Types
that have IvoryType instances include signed and unsigned in-
tegers, the void type (), and references, while types that have an

2 The GHC syntax is to precede a data kind type constructor with a tick (’)
to disambiguate it from the corresponding data constructor.



class IvoryType t
class IvoryType t => IvoryVar t where

unwrapExpr :: t -> Expr
wrapVar :: Var -> t

class IvoryVar t => IvoryExpr t
wrapExpr :: Expr -> t

class IvoryArea (area :: Area *)
instance IvoryType t => IvoryArea (Stored t)
instance IvoryArea ...

Figure 1. Classes used to define Ivory’s domain

IvoryArea instance are limited to those that have kind Area,
defined in Section 3.4. All types used in Ivory programs will have
an IvoryType or IvoryArea instance.

The IvoryVar and IvoryExpr class further stratify Ivory
types that have values. The IvoryVar class, which is a super-
class of IvoryExpr, describes all types whose values can have
an Ivory expression extracted from them, as well as be created
from a fresh name. This roughly corresponds to values that can
be used as an L-value in assignments as well as formal parameters.
The IvoryExpr class includes types whose values can be con-
structed from full expressions, and corresponds to the set of values
that can be used in the position of an R-value. It might be tempt-
ing to say that the functionality of the IvoryVar belongs in the
IvoryType class. However, Ivory has a void type (()) so we do
require this distinction to prevent void values from being created.
Most types used in Ivory provide instances for all three classes,
IvoryType, IvoryVar, and IvoryExpr, with only a few ex-
ceptions like () defining a subset. See Figure 1 for the relationship
between these classes.

3.3 Memory Management
Ivory uses regions for memory management [12]. When data is al-
located, a reference to the resulting data is returned, and tagged
by the containing region via a type variable. Well-typed Ivory pro-
grams guarantee that references do not persist beyond the scope of
their containing region. Regions in Ivory classify both global data
and data allocated and freed on procedure entry/exit (the back-end
relies on stack-based allocation in C). Corresponding to these two
kinds of regions are the region tags that Ivory supports: Global
which holds statically-allocated global data that is available for the
lifetime of the program, and a local region unique to each procedure
whose lifetime is tied to that of the procedure.

Data with Global scope is allocated through the use of the
area top-level declaration, then converted to a reference through
the use of the addrOf function. As the area function produces
a top-level declaration, it also requires a symbol to use as the
name of the allocated memory. Data allocated within a procedure
is allocated through the use of the local function, and are tagged
with the region of that function. Since each procedure definition
introduces a fresh region, with the constraint that no reference
allocated in that region should show up in the return type of that
procedure, Ivory avoids the introduction of dangling pointers. The
embedding of this feature in Haskell will be described in more
detail in Section 3.5.

Both forms of allocation take initializers, though Global allo-
cation through area will default to zero-initialization if it is omit-
ted. Initializers are functions that embed values into a structure that
mirrors that of a memory area. As an example, the example value
in Figure 2 defines an initializer for an array of three Uint8 val-
ues. The types of the allocation functions, as well as a sample of
the initializers available are given in Figure 2.

As noted in Section 3.1, allocation is tracked through an effect
in the effect context of the Ivory monad. The result of this is that

data Area k = Array Nat (Area k)
| CArray (Area k)
| Struct Symbol
| Stored k

store :: IvoryStore a
=> Ref s (Stored a) -> a -> Ivory eff ()

deref :: IvoryStore a
=> Ref s (Stored a) -> Ivory eff a

data Label (sym :: Symbol) (area :: Area *)
(∼>) :: Ref s (Struct sym) -> Label sym a -> Ref s a
(!) :: Ref s (Array n area) -> Ix n -> Ref s area

local :: (GetAlloc eff ∼ ’Scope s, IvoryArea area)
=> Init area -> Ivory eff (Ref s area)

data MemArea (area :: Area *)
area :: (IvoryArea area)

=> Sym -> Maybe (Init area) -> MemArea area
addrOf :: (IvoryArea area)

=> MemArea area -> Ref Global area

data Init (area :: Area *)
izero :: IvoryZero area => Init area
ival :: IvoryType val => val -> Init (Stored val)
iarray :: IvoryArea area

=> [Init area] -> Init (Array n area)

example :: Init (Array 3 (Stored Uint8))
example = iarray (map ival [1,2,3])

Figure 2. Memory allocation, initialization, access functions,
along with the Area kind.

each call to the local allocation function produces references that
are tied to that specific context. Conversely, if the current effect
context has no allocation scope, there is no way to produce a new
reference. As allocation that takes place at the top-level is implicitly
in the Global region, there is no need to involve the Ivory monad.

Once a reference has been acquired, it may be stored to and
read from in the context of the Ivory monad using the store
and deref functions. The Ivory monad does not track effects for
manipulating specific references, and instead allows reading and
writing to any reference that is in scope, within the context of the
Ivory monad.

3.4 Memory Areas
References are parameterized by both their containing region and
an area type describing the layout of the referenced memory. We
introduce area types through the Area3 kind, and the four types
that inhabit it (Figure 2). This typing of memory is heavily inspired
by the work of Diatchki and Jones [12]. Ivory supports four kinds
of areas that we explain below: arrays with statically known size,
“C” arrays without statically known size (for communicating with
external C functions), structs, and stored atomic values.

Stored values The simplest type of memory area is a single base
type, lifted to the Area kind by the use of the Stored type
constructor. For example, the area type of a Sint32 would simply
be Stored Sint32. The store and deref operators will only
operate over references that point to Stored areas, mirroring the
operations from [12], as this allows us to never deal directly with

3 The type parameter on the Area kind is present so that when giving
kind-signatures, we can fix the kind of stored-values as being star (*)-
kinded. As Haskell currently lacks a construct for defining kinds without
data, this parameterization is necessary, as kinds are specified with a syntax
that is invalid where a type is expected. This technique was described by
Magalhães [27].



arrayMap :: (Ix n -> Ivory (E.AllowBreak eff) a)
-> Ivory eff a

arrayLen :: Num len => Ref s (Array n area) -> len
toCArray :: Ref s (Array n area)

-> Ref s (CArray area)

Figure 3. Array support functions

a value of type Array, or Struct; we only ever read and write
references to values, never references to aggregate values.

As the Stored area-type allows the lifting of any star-kinded
type to a memory area, we constrain the operations on references
to restrict what is storable. This constraint is enforced via the
IvoryStore class. While the IvoryStore constraint is used
to rule out most types from being stored in a reference, it is worth
noting that it is also used to prohibit the storing of other references.
The reason for this restriction is twofold:

1. We allow the use of default initializers during allocation, but
do not have a good way to say what parts of a structure are
required, thus potentially introducing a null reference when
initializing structures that contain references.

2. As there is currently no connection between the region of a
reference, and the region of any references it points to, it would
be possible to persist a reference beyond its lifetime by storing
it in a longer-lived reference.

As Ivory only supports static memory allocation, not being able to
store references inside of other references has not been a restriction
that seriously impacted program development.

Structs A reference that has an area-kind of type Struct "x"
will point to memory whose layout corresponds to the definition of
the struct with name “x”. Struct definitions are introduced through
use of the ivory quasi-quoter [28]. For example, if a region of
memory is typed using the following struct declaration, it would
have type Struct "a".

[ivory| struct a { field1 :: Stored Sint32
, field2 :: Struct "b"
} |]

Also introduced by the struct declaration are field labels. Field
labels allow for indexing into a memory area, producing a reference
to the value contained within the struct. For example, using the
previous struct definition, the quasi-quoter introduces two labels,
field1 and field2, for accessing those fields given a reference
to an “a” struct:

field1 :: Label "a" (Stored Sint32)
field2 :: Label "a" (Struct "b")

Using a struct label to select the field of a structure requires the
use of the (∼>) operator, which expects a reference to a structure
as its first argument, and a compatible label as its second. The type
of the (∼>) operator is given in Figure 2. In the following example,
the (∼>) operator is used with a reference to an “a” struct, with the
field1 label, producing a new reference of type Ref Global
(Stored Sint32).

example :: Ref Global (Struct "a")
-> Ref Global (Stored Sint32)

example ref = ref ∼> field1

Operations for indexing are pure in Ivory, as they only manip-
ulate a base pointer; the value of a reference is never dereferenced
until an explicit use of the deref primitive, which is an effectful
operation.

Arrays Arrays in Ivory take two type parameters: the length of
the array as a type-level natural number, and the area type of its
elements. For example, an array of 10 signed 32-bit integers would
have the type Array 10 (Stored Sint32). Indexing into
arrays is accomplished through the use of the (!) operator, shown
in Figure 2. Indexing an array does not dereference it, but returns a
reference to the indexed cell.

An index into an array has the type Ix, which is parameterized
by the size of the array that it is indexing into. The Ix n type
will only hold values between zero and n-1, which allows us to
avoid run-time array bounds checks [12]. One shortcoming of this
approach is that the (!) operator will only accept indexes that are
parameterized by the length of the array being indexed, while it
would be useful to allow indexes that have a maximum value that
is less than the length of the target array.

As array indexes are parameterized by the length of arrays they
can index into, they become an interesting target for new combi-
nators. In this vein, we introduce arrayMap, whose signature is
shown in Figure 3. The intuition for the arrayMap function is that
it invokes the function provided for all indexes that lie between 0
and n− 1. As the index argument given to the function is most of-
ten used with an array, type information propagates out from uses
of the (!) operator, and it becomes unnecessary to give explicit
bounds for the iteration. Additionally, as the size of the index is
tied to the size of the array being indexed, it is unnecessary to pro-
vide an array as an argument to arrayMap: we rely on the use
of the index to set the bounds of the loop. The implementation re-
lies on type-level natural numbers being singleton types, with the
ability to construct a value n inhabiting the type n.

For compatibility with C, we also introduce a type for arrays
that are not parameterized by their length, CArray. There are no
operations to work with references to CArrays in Ivory, as the
assumption is that they will only ever be used when interacting with
external C functions. As many C functions that consume arrays
require both a pointer and a length, we also provide the arrayLen
function, which allows the length of an Ivory array to be demoted to
a value. When used in conjunction with toCArray, this function
allows for fairly seamless integration with external C code.

3.5 Procedures
Ivory procedures differ from Haskell functions in that they behave
as compiled procedures, not macros; Haskell functions that produce
Ivory values will be expanded at compile time, while Ivory pro-
cedures will be translated into procedures in the target language.
Procedures in Ivory inhabit the Def type which is parameterized
by the signature of the function it names. Procedure signatures in-
habit the Proc kind, which provides one type constructor: :->.
The :-> type constructor takes two arguments: the types of the ar-
gument list, and the return type of the whole procedure. The intent
behind the use of the :-> type is to suggest that all of the argu-
ments to the left of the arrow must be provided before a result may
be produced.

Definition Procedures are defined through the use of the proc
function, which requires two arguments: a symbolic name for the
generated procedure and its implementation. The implementation
takes the form of a Haskell function that accepts Ivory value ar-
guments, and produces a result in the Ivory monad. Again, view-
ing Haskell functions that produce values in the Ivory monad as
macros, the proc function can be seen as operating at the meta-
level, accepting a symbol name and a macro as its arguments, and
producing a procedure with the given name, and the fully-applied
macro as its body. Correct procedure definition is guarded by the
IvoryProcDef class, shown in Figure 5, which constrains uses
of the proc function.



f = proc "f" $ body $ do
ref <- local (izero :: Init Sint32)
ret ref

Figure 4. Attempted creation of a dangling pointer

The IvoryProcDef type class has two parameters: signature
and implementation. This class relates the Proc type of the result-
ing Ivory procedure and the Haskell function given as the its im-
plementation. There are only two instances for IvoryProcDef:
the case where the argument list is empty, and the case where the
argument list is extended by one argument, corresponding to the
cases for the ’[] and (’:) type constructors. The latter case also
requires that the argument added be an Ivory type that is inhabited
by a use of the IvoryVar constraint. This constraint both ensures
that the argument type is acceptable as an argument to an Ivory
function, and allows the use of pseudo-higher order abstract syntax
by calling the body at fresh variables.

Examining the functional dependencies for the IvoryProcDef
class from Figure 5, we see that the implementation function
(impl) determines the signature of the resulting procedure (sig).
The effect of this dependency in the context of the proc function
is that the user will rarely need to write an accompanying Def
signature for Ivory procedures they define; uses of the arguments
to a procedure will often yield a monomorphic implementation
function, which through the functional dependency will produce a
monomorphic Def type.

The implementation function is required to produce a value of
type Body r, which is simply an Ivory monadic action with its
allocation context hidden, and return type exposed as the type vari-
able r. The Body type serves two purposes: it removes the need to
write an instance of IvoryProcDef that involves a rank-2 func-
tion, and it defines an extension point for modifying the body of
the procedure. Pre- and post-conditions can be added to a proce-
dure body by the use of the requires and ensures functions,
respectively. Both functions allow arbitrary Ivory statements to be
added, but disallow all effects. The result of this restriction is that
memory can be read and validated, but control flow and allocation
effects are prohibited.

The procedure body can be defined through the use of the body
function, whose signature is shown in Figure 5, which lifts an
Ivory computation that returns a result r and allocates data in a
region s into a value of type Body r. As the allocation scope
expected by the given Ivory computation is quantified over in
a rank-2 context by the body function, it cannot appear in the
type of the result, r. This prevents anything allocated within the
implementation function from being returned, a source of dangling
pointer bugs. The same technique was used by Launchbury and
Peyton Jones [24] to prevent mutable state from leaking out of the
context of the run function for the ST monad, and by Kiselyov and
Shan [22] for region-based resource management.

For example, the procedure f defined in Figure 4 will produce
a type error, as it attempts to return a locally-allocated reference;
references are parameterized by the scope they were allocated in,
and as that scope variable is quantified over in the rank-2 context
of the argument to the body function, that reference is prevented
from showing up in the return type of the procedure, r.

Invocation Procedures are called through the use of the call
function, which takes a Def as its first argument, using its sig-
nature to determine the arguments needed. The arguments needed
are determined by the IvoryCall class, which uses the signa-
ture information to produce a continuation that requires parame-
ters that match the type of the argument list from the signature
of the Def. The IvoryCall class mirrors the structure of the

data Proc k = [k] :-> k

class IvoryProcDef (sig :: Proc *) impl | impl -> sig
instance IvoryProcDef (’[] :-> r) (Body r)
instance (IvoryProcDef (as :-> r) impl, IvoryVar a)
=> IvoryProcDef ((a ’: as) :-> r) (a -> impl)

class IvoryCall eff (sig :: Proc *) impl
| sig eff -> impl, impl -> eff

instance IvoryCall eff ([] :-> r) (Ivory eff r)
instance (IvoryExpr a, IvoryCall eff (as :-> r) impl)
=> IvoryCall eff ((a ’: as) :-> r) (a -> impl)

body :: (forall s. Ivory (ProcEffects s r) ())
-> Body r

data Def (sig :: Proc *)
proc :: IvoryProcDef sig impl

=> Sym -> impl -> Def sig

call :: IvoryCall sig eff impl => Def sig -> impl

Figure 5. Function definition support.

IvoryProcDef instances structure, though it adds one additional
parameter: eff. This additional parameter is required so that the
containing effect context of the call can be connected to the re-
sult of the continuation generated by the instances of IvoryCall.
For example, calling a procedure with type Def (’[Sint32]
:-> Sint32) will produce a continuation of the type, Sint32
-> Ivory eff Sint32, where the eff parameter is inherited
from the current environment.

3.6 Bit-Data
Introduction Low-level systems programming often requires ex-
tensive manipulation of binary data packed into multi-field inte-
ger values. For example, a hardware register may contain several
single-bit flags along with multi-bit fields that may not be aligned
to byte boundaries.

When programming in C, these bit values are typically accessed
by defining a set of integer constants and using bit operations to
shift and mask the correct bits into place with little to no type safety.

In support of high assurance low-level programming, Ivory’s
standard library contains a data definition language for these ”bit
data” types. Our system is a subset of the bit data implementation
described in [13], which allows the programmer to define bit data as
algebraic data types that can be nested and accessed in a type-safe
manner.

Implementation Ivory’s type system supports a set of unsigned
integer types with specific bit sizes (8, 16, 32, and 64 bits), as in
the C language. In order to support bit data of arbitrary width (up
to the maximum supported length of 64 bits), we use a type family
BitRep n to map an integer size in bits to the smallest concrete
Ivory type that can hold an integer of that size:

type family BitRep (n :: Nat) :: *
type instance BitRep 1 = Uint8
type instance BitRep 2 = Uint8
{- ... -}
type instance BitRep 64 = Uint64

Ivory adds additional type safety to arbitrary width integers
by wrapping these values in an opaque type Bits n. Haskell’s
module system is used to hide the raw constructor for these values,
only permitting valid values to be created via the use of smart
constructors:

newtype Bits (n :: Nat) = Bits (BitRep n)

zeroBits :: Bits n
repToBits :: BitRep n -> Bits n



bitsToRep :: Bits n -> BitRep n

Smart constructors that are partial due to narrowing, such as
repToBits, automatically mask out any bits that are out of range.
It is also possible to define runtime-checked versions of these
functions that treat such ”junk values” as an error.

To support combining multiple bit fields into a single value, we
generalize the ”bit data” concept with a type class BitData that
captures the interface of a value that may be converted to and from
its representation as raw bits:

class BitData a where
type BitType a :: *
toBits :: a -> BitType a
fromBits :: BitType a -> a

The Bits n type is a trivial instance of this type class:

instance BitData (Bits n) where
type BitType (Bits n) = Bits n
toBits = id
fromBits = id

Type Definition The language for defining bit data types mirrors
Haskell’s syntax for defining data types. Each bit data type contains
one or more constructors, each of which may have zero or more
data fields.

For example, consider a control register for a communication
device with a 2-bit field used to specify the baud rate. The user
can provide a quasi-quoter-defined bit data type BaudRate that
enumerates the legal 2-bit values:

[ivory|
bitdata BaudRate :: Bits 2
= baud_9600 as 0b00
| baud_19200 as 0b01
| baud_38400 as 0b10
-- bit pattern 0b11 is invalid

|]

Using Template Haskell, the definition generates an opaque
Haskell type BaudRate, implements an instance of the BitData
type class, and defines zero-argument constructors for each value:

newtype BaudRate = {- ... -}
instance BitData BaudRate where {- ... -}
baud_9600, baud_19200, baud_38400 :: BaudRate

Bit data types can be arbitrarily nested to define more complex
types. To continue the example, we define the entire control register
consisting of enable bits for a transmitter and receiver, along with
the baud rate:

[ivory|
bitdata CtrlReg :: Bits 8 = ctrl_reg
{ ctrl_tx_enable :: Bit
, ctrl_rx_enable :: Bit
, ctrl_baud_rate :: BaudRate
} as 0b0000 # ctrl_tx_enable # ctrl_rx_enable

# ctrl_baud_rate |]

This definition of CtrlReg defines a single constructor for
building a CtrlReg value out of its constituent fields:

ctrl_reg :: Bit -> Bit -> BaudRate -> CtrlReg

The field definitions define accessors for the fields of a CtrlReg.
Because the type of these accessors contains both the type of the
containing bit data and the field being accessed, Haskell’s type sys-
tem prevents errors such as accessing a bit in the wrong register:

ctrl_rx_enable :: BitDataField CtrlReg Bit

foo :: Def (’[Sint32] :-> Sint32)
foo = proc "foo" $ \_ -> body $ ret 0

fooInternal :: Def (’[Ref s (Stored Sint32)]
:-> Sint32)

fooInternal = proc "foo" $ \ref -> body $ do
x <- deref ref
ret x

main :: Def (’[] :-> Sint32)
main = proc "main" $ body $ do
x <- call foo 0
ret x

cmodule :: Module
cmodule = package "Evil" $ do
incl fooInternal
incl main

Figure 6. Unsafe module usage

Usage In a typical low-level application, these fields are accessed
with a read-modify-write cycle which is supported efficiently by
the withBits function and Haskell’s do notation:

init_ctrl_reg = proc "init_ctrl_reg" $ body $ do
reg <- call read_ctrl_reg
call_ write_ctrl_reg $ withBits reg $ do
setBit ctrl_tx_enable
setBit ctrl_rx_enable
setField ctrl_baud_rate baud_9600

3.7 Module System
The Ivory module system packages up the collection of procedures,
data declarations, and dependencies to be passed to a back-end,
such as the C code generator. The module system is implemented
as a writer monad that produces a list of abstract syntax values that
are processed by the various back-ends.

Because our primary backend is C, Ivory modules respect some
of the conventions of C modules in which header files are used
to specify shared declarations. For example, declarations can be
declared as either public or private, and modules can depend on
other modules.

At best, forgetting to include an Ivory dependency is an incon-
venience. This inconvenience can be substantial in the case that an
inter-module dependency is omitted, which still permits the Ivory
program to type-check. If the dependency missing is a C function
implementation, for example, C code is generated and compiles,
but fails during link time. The error does not result in a safety vi-
olation, but in large projects, such as the SMACCMPilot autopilot
written in Ivory [18], the error can take several minutes to detect.

Worse, a naive implementation of the module system can lead
to safety violations. For example, consider the program in Figure 6.
Two procedures, foo and fooInternal are defined but given
the same string used as the procedure name, used in the generated
C. The Ivory program is type-correct and safe, but by passing
fooInternal into the module, it is compiled rather than foo.
And given the C99 specification, the program compiles without
warnings or errors, since 0 can be implicitly cast to a pointer to
a signed 32-bit integer.4 The result is a null-pointer dereference.

To ensure this does not happen, a simple consistency-check over
the Ivory AST is performed before compilation. The consistency-
check ensures that the prototype of a function matches the types of
the arguments.

4 In practice, the C we generate does contain a warning, since it contains
additional type annotations.



pure expressions
e ::= 0 | 1 | . . . | true | false | () | x | e1 op e2
impure expressions
i ::= pure(e) | alloc(e) | read(e) | write(e1, e2)

statements
s ::= skip | return(e) | s1; s2

| if(e) then s1 else s2
| for(x = e1; e2; e3){s}
| let x = i in s
| let x = f(e1, . . . , en) in s

values
v ::= 0 | 1 | . . . | true | false | ()
w ::= stored(v) | ref(r, n)
Stores
E ∈ x→ w
regions and heaps
R ∈ N→ w
H ::= H,R | ∅
stacks
F ::= rframe(x,E, s) | sframe(E, s)
S ::= F, S | ∅
configurations
C ∈ H × S × E × s | finished(v)
types
ρ ∈ region variables
α ::= nat | bool | unit
τ ::= storedt(α) | reft(ρ, α)
procedure definitions
P ::= proc f(τ1 x1, . . . , τn xn) : τ {s}

Figure 7. Concrete syntax of Core Ivory

4. Ivory Semantics
In the previous section, we described our embedding of Ivory into
the GHC type system and made the claim that this guarantees mem-
ory safety. We modeled a simplified version of the Ivory language
inside Isabelle/HOL[30], henceforth Core Ivory, to support this
claim. In this section we present a semantics based upon the Is-
abelle/HOL development, and outline the proof of type safety.

Developing this model provides a number of benefits for a
modest investment—we developed the model in under a person
month, albeit one of the authors has significant experience with
Isabelle. In addition to the basic benefits formalisation provides,
we can experiment with extensions to Ivory.

In one such experiment, we extended the model to allow refer-
ences in the heap, a feature we avoided in the development of Ivory
due to soundness concerns. While a simple extension to the syntax
and semantics of Ivory, the effort involved in extending the sound-
ness proofs was almost as much as developing the initial model.

Due to space constraints we discuss only those particulars of
Core Ivory which differ significantly from a standard imperative
language; see the supplemental material for more details.

4.1 Syntax
The syntax for Core Ivory is given in Figure 7. Core Ivory is
based upon a typical typed imperative language with function calls,
references, and memory allocation (but not memory deallocation).
Core Ivory attempts to stay faithful to Ivory wherever possible,
and so variables are let-bound with forms for binding the result of
expression evaluation and function calls. Furthermore, Core Ivory
expressions are stratified into pure and impure, the latter allowing
operations on the heap: allocation, reading, and writing references.

Ivory uses regions to manage memory. Thus, the heap is mod-
eled as a list of regions, each region a finite map from offsets, mod-
eled as natural numbers, to stored values; Ivory does not allow ref-
erences in heap allocated values, and so a stored value is any value
which is not a reference. A reference contains both a region index
into the list of regions, and an offset with the region. To simplify
the presentation, we will use H(r, n) to denote the value at offset
n in the rth region of H , and similarly with updates.

As with values, types classifying values in Core Ivory are strati-
fied into storable and reference types; a reference type reft(ρ, α)
is a reference to an object of type α in region ρ, where α is not a
reference.

4.2 Operational Semantics
Core Ivory’s semantics are modeled as an abstract machine over
configurations. The judgement

|= C 7−→ C′

states that configuration C transitions to configuration C′. A con-
figuration consists of a heap, a stack, a store, and the current state-
ment. The stack contains continuations for both function calls and
statement sequences while the store maps variables to values. The
semantics of sequencing is slightly non-standard as variables are
let-bound rather than assigned, and so statement sequencing pre-
serves the store across execution of the first statement.

For example, the semantics of dereferencing is given by the rule

JeKE = ref(r, n) (r, n) ∈ dom(H)

|= (H;S;E);let x = read(e) in s 7−→ (H;S;E[x 7→ w]); s

where JeKE evaluates the pure expression e under the store E. The
premise (r, n) ∈ dom(H) requires the existence of the region and
offset pointed to by the reference resulting from evaluating e.

Operationally, the heap is extended on a function call, an empty
region being added to the end of the list, and shrunk on function
return, removing the last region. Allocating an object extends the
current (last) region.

A configuration is stuck if there is no available transition. For
instance, an attempted heap access or update where the region
index does not exist or at an offset which has not been allocated
will result in a stuck configuration. In particular, accessing a region
after it has been removed will result in a stuck state.

4.3 Typing Ivory
Core Ivory’s typing judgements extend standard statement typing
judgements with a current region variable. The typing judgement

Γ; ρ `s s : τ

holds when the statement s is well-formed under the store envi-
ronment Γ, current region ρ, with any return statements returning
values of type τ .

The region variable ρ represents the current region and is used
when checking memory allocation. The typing rule for allocation
is then

Γ `e e : α Γ[x 7→ reft(ρ, α)]; ρ `s s : τ

Γ; ρ `s let x = alloc(e) in s : τ

where the body of the let statement is checked under the additional
assumption that the variable x has reference type reft(ρ, α),
noting the region variable on the reference type comes from the
current region variable. The judgement Γ `e e : α holds when
pure expression e has type α.



We fix the set of procedures as Procs. The typing rule for
procedure bodies

∀ proc f(τ1 x1, . . . , τn xn) : τ {body} ∈ Procs
ρ fresh frees(τ) ⊆ frees(τ1) ∪ . . . ∪ frees(τn)

[x1 7→ τ1, . . . , xn 7→ τn]; ρ `s s : τ

` Procs
ensures that this region variable is fresh; this constraint, together
with the constraint that region variables in the procedure’s return
type must occur in an argument type, ensures that references cannot
escape the scope in which they were allocated. These constraints
are then fundamental to the type safety of Core Ivory programs.

4.4 Type Safety
We prove type safety, that is, well-typed programs do not get stuck,
by proving the usual progress and preservation lemmas. As is com-
mon with type safety for imperative languages, we define auxil-
iary well-formedness invariants on configurations. The progress
lemma then states that well-formed configurations are not stuck,
and preservation states that well-formed configurations transition
to well-formed configurations.

Theorem 1 (Type Safety) Given ` Procs and

proc main() : nat {s} ∈ Procs

there either exists some number of steps n and value v ∈ N such
that

|= (∅; ∅; ∅);let x = main() in return(x) 7−→n finished(v)

or, for all n there is a well-formed configuration C such that

|= (∅; ∅; ∅);let x = main() in return(x) 7−→n C

Informally, a well-formed program, when called via the main
procedure, will either terminate in a finite number of steps, or will
diverge through well-formed configurations.

The well-formedness invariants are typical, and are based upon
a well-formed value judgement. For our purposes, the interesting
rule here is for references

∆(ρ) = r Θ(r, n) = α

Θ; ∆ ` ref(r, n) : reft(ρ, α)

which links reference types to reference values through the region
environment ∆, mapping region variables to region indices, and
heap type Θ, mapping region indices and offsets to types. Well-
formed heaps and stores then follow point-wise from this judge-
ment. Well-formedness of stacks follows, ensuring that each con-
tinuation on the stack is well-formed.

A well-formed configuration, in addition to the well-formedness
of the heap, stack, store, and current statement, constrains the
region environment (∆). In particular, the variable representing the
current region must be mapped to the length of the current heap,
every region index in the range of ∆ must be below this length,
and the type variables occurring in the store environment Γ must
be mapped by ∆.

The progress lemma follows from well-formedness. The preser-
vation proof, as usual, is the trickier of the two proofs. In particular,
the case for return involves showing that the various configuration
members are well-formed under a heap where the last region has
been removed from the heap. This involves showing that references
are well-formed under this smaller heap which follows from the
stack and region environment well-formedness invariants. The case
for function calls is also involved, although this is primarily due
to the instantiation of the type variables in the type of the called
function.

4.5 Discussion
The type safety proofs are greatly simplified by the restriction of
heap values to non-references: it is trivially true, for example, that
the heap is well-formed after a return as the well-formedness of
non-reference values does not depend on the type of other heap
elements.

We extended the Isabelle model to remove the stratification of
values, allowing references to appear in the heap. Syntactically,
this simplifies the language, at the expense of more complicated
proofs. For example, we extend the well-formedness of heaps to
require that heaps are downward closed with respect to region
references: that is, references in the heap refer only to regions up to
and including the containing region. This work extended the proof
development from approximately 2500 lines of proof to 3300 lines
of proof, and took approximately 2 person weeks to finish.

Developing this model uncovered a bug in the Ivory embedding
into Haskell, namely that the Haskell erroneously allowed functions
to end without encountering a return statement. Thus, a program
could claim to return, say, a valid index but in reality return an out-
of-bounds index, breaking memory safety. In the model this check
is part of the type checking rules (although elided for clarity in this
paper) but is implemented as an explicit type-check over the Ivory
AST in the Haskell implementation.

The existence of the formal model is not a guarantee that the
Ivory implementation is sound, however: there is no formal link
between the implementation and the model. For example, we dis-
covered a number of bugs due to the way in which references are
initialized: these bugs are impossible in the model, but allowed in
the implementation.

In addition, Core Ivory covers a subset of the Ivory language,
currently missing data structures and arrays. We are working to re-
duce this gap; furthermore, in future, we plan to investigate making
the core of the implementation more closely resemble Core Ivory.
Doing so would have the additional benefit of allowing us to verify
the correctness of operations performed over the core AST.

We plan on investigating first-class regions as a further exten-
sion to the model. This feature would allow programmers to name
and pass around allocation contexts, allowing helper functions to,
for example, allocate and return objects in a parent functions re-
gion. While we are confident that this extension is sound, proving
it sound allows a much greater confidence in the implementation:
memory deallocation is notoriously easy to get wrong, so having a
formal proof of soundness would be greatly comforting.

5. Ivory Testing and Verification
Ivory contains built-in tools to support high-assurance software de-
velopment. These tools include a correctness condition generator, a
SMT-based symbolic simulator, a theorem-prover translator, and a
QuickCheck engine for randomized testing [11]. We describe each
of them briefly below.

5.1 Correctness Conditions
Some correctness properties such as arithmetic underflow and over-
flow cannot be embedded in the Haskell type system. For this class
of properties the translation into the Ivory AST adds instrumenta-
tion containing appropriate assertions. For example, from the func-
tion
add_ex :: Def (’[Sint32, Sint32] :-> Sint32)
add_ex = proc "add_ex" $ \x y -> body $
ret (x + y)

the following function is generated
int32_t add_ex(int32_t var0, int32_t var1)
{

bool i_ovf0 = add_ovf_i32(var0, var1);



COMPILER_ASSERTS(i_ovf0);
return (int32_t) (var0 + var1);

}

Note the addition of an overflow check, performed by the function
add ovf i32, before the expression is evaluated. The result of
this check is handled by the macro COMPILER ASSERTS; the
response when a property is violated is platform-dependent, and
may include logging, do-nothing, running a recovery procedure,
and so forth.

Ivory inserts correctness condition checks for the following
conditions, as requested by the user:

• no arithmetic underflow and overflow,
• no division-by-zero,
• no bit-shifts are greater than or equal to the value’s width, (bit-

shifts on signed integers are prevented statically by the type
system)

• no floating-point operations result in inf or NaN values.

These correctness conditions are added as assertions by the
Ivory front-end. While the implementation is straightforward, we
note that care must be taken to not over-constrain the emitted pro-
gram: Ivory contains the short-cutting expressions of conjunctions,
disjunctions, and conditionals, analogs of C’s &&, ||, and ?
: , respectively. For these expressions, the generated assertions

must contain as a precondition that short-cutting has not occurred
so as not to be overly pessimistic. For example, for the expression

x != 0 ? 3/x : 0

the (tautological) correctness condition

(x == 0) || (x != 0)

is generated.
In addition, Ivory’s EDSL implementation encourages the use

of macros which can result in large expressions. In this case, re-
peated sub-expressions will result in repeated assertions. Standard
common subexpression elimination greatly reduces the number of
instrumented assertions.

5.2 Discharging Correctness Conditions
Generated correctness conditions as well as general user assertions
can be discharged via testing or using model-checking or theorem-
proving. We describe Ivory’s tooling for these approaches below.

Symbolic Simulation Ivory contains a prototype symbolic simu-
lator built over CVC4 [9] for verifying programs. Given a partially
annotated program, the simulator attempts to verify any inline as-
sertions and postconditions. We have used the symbolic simula-
tor to analyze various Ivory programs, having found an off-by-one
bug in a ring buffer and verified the correctness of a safety state-
machine in SMACCMPilot.

The symbolic simulator abstracts various domains. Floating
point types are abstracted as reals. However, fixed-width values are
modeled precisely, as are arrays.

During analysis, inter-procedural calls are inlined or abstracted
as directed by the user. If they are abstracted, then the callee’s
precondition is added as a verification condition at the call site. The
callee’s postcondition is added to the set of invariants following the
call. Ivory allows procedures imported from C to be summarized
with pre- and postconditions.

Ivory programs are amenable to formal analysis as they guar-
antee the absence of memory-safety errors, and contain no pointer
arithmetic or concurrency. In addition, Ivory programs typically use
unbounded iteration only at the top-level, thus all loops of interest
have statically known bounds and can be unrolled.

Theorem Proving Eakman et al. [14] implemented a theorem-
prover back-end for Ivory that targets ACL2 [5]. The theorem-
prover performs inter-procedural analysis, abstracting procedure
calls by their contracts, as with the symbolic simulator. The ACL2
backend, being interactive, has the potential to support more com-
plex assertions than the symbolic simulator, at the expense of user-
directed proofs. Eakman et al. provide examples of the use of the
theorem-proving back-end.

Property-Based Testing Finally, Ivory contains a QuickCheck [11]
like property-based testing framework. The framework tests proce-
dures by randomly generating values both for their formal argu-
ments as well as for global values. These values are constrained to
satisfy any pre-conditions.

While Ivory has an interpreter, the testing framework uses the
C backend to compile the tests. This ensures that the tested code is
that which will be run in the final compiled artifact, eliminating any
potential bugs introduced by the semantic gap between interpreter
and the compiled binary.

6. A Safe-C EDSL
In this section, we discuss the following issues we encountered
when implementing an EDSL targeted toward constructing realistic
embedded systems, notably integrating a C-like concrete syntax
into the EDSL, error-reporting, and uses of macro programming
specifically tailored to embedded system programming.

Concrete Syntax A benefit of the EDSL approach is that it re-
lieves the language developer from having to define and imple-
ment front-end syntax. However, that also generally means that
only users of the host language will be attracted to using the EDSL.
We want C/C++ developers to use Ivory!

void mapProc(*uint8_t[4] arr, uint8_t x) {
map ix {
let v = arr@ix;

*v = *v + x;
}

}

Figure 8. Concrete Syntax for Ivory

We developed a concrete C-like syntax for Ivory as a quasi-
quoter, which facilitated use by Boeing as mentioned in Section 1.
In the above we presented specific uses of quasi-quotation in Ivory
to define a concrete syntax for structs (Section 3.4) and bit-data
(Section 3.6). In Figure 8 we show an example quasi-quoted Ivory
procedure, equivalent to the that with the same name in Section 2.3.
The syntax is similar to a imperative languages like C or Python,
with some variations. For example, array types are not treated
specially like in C; the type (e.g., uint 8[4]) merely describe
a memory area, and a reference (*) must be provided to use it.
Instead of for-loops, we have a map operator that calculates the
number of iterations from the array being looped over. Let bindings
are introduced. Finally, the @ operator indexes into an array without
dereferencing.

A quasi-quoted Ivory program is guaranteed to be type-safe,
since the generated Haskell program is type-checked, an impor-
tant feature of the quasi-quoted language is that it automatically
generates the appropriate type signatures for Ivory programs, re-
lieving the programmer from doing so. The quasi-quoter also gen-
erates Ivory modules automatically and guarantees that procedure
names match their Haskell identifiers, obviating the problems dis-
cussed in Section 3.7. The quasi-quoter supports anti-quotation, so
that Haskell can still be used as a macro language. All of Boeing’s
development in Ivory is via the quasi-quoter.



Implementing a quasi-quoter means that we have defined a
lexer and parser for the concrete syntax. Because Ivory is deeply
embedded in Haskell, there is a concrete data type (i.e., the abstract
syntax tree (AST)) over which optimizations and back-ends are
implemented. The distance from Ivory as an EDSL and a stand-
alone compiler is surprisingly small, essentially requiring a type-
checker and a front-end targeting the AST directly. In this manner,
we are able to “grow” a compiler, from an EDSL to a stand-alone
system.

Haskell as Macro Language C programmers are accustomed to
using the C Pre-Processor (CPP) as a limited macro and metapro-
gramming system. Embedding Ivory within Haskell allows users
the full power of Haskell as a type-safe metaprogramming envi-
ronment for Ivory. We have used this feature in a variety of ways,
specifically beneficial to embedded development.

• In embedded systems, a peripheral device’s clock may be de-
rived from a platform-wide clock by a programmable clock di-
vider. However, the platform clock may be configurable. Con-
figuring, say, a serial port to operate at 115200bps, may require
a complex search over the space of clock divider and other con-
figuration settings based on the current platform clock. These
settings will be the same on every run for a given application,
so we can precompute them in Haskell.

• We frequently use Haskell type-classes to provide function
overloading for Ivory. For example, the ivory-serialize library
provides a “Packable” typeclass capturing the code needed to
serialize or deserialize user-specified types. This style of over-
loading is resolved during Haskell run-time, so the generated C
is monomorphized.

• Mathematical metaprogramming has been a particularly power-
ful tool when combined with Ivory. Edward Kmett’s automatic
differentiation [1] and linear algebra [4] packages, which de-
pend primarily on the Haskell Prelude’s numeric typeclasses,
operate transparently over Ivory expressions—despite having
been designed independently. This allowed us to build a stand-
alone package, “estimator” [2], which automatically derives an
Extended Kalman Filter from a concise model written in pure
Haskell. Like linear and ad, the estimator package is indepen-
dent of Ivory, but when evaluated over an Ivory floating-point
type, the result is a C implementation of the derived Kalman
filter.

Error Reporting Dynamically reporting errors in an EDSL is
made difficult by the lack of source locations. Consider the Ivory
expression x / y, which induces a runtime assertion y != 0,
inserted into the generated back-end (e.g., C code). If the assertion
fails, we would like to include a Haskell source location in the error
message to direct the programmer to the source of the error. The
question is then: how are we to obtain the source location in the first
place? Ivory programs are comprised of Haskell expressions and
Haskell is pure–functions cannot depend on their call-site–so we
must look outside the language proper to obtain source locations.

We opted to write a compiler plugin that rewrites GHC’s inter-
mediate representation to add the source locations. To do so, we
extended the Ivory statement type with a new Location con-
structor that contains a location in the Haskell source, essentially a
special type of comment. The plugin then extracts the source loca-
tions from GHC and wraps all actions in the Ivory monad with a
withLocation function that emits a Location statement be-
fore executing the wrapped action.

The approach limits the location granularity to lines rather than
columns, but it requires only modest changes to the Ivory com-
piler and–importantly–no changes to Ivory code. As the plugin it-
self requires little knowledge of Ivory, we have abstracted it out

into a separate package [3] that can be reused by other projects.
Furthermore, we have since submitted a lightweight extension to
GHC that allows functions to request their call-site by taking a spe-
cial implicit parameter [25] as an argument, which should become
available in the 7.12 release.

7. Related Work
The general idea of safe C languages is not new; our main contri-
bution is embedding a type system into GHC as well as our support
of verification tools.

Pioneering work in the area is the Cyclone language and com-
piler [19]. Cyclone is a dialect of C. Cyclone is less restrictive than
Ivory, relying on both static analysis and runtime checks to en-
force memory safety. Cyclone provides regions for dynamic mem-
ory allocation; garbage collection is optional. Cyclone programs
are typically slightly larger than their C equivalents and mostly
syntactically the same. In contrast to Ivory, Cyclone does not pro-
vide macro-programming facilities (beyond the C preprocessor),
nor does it interface to verification and testing tools. Unfortunately,
Cyclone is not actively maintained.

Bit-data and memory areas in Ivory borrow heavily from Di-
atchki et al.’s previous work [12, 13]. Indeed, one can consider
the present work as demonstrating the feasibility of embedding this
language into Haskell and GHC types. BitC is another deprecated
research language that explored a similar design space [33].

Spark/Ada is a mature language for high-assurance embedded
programming, with a contract language and verification tools to
prove invariants [8]. To support verification, the language is very
restrictive: in particular, there are no references in the language.

Rust is an actively-developed safe C language, originating from
Mozilla [29]. Rust has a powerful affine type system5 that en-
forces the safe use of heap-based data structures, reference count-
ing garbage collection as a library, and hygenic macros. The lan-
guage has a property-based testing framework, but no mature sup-
port for verification, or even static checks for undefined behavior
(e.g., division by a constant zero expression).

Other safe C EDSLs exist such as Atom, a language for lock-
free embedded programs [17]; Copilot, a stream-oriented syn-
chronous language [31]; SBV, a Haskell-based SMT symbolic
simulator with a C code generator [15]; and Feldspar, a language
specialized for high-level and efficient specifications of digital sig-
nal processing [7]. Compared to these languages, Ivory is more
focused on the kinds of C in low-level code such as device drivers,
with bit-data and memory area manipulation.

8. Conclusions and Future Work
In this paper, we have described a full-featured EDSL for high-
assurance embedded systems programming. Ivory’s type system
ensures safe C development, and being an EDSL, it allows pro-
grammers the flexibility to create high-level constructs in a type-
safe fashion. We have demonstrated the feasibility of developing
large embedded systems in Ivory ourselves, and there is a growing
user community. For a detailed experience report of using Ivory,
and EDSLs for embedded programming in general, see our previ-
ous work [18].

As Ivory’s type system is embedded in GHC’s, the properties
that Ivory’s type system can encode is limited to what can be ex-
pressed in GHC: for instance, while procedures are guaranteed to
be consistent in their return type, that they use the return statement
must be checked during a separate phase. In practice, this limitation
results in the discovery of errors later in the compilation pipeline
than would be the case in a standalone compiler. Conversely, Ivory

5 An affine type system prevents pointer aliasing errors.



can take advantage of new developments in GHC’s type system.
For instance, there are plans to integrate SMT solving into GHC’s
constraint solver, which would enable more expressive array oper-
ations in the Ivory core language, as well as enabling a richer set of
derived operations.

Use of Ivory has exposed a number of avenues for future work.
As mentioned in Section 4, we are investigating the addition of
nested references. We also plan to investigate decoupling regions
from function bodies, thus giving finer-grained control over mem-
ory lifetimes. Finally, we are considering making regions first-
class, allowing allocation to take place in a parent region. On
the verification side, we are considering developing a weakest-
precondition style verification tool for Ivory programs, and extend-
ing the assertion language with separation-logic predicates.
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