Skip to content

Gelya298/Drakon

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drakon

Examples of python code

Fibonacci sequence

Fibonacci

В математике треугольник Паскаля - это треугольный массив биномиальных коэффициентов, который возникает в теории вероятностей, комбинаторике и алгебре. В большей части западного мира он назван в честь французского математика Блеза Паскаля, хотя другие математики изучали его за несколько столетий до него в Индии,Персии,Китае,Германии и Италии.

Строки треугольника Паскаля обычно нумеруются, начиная с строки n = 0 вверху (0-я строка). Записи в каждой строке нумеруются слева, начиная с k = 0, и обычно располагаются в шахматном порядке относительно чисел в соседних строках. Треугольник может быть построен следующим образом: в строке 0 (самая верхняя строка) есть уникальная ненулевая запись 1. Каждая запись каждой последующей строки создается путем добавления числа вверху и слева с номером вверху и к справа, обрабатывая пустые записи как 0. Например, начальное число в первой (или любой другой) строке равно 1 (сумма 0 и 1), тогда как числа 1 и 3 в третьей строке складываются для получения цифра 4 в четвертом ряду.

Суммы диагоналий, дают нам суммы следующих последовательностей геометрических фигур:

Fibonacci in Pascal

Прерывистый луч, минус первое измерение (1 - нулевой объект\доп) - показан на рисунке выше в виде первой красной диагональю от левого верхнего угла.

0-мерная система (1 - точка) - самая верхняя синяя диагональ на рисунке выше.

1 луч в одномерной системе (1 ребро + 1 точка\доп)

1 проекция сиплекса\пакета молока на плоскость (1 грань\треугольник + 2 точки)

1 пакет молока\трехмерный симплекс и центральная точка объема с 4 ребрами (1 объем + 3 ребра + 1 ребро\доп)

1 четырехмерный симплекс\проекция 8 гиперобъемов на 4-х мерное пространство (1 гиперобъем + 4 грани +3 точки ). При таких измерениях проще говорит в терминах симметрии. Отражение гиперобъема через 4 грани и еще через 3 точки. Получаем тут группу Ли и связанную с ней решетку.

д'Арийская Arifmetika

Страница 13 д'Арийской Арифметики - Умножение Ю.

По крайнему примеру - берем 3 точки - они сами по себе образуют грань. Добавляем еще одну точку, тем самым у нас получился пакет молока с 4 гранями. Добавляем еще одну точку - на каждой грани пакета молока у нас выростает еще по одному пакету молока - всего 5 пакетов молока, которые образуют гиперобъем. Если просуммировать все эти обекты то у нас получается 8 - элемент последовательности фибоначи.

Но возникает вопрос - Как мы складываем треугольник с тетрайдером?

Это геометрическое сложение: На самом деле мы складываем пакет молока с его 6 ребрами минус 3 ребра треугольника. Так как пакет молока и 6 ребер эквивалентны - мы можем их складывать. А вот коэффицент 3 это коэффицент двухмерного ПРОВОЛОЧНОГО треугольника из 3 точек при сложении с треугольниками пакета молока. А 4 это коэффицент плоского треугольника при сложении с 4-х мерным симплексом. Другими словами каждая точка в 4-х мерном пространстве имеет коэффицент 3. Каждая грань в 4-х мерном симплекс пространстве коэффицент 4.

Вот эта полная структура 4-х мерный тетрайдер и дает набор опорных точек в количестве 5 штук, которые и являются объемно временным ОВ умножением Ю (которое разобрано на странице 13 учебника д'Арийской арифметики).

Все диагоналии без доп (то есть только синие диагоналии) относятся к нашему реальном миру (красные диагоналии относятся к мнимым физическим величинам):

0 мерный квант это, возможно, наши мысли. Так считал Плотников Николай Александрович, создатель Системы физических величин

1-но мерный квант - пи-мезоны.

2-х мерный квант - время или свет

3-х мерный квант - звук и упругость. Это то что мы чувствуем руками и ушами.

4-х мерный квант - магнитное поле

4-х мерный квант - магнитное поле

5-ти мерный квант электрическое поле

5-ти мерный квант электрическое поле

6-ти мерный квант - слабое взаимодействие

6-ти мерный квант - слабое взаимодействие

Рентгеновское излучение - северное сияние это проекция излучения космических частиц высокой энергии (как рентген) на свет. Уловить нейтрино можно в - полкубических сантиметра газообразного Германия, который содержит всего 5-6 оставшихся после распада атомов со следами нейтрино. По сути это та же структура Алмазной решетки (Кремний) потому что они находятся в той же группе IV но разных периодах (в 3 и 5 ряду).

7-ми мерный квант - сильное взаимодействие - оно очень проницательное (проходит через все что угодно включая время) и поэтому не имеет материальных графиков - но служит полем носителем мыслей (не путать с 0-квантом/1-квантом)

Кристалл

Вот что происходит, если из центра кристалла идет свет.У нас получается треугольник Паскалля 1 зона под ней 2 зона затем две зоны 3 затем зона 4, 6, 4 и так далее (вот тут все не точно - тут надо конкретнее разбираться, но пока такой задачи ребром не стоит, поэтому примем во внимаение что есть статистическая связь. Что распределения зон в кристалле и коэффиценты биномов в треугольнике Паскаля схожи по статистике)

Кристалл2

Суть всего этого очень простая. Если у нас есть регулярная двухмерная решетка, то фотон каждый раз при столкновении будет выбирать один из 2 путей. Соответственно числа в треугольнике паскаля это сколько фотонов попадет в итоге в каждый узел нашей регулярной структуры, если в каждом узле фотон переотражается (удваиватеся\копируется\использует время перед отправкой) в двух соседних направлениях (это и есть определение времени для двухмерных кристаллов). Скажем прямо, структура у нас это кристалл алмаза (бриллиант) и она отражает свет.

Свет воздействует и на горы - потому что это совокупность кристаллических структур.

Для трехмерных структур - фотон света будет в 3 направлениях переотражатся.

2D Brillouin Zones

Cubic Lattice

Программа на Питоне

Cвязи Треугольника Паскаля и зон Брюльена есть некоторые неточности. Но с точки зрения физики Статистика Ферми-Дирака, биномиальные коэффиценты и треугольник Паскаля являются в чем то близкими понятиями. Так же можно проследить связь Треугольника Паскаля с законами Кирхгофа для электрического тока и теорией цепей Крона.

История теории вероятностей

Drakon file it is a tables of SQLite DB.

Look to SQLite Drakon db:

sqlite3 first6.drn

List of table

.tables

Show table item:

select * from items;

Examples of different select:

select text,x,y from items;

select a,b,color from items;

Show any SQL code for Drakon db (INCLUDE, CREATE):

.dump

SQLite dump

CREATE TABLE - создать таблицу

INSERT INTO - вставить строчки в таблицу

Exit from SQLite DB:

.exit

About

Examples of python code

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages