
Final Year Project Report
Full Unit - Final Report

Offline HTML5 Maps Application

George Honeywood

A report submitted in part fulfilment of the degree of

BSc (Hons) in Computer Science

Supervisor: Reuben Rowe

Department of Computer Science
Royal Holloway, University of London

March 23, 2023

Offline HTML5 Maps Application George Honeywood

Declaration

This report has been prepared on the basis of my own work. Where other published and
unpublished source materials have been used, these have been acknowledged.

Word Count: 12,889

Student Name: George Honeywood

Date of Submission: March 23, 2023

Signature: GH

Page 1 of 55

Offline HTML5 Maps Application George Honeywood

Table of Contents

Abstract 4

1 Introduction 4

1.1 Literature review . 6

1.2 Aims and objectives . 6

1.3 Deliverables & timeline . 7
1.3.1 Term one . 8
1.3.2 Term two . 8

2 Research 9

2.1 Basic web technologies . 9

2.2 Offline HTML5 applications . 10

2.3 Using the HTML5 canvas . 12

2.4 OpenStreetMap data sources . 14

2.5 Projecting map data . 15

3 Proof-of-concept development process 17

3.1 Simple offline HTML5 app . 17

3.2 Rendering geometry to a canvas . 18

3.3 Adding interactivity — panning and zooming 19

3.4 Rendering tiled data from a Mapsforge file 21
3.4.1 The Mapsforge format . 22
3.4.2 Writing a parser . 24
3.4.3 Rendering the tiles . 25

4 Final application development process: OSMO 26

4.1 Dynamic tile loading . 26

4.2 Caching dynamically loaded tiles . 27

4.3 Downloading a region . 28

4.4 Experimenting with WebGL . 29

4.5 Svelte: using a frontend framework . 30

4.6 Progressive web apps (PWAs) . 31

4.7 Service worker quirks . 32

4.8 Handling HiDPI displays . 33

5 Software engineering 35

5.1 Testing . 35

Page 2 of 55

Offline HTML5 Maps Application George Honeywood

5.1.1 Test suite coverage . 37

5.2 GitLab CI . 37

5.3 Version control . 38

5.4 Documentation . 38

5.5 Profiling and optimization . 39

6 Professional issues 41

7 Conclusion & evaluation 44

8 Appendix 46

8.1 diary.md . 46

Bibliography 51

Page 3 of 55

Offline HTML5 Maps Application George Honeywood

Abstract

Although online web maps are commonplace, offline maps are a valuable niche that are
useful in certain situations, such as on mobile devices with limited data, or when roaming
abroad. There are limited options in this space that are cross-platform, which I hope
my project can resolve through the nature of it being provided as a progressive web app
(PWA).

In this project I aim to build an offline maps application based on OpenStreetMap data.
The user should be able to download map data for their area of interest, then view it by
panning and zooming, like a traditional online slippy map. Time permitting, I may also
add additional features that require an internet connection, like routing and Wikipedia
integration. Through this project I hope to learn about how you project map data into a
rendered map. It will also teach me how to successfully develop a medium-sized applica-
tion.

1: Introduction

The OpenStreetMap project began in 2004, with the aim of creating a free world map [1].
Since then, it has met and surpassed its goals, becoming a mature, global dataset, edited
by both volunteers and corporations alike. As of late 2022, an average of 6,000 contributors
edit the map daily, with more than 9 million registered in total [2]. In contrast to how
cartography is traditionally carried out, OSM contributors tend to not use any specialized
equipment, instead using tools like GPS and aerial imagery to create the map. The barrier
of entry is low by design, making it easy for new mappers to get started. This sometimes
results in inaccurate, or even vandalistic edits being made, but the community usually
spots and reverts bad edits quickly.

I have personally been involved in the OpenStreetMap project since creating an account
in May 2019. This was initially as I was using an OSM based map, and noticed that a
new-build estate near my house was missing. Hence, I added it, and this led me down the
rabbit hole of wanting to add all the missing features around me. Since then, I have been a
regular contributor, with currently almost 2,000 changesets made over 341 separate days.
I have also made some code contributions to the Every Door mobile editor, principally
adding support for viewing the history of elements [3].

Although online OpenStreetMap-based web maps are very popular, offline maps are much
less of an explored field. On the Android platform, you have a few options for offline
maps, such as the venerable OsmAnd [4], Organic Maps (FOSS fork of Maps.me [5]), and

Page 4 of 55

https://www.openstreetmap.org/changeset/70609319
https://www.openstreetmap.org/user/GeorgeHoneywood

Offline HTML5 Maps Application George Honeywood

the proprietary Magic Earth [6]. On desktop, the available options are more sparse. KDE
Marble is one option [7], but it seems like the offline experience is an afterthought. It
allows you to download pre-rendered Mapnik Carto style tiles, but this is limited to above
zoom level 16, so fine details are not visible (openstreetmap.org renders tiles down to zoom
level 19).

This approach of downloading rendered raster tiles is also not very scalable, as there quickly
becomes a huge number of images that need to be downloaded, and these images take up
significant storage space. For example, I attempted to download the tiles for Cornwall, UK,
in KDE Marble, and it would have had to fetch 58,928 tiles just for between zoom levels 11
and 16, equating to an estimated download size of 749 MB. This method is also explicitly
prohibited by the OpenStreetMap Foundation’s Tile Usage Policy, which states that “In
particular, downloading an area of over 250 tiles at zoom level 13 or higher for offline
or later usage is forbidden.” [8]. This is because rendering map tiles is computationally
expensive, and the OSMF is run with a limited budget.

Another option is the OpenStreetMap API itself [9]. This is more promising for offline us-
age, as it allows you to download vector data that can be stored more efficiently than raster
images. However, the API is not designed for this use case — it is an interface specifically
for map editor programs to use. As such, you can only download small geographical areas
at a time, and the data is not stored in an optimal format for rendering. For example,
complex structures, such as buildings with internal courtyards, are represented in OSM
with multipolygon relations, which are difficult to parse and render correctly when using
raw OSM data. An additional barrier to using the editing API is that its Terms of Use
explicitly prohibit read only applications [10].

Cruiser follows a more promising approach [11]. Instead of downloading rendered image
tiles, it uses prebuilt tiled vector map files, in the Mapsforge binary format [12]. This is
much more space efficient — the whole of England is an 805 MB download. It is also
much less difficult to host, as you don’t need a powerful server to render the raster map
tiles on the fly. One possible issue with this approach is that this may be too much data
to store in a HTML5 web application, and this is something I will have to explore further.

Offline maps are a niche market, as desktop computers tend to always have an internet
connection, and on mobile devices data is cheap enough to allow downloading some small
vector or raster map tiles. Hence, the main use-case for an offline HTML5 map would be
for when an internet connection is either prohibitively expensive or not available at all.
This could be when roaming abroad, or when in an area without LTE coverage. As such,
it makes sense to make support for mobile devices a priority, as they are the most likely
to be in these situations.

From this project I hope to learn how map data actually becomes a rendered map, as my

Page 5 of 55

https://openstreetmap.org

Offline HTML5 Maps Application George Honeywood

current understanding of this process is limited. I also hope to learn more about offline
HTML applications, as I think that this type of web app has lots of room to become
popular in the coming years. There are lots of apps on my phone that I think could be
replaced by a PWA (progressive web app).

1.1 Literature review

Whilst researching, my primary source for information about the OpenStreetMap project
was OpenStreetMap — Using and Enhancing the Free Map of the World, by Ramm, Topf
and Childon [1]. This provided a good foundation of knowledge that supplemented in-
formation that I have picked up over the years from contributing to the project. Some
sections were a little out of date, especially the sections on editors and tools for map-
pers. Notably the online editor referred to here, Potlatch, is no longer available, being
superseded by iD in 2013.

For more up to date or specific information I often relied on the OpenStreetMap Wiki [13],
which provides a helpful reference for both OSM specific information and other GIS ad-
jacent topics. These include general information about map projections [14], and details
about the Z/X/Y tiling scheme that is common for web maps [15].

When it came to implementing the project, MDN Web Developer documentation proved
invaluable [16]. They provide an excellent reference on how to use many web APIs, with
detailed usage guides included. In particular, the information about the Canvas API [17],
and Service Workers [18] was very useful, as these were technologies that I was not familiar
with.

1.2 Aims and objectives

Here I will list some specific features that I would like to implement in the project. These
are not fixed, and some may not be implemented, or others added in their place:

• Download vector map data for a user-provided region (preferably at least as large
as a UK county), allowing the user to browse the map offline.

• Allow the user to pan and zoom the map. They should be able to zoom out to the
view the full extent of the downloaded data.

• Provide a search functionality, using the Nominatim API
• Allow the user to route between two points, which could be implemented using

OSRM, GraphHopper or Valhalla.

Page 6 of 55

Offline HTML5 Maps Application George Honeywood

• When an OSM element has been tagged with a reference to a Wikipedia article, it
should show a description from Wikipedia.

• Allow the user to save and name markers for later use.
• When online, the application should allow the user to browse a map without having

to first download any data. This could be done using raster tiles.

1.3 Deliverables & timeline

Following a predetermined timeline will help my project proceed without any major un-
expected delays, and will give me targets to aim for. At the beginning of term 1 I focused
on exploring any risky areas or technologies that I was unsure about. This helped answer
any large questions early on in the process.

1. Report on offline HTML5 technologies. Used this to discover whether it is possible to
download & store a large amount of vector map data (>100 MB) for later rendering.

2. Proof of concept basic offline HTML5 app. Used this to discover any limit of how
files can be stored for offline use.

3. Report on the different ways that the program could get OpenStreetMap data. One
possibility is the Mapsforge format, or it could use the OSM editing API. This
helped mitigate risk of using a technology that is not suitable for the project.

4. Report about how map projection works. Specifically the mathematics behind pro-
jecting the data that is produced by OpenStreetMap. This ensured that I understood
this key concept.

5. Proof of concept that took some way made up of latitude longitude pairs and draws
a line onto a canvas.

6. Make proof of concept 5 interactive, by allowing the user to pan and zoom the map.
This should be done with the scroll wheel on desktop and pinch zooming on mobile.

7. Proof of concept that loads some actual OSM data using the technology that I
decided upon in deliverable 3.

8. Thoroughly test the application on mobile, as this will likely be the main use case
for an offline map.

9. Add online search functionality, using the Nominatim API.
10. Add online routing functionality, using OSRM, GraphHopper or Valhalla.
11. Show point of interest information from Wikipedia, when an OSM element has been

tagged to allow this.
12. Add the ability to save and name markers for later use.
13. Allow the user to browse the map without first downloading data when online. This

could be done using raster tiles.

Page 7 of 55

Offline HTML5 Maps Application George Honeywood

1.3.1 Term one

• Week 3 (2022/10/03): Report 1.
• Week 4 (2022/10/10): Proof of concept 2 & report 3.
• Week 5 (2022/10/17): Report 4 & proof of concept 5.
• Week 6–7 (2022/10/24): Proof of concept 6.
• Week 8–9 (2022/11/07): Proof of concept 7.
• Week 10–11 (2022/11/21): Prepare for the interim report, and presentation.

1.3.2 Term two

• Week 1–2 (2023/01/09): Integration of the above proof of concepts into the final
program.

• Week 3–4 (2023/01/23): Deliverable 8.
• Week 5 (2023/02/06): Prepare an initial draft for the final report.
• Week 6–7 (2023/02/13): Add support for further features, such as deliver-

ables 9, 10, 11, 12 and 13.
• Week 8 (2023/02/27): Evaluate the solution so far, and decide whether to extend

the project further, if time permits.
• Week 9–11 (2023/03/06): Prepare for the final report.

Page 8 of 55

Offline HTML5 Maps Application George Honeywood

2: Research

Here I present the research reports I conducted throughout the development process. These
helped me to discover which technologies would be most appropriate for my project, and
how I could implement them in my proof of concepts.

2.1 Basic web technologies

Websites are commonly made up of 3 main components: HTML, CSS, and JavaScript [19].
HTML is used to create text, images, videos, and other non-interactive content. CSS is
responsible for styling, colours, sizing, and other visual effects. JavaScript is used to add
interactivity.

While I will need some HTML and CSS, my project is focused on creating an interactive
map. Therefore, much of my work will be done in JavaScript, specifically heavily utilising
the Canvas API [17]. Instead of using vanilla JavaScript, I have chosen to use TypeScript,
which is a superset of JavaScript that adds a compilation/stripping step, where types are
statically checked to prevent runtime type issues (this is discussed more in Section 5).

In Listing 2.1 you can see an HTML example that does little other than create a canvas
element, and load an external script. This script can then get a reference to the map
canvas element in the DOM (e.g., with document.querySelector("#map")), and use this
to create and issue calls to the canvas rendering context.

Listing 2.1: Basic HTML to run an external script with some basic styling

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
5 <title>Proof of concept: 1</title>
6 <style>
7 body {
8 font-family: sans;
9 }

10 </style>
11 </head>
12 <body>
13 <h1>Proof of concept: 1</h1>
14 <canvas id="map"></canvas>
15 <script src="dist/bundle.js"></script>
16 </body>

Page 9 of 55

Offline HTML5 Maps Application George Honeywood

17 </html>

To run your multiple JavaScript files in the browser, you can either use plain ES Mod-
ules [20], or add a bundling step, where all the code is combined into a single file. Using
ES Modules in the browser allows you to avoid a build step, but has the negative that it
requires n round-trips to the server. For example, if main.js imports map.js and map.js
imports util.js, your browser will need to make 3 separate requests to the server, and
script execution will be blocked until the last dependency has been fetched and evalu-
ated [21].

Bundling, in its simplest form, involves concatenating all the source files together into a
single file. This neatly avoids the round trip problem, whilst still allowing you to store your
source code in separate files. Advanced bundlers also support features like minification,
where variables are renamed to be shorter, whitespace is removed, and unused functions
are purged. esbuild is a high-performance modern JavaScript/TypeScript bundler, which
is written in Go [22].

2.2 Offline HTML5 applications

In order to create an offline HTML5 map application, I will first have to research how offline
HTML5 applications work, and what technologies I’ll need to become familiar with.

There are various different APIs that one can use to store data in an offline HTML5 appli-
cation, such as IndexedDB, the File and Directory Entries API [23] [24] and localStorage.
localStorage will likely not be appropriate for my use case, as it is designed for only small
amounts of data. There is also the Application Cache, but this has been deprecated, and
support has been removed from all major browsers [25] [26]. Therefore, the Application
Cache will not be suitable for a new application.

If I am to process and use a large precompiled map data format like mbtiles [27] or
Mapsforge [12], using the File and Directory Entries API will likely be more appropriate.
For optimal performance, it may be necessary to have a loading step I transform from one
of these formats into the IndexedDB, for usage by the app. Hopefully this step can be
avoided, as it would not be ideal to have multiple copies of the data, particularly on space
constrained devices.

“The File and Directory Entries API simulates a local file system that web
apps can navigate around. You can develop apps that can read, write, and
create files and directories in a sandboxed, virtual file system.”
— MDN Contributors. Introduction to the File and Directory Entries API. 2022. url:

Page 10 of 55

Offline HTML5 Maps Application George Honeywood

https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_
API/Introduction (visited on 12/10/2022)

Another benefit of the File and Directory Entries API [23], is that it has the ability to act
like a local file system. This would allow my app to have a flow like:

• User opens the webapp.
• Selects map to download from list (or as an enhancement by zooming in on desired

region on a low detail world map).
• App downloads the map file to sandboxed filesystem.
• User goes offline.
• Map rendered from this internally stored file.

A flow like this makes sense from a user’s perspective, as it follows a similar paradigm to
other offline map viewers, like Organic Maps or OsmAnd (as discussed in the initial plan).

If there are issues with using the File and Directory Entries API, for example file size
limits in certain browsers, it should be possible to use the plain File API instead [28].
The File API allows access to read single files from a user’s local filesystem. Importantly
for my use case of loading a large map file from a user’s disk, we cannot store the entire
file in RAM at once. Usefully, the File API provides a .slice() method, which allows
you to work with a smaller subsection of the file. This will likely be important to avoid
out-of-memory (OOM) errors.

Using the plain file API will, however, come at a detriment to the user flow. Instead of
being able to select and download a map within the app, the user will have to download
the map file themselves, then point the app to the map file they have downloaded. This
is not a major issue, but it would be preferable to have this process handled without user
interaction.

Unfortunately the Files and Directory Entries API has limited support in Firefox [29].
Critically window.requestFileSystem() is not supported, and this is the function that
you call to gain access to a virtual filesystem. In Firefox this API can only be used through
an <input> element, or drag and drop. This is an issue as for my application, the app
would need to be able to create the virtual filesystem programmatically.

“Content scripts can’t create file systems or initiate access to a file system.”
— MDN Contributors. File and Directory Entries API support in Firefox: Limitations.
2022. url: https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_
Entries_API/Firefox_support#limitations_in_firefox (visited on 17/10/2022)

Hence, if I wish to use the File and Directory Entries API, which would provide a smoother
user journey, I would not be able to support Firefox. For my application, I think it

Page 11 of 55

https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Firefox_support#limitations_in_firefox
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Firefox_support#limitations_in_firefox

Offline HTML5 Maps Application George Honeywood

is more important to support Firefox than have perfect UX — so I will settle on the
compromise of the user having to select the desired map file on each start, via the file
picker. This will be an irritation, but unfortunately there is no widely compatible way to
use a sandboxed/virtual filesystem in the browser.

One benefit of storing the map file outside the browser is that my application will not have
to deal with the browser not allocating it enough storage quota for the file. For example,
in Chrome you must use the Quota Management API to request persistent storage space
to use [30], which will prompt the user to accept the request.

Another option is to use the Cache API. The Cache API is part of the Service Worker
specification [31] [18], and has good cross-browser support. It has a simpler interface that
should work for the application — a pair of a request and a response object are stored,
and you get a cached version of the response by providing a similar request.

To determine which will be the best choice for the application, I will produce proof of
concepts that employ the File API and the Cache API.

2.3 Using the HTML5 canvas

The HTML5 Canvas provides another dimension to web applications, where bitmap ani-
mations or other data can be displayed interactively.

“HTML5 Canvas is an immediate mode bitmapped area of the screen that
can be manipulated with JavaScript. Immediate mode refers to the way the
canvas renders pixels on the screen. HTML5 Canvas completely redraws the
bitmapped screen on every frame by using Canvas API calls from JavaScript.”
— Steve Fulton and Jeff Fulton. HTML5 Canvas: Native Interactivity and Animation for
the Web. O’Reilly Media, 2013. isbn: 9781449335885. url: https://books.google.co.uk/
books?id=zLUyKvtdCQwC

So, in my application, the canvas is what the map will be “drawn” to. The canvas API
provides different interfaces that you can use, known as rendering contexts [17]. For simple
2D drawing, there is the CanvasRenderingContext2D interface. For more intensive 2D
and 3D workloads, there is the GPU accelerated WebGLRenderingContext, which uses
an OpenGL-like system of vertex and fragment shaders [33]. This is what some existing
vector web map libraries use, like Mapbox’s GL JS [34].

In the long run, the WebGLRenderingContext would be the best choice in terms of effi-
ciency and performance, as it is hardware accelerated. However, the CanvasRendering-

Page 12 of 55

https://books.google.co.uk/books?id=zLUyKvtdCQwC
https://books.google.co.uk/books?id=zLUyKvtdCQwC

Offline HTML5 Maps Application George Honeywood

Context2D has a far simpler API, so it makes sense to use it here.

The simplest operation I will need to use the canvas for is drawing the outlines of polygonal
shapes. Note that on the canvas, (0, 0) is at the top left. To begin drawing, you first
need to get an instance of CanvasRenderingContext2D, which is done by calling const
ctx = canvas.getContext(“2d”) on some canvas element in the DOM. To start on the
polygon, you must call ctx.beginPath() to create a new path, that you then add data to
using the ctx.lineTo(x, y) method. If required, you can also call ctx.moveTo(x, y)
to have the line jump from one spot to the next. Once you have made your .moveTo()
and .lineTo() calls, you then execute ctx.stroke() to render the line out.

Another operation I will need to perform to create a styled map, is creating “filled”
polygons. For example, openstreetmap.org renders buildings with a brown infill and a
darker outline. This is achieved on the canvas in a very similar way to the polygon
outline, but instead of calling ctx.stroke() to render the path, you call ctx.fill(). To
control the colour, you set ctx.fillStyle to some desired value.

To render names of points of interest and ways to the map, I will need a method to
write text to the canvas. This can be done using ctx.fillText(‘string’, x, y) [35].
Unfortunately, this does not make provisions for drawing text at an angle. This would
be useful for drawing names of roads or boundaries, where the name follows the curve of
the geometry. However, you can use the ctx.rotate(angle) to achieve a similar result,
albeit with some more complexity [36].

Another useful method for drawing a map will be the ctx.measureText(‘string’)
method, which returns the pixel size that the text will be drawn at. This information
can be used to prevent labels on the map overlapping, by storing each of the previously
drawn labels’ boundary boxes, and preventing new labels from being drawn if they are
colliding.

Finally, the Path2D interface may be useful for my application [37]. It allows you to save
a path, meaning you can stroke and fill some geometry, without having to draw the path
twice. Hence, it should give an efficiency boost. You use it like so:

1 const ctx = canvas.getContext('2d');
2
3 let path = new Path2D();
4 path.rect(5, 5, 20, 20);
5
6 ctx.stroke(path);
7 ctx.fill(path);

Page 13 of 55

https://openstreetmap.org

Offline HTML5 Maps Application George Honeywood

2.4 OpenStreetMap data sources

In order to produce a map using OpenStreetMap data, you first need to decide which
source/format of data to use. Traditionally, for this project, students use the Open-
StreetMap editing API. This however, has a number of limitations, some of which I have
already discussed in the project plan:

• It is designed for map editing applications, and the terms of service explicitly prohibit
read-only uses [8].

• You can only download a relatively limited geographical area, usually only around
2 km2. This has the effect that you will not be able to zoom out to see a large area,
such an entire country [38].

• Complex structures (like buildings with internal courtyards) represented in Open-
StreetMap as multipolyons require extensive parsing and validation to correctly dis-
play.

For online maps, it is common to use either raster or vector “map tiles”. Raster map
tiles are usually 256×256 .png files, rendered by a Mapnik server. These tiles are named
according to their zoom level, and an x and y value, where x and y are offsets from the
top left most tile [15]. Raster tiles, however, are not particularly appropriate for offline
usage, as you have to request an extremely large amount of tiles, especially when you
approach high zoom levels. For example, if you downloaded 4 tiles at zoom 10, you would
need to download 16 at zoom 11, 64 at zoom 12, and 262144 at zoom 18. This behaviour
is unacceptable as rendering tiles is computationally expensive for the OpenStreetMap
Foundation, and the size of these tiles adds up.

Vector tiles use a similar scheme, with tiles also being served at Z/X/Y addresses. The
key differentiator is that instead of rendered images, vector data is served to clients, and it
is up to the clients to render this data into a map. This gives the clients flexibility in how
they can choose to display the data, such as the colours, labels, and line thicknesses. This
is usually done through stylesheets. As vector data does not pixelate like raster images,
you can “overzoom” on vector tiles, meaning you do not have to serve tiles to such high
zoom levels. One of the most popular formats for vector map tiles are Mapbox Vector
tiles. These use the Google Protobuf format to store the vector data.

Vector tiles make a more appropriate offline format than raster tiles, due to their ability to
“overzoom”, and that vector data can be stored more efficiently. Unfortunately, it is still
not particularly suited to offline usage, as with raster tiles, you need to download many
tiles to cover a large region.

Therefore, it makes sense to use a dedicated storage format, that is designed to provide
map data for offline applications. The OpenStreetMap Wiki provides a number of possible

Page 14 of 55

Offline HTML5 Maps Application George Honeywood

options for this purpose [39]. The most popular choices are mapsforge [40], which is used
by many applications [41], and MBTiles (by Mapbox) [42]. Unfortunately, as the MBTiles
format is based on an SQLite database, it can’t easily be used in a HTML5 app.

Mapsforge, on the other hand, uses a custom binary data format [12]. Mapsforge only
provide libraries for the Java language and the Android platform. There is a partial
implementation available of a parser written in JavaScript, which only supports decoding
the headers and other metadata. Hence, to use this format for my project, I would need
to implement my own parser, which would add substantial complexity. I may also need
to tackle issues with memory usage, as parsing and rendering the file will require random
access within it — meaning loading the whole file into an ArrayBuffer or some similar
structure. Using the Blob.slice() method in JavaScript may allow me to work around
this issue to some degree.

If parsing the Mapsforge binary files is too complex, I can scale back the project to using
the OSM Editing API. This will require less parsing work, but will still have plenty of
issues to overcome in terms of rendering.

2.5 Projecting map data

The core of this project is being able to render a map. This, in its most basic form, means
being able to take coordinates, which represent a position on the sphere-like body that is
the earth, and placing these on a two-dimensional plane. This process is known as map
projection [43, p. 5].

OpenStreetMap uses the WGS84 coordinate reference system (EPSG:4326) to represent
the positions of the nodes that make up its data [44]. GPS uses this CRS, and it is a
popular standard [45].

If you were to naively place coordinates from the WGS84 system on to a graph, you would
get a “plate carrée” projected map. This projection is a form of the equirectangular pro-
jection, where the standard parallel ϕ1 = 0. In plate carrée, lines of longitude are straight,
vertical and equidistant, and lines of latitude are similar, albeit horizontal. Although
all map projections are compromises between conformality (preservation of angle) and
preservation of area, plate carré does not preserve either, meaning it is not particularly
well-used.

Hence, openstreetmap.org presents a map in the “Web Mercator” projection (also known
as Spherical Mercator, WGS 84/Pseudo-Mercator, Google Web Mercator, EPSG:3857).
This projection is almost conformal, meaning that (local) angles on the map are the same

Page 15 of 55

Offline HTML5 Maps Application George Honeywood

as angles on the ground, even if lengths are not preserved [46]. It deviates from normal
Mercator in that its calculations are based on the earth being a true sphere, rather than
ellipsoidal. The benefit of this is that the calculations for converting between WGS84
latitude/longitude coordinates, and Web Mercator are simpler than normal Mercator [47].

So, to convert from latitude/longitude coordinates to Web Mercator, we can use equations
7–1a & 7–2a from Snyder [48, p. 41], where λ is longitude and ϕ is latitude, both in degrees:

x = πR(λ◦ − λ◦
0)

180◦

y = R ln tan
(

45◦ + ϕ◦

2

)

Page 16 of 55

Offline HTML5 Maps Application George Honeywood

3: Proof-of-concept development process

As part of the development process, I have created a number of proof of concepts, that
each build on each other. These have helped me to understand, test, and evaluate various
technologies that I could use to build the final application.

3.1 Simple offline HTML5 app

Source in proof-of-concepts/1-offline-html5

My first proof of concept was a basic offline HTML5 application, employing the techniques
that I researched in Section 2.2. Since the Application Cache has been deprecated, the
accepted way to create an offline HTML5 app is to use Service Workers [31]. The concept
behind this is that the Service Worker intercepts all HTTP requests that are made on the
website, and can then respond to this request with a result from a prepopulated cache.

In addition to creating an offline HTML5 app, I also learned how to store a large binary
blob. This will be necessary for my project, as this is how the map data will be stored.
To this end I looked at using both the Service Worker cache, and the File API.

The File API works like a traditional file picker — allowing the user to choose some file
from their local filesystem [28]. This is useful, but does not provide an excellent user
experience. For example, the user would have to download a map file to some location on
their computer, then select it in the file picker every time they want to view a map. This
violates Nielsen’s “Recognition, not recall” heuristic [49], as the application should work
without the user having to remember where they saved the map file.

Therefore, it is preferred to use the Service Worker cache method, where you store the file
inside the web browser’s cache. You can store binary blobs in the same way as any other
website resources:

Listing 3.1: Using the Service Worker cache

1 self.addEventListener('install', (event) => event.waitUntil(
2 addResourcesToCache(['/index.html', '/blob.map']) // prepopulate cache
3));
4
5 const cacheFirst = async ({ request }) => {
6 const responseFromCache = await caches.match(request);
7 if (responseFromCache) { // try to get the resource from the cache
8 return responseFromCache;
9 }

Page 17 of 55

Offline HTML5 Maps Application George Honeywood

10
11 return new Response('could not retrieve from cache', {
12 status: 408,
13 headers: { 'Content-Type': 'text/plain' },
14 });
15 };
16
17 // the fetch event will intercept all HTTP requests made by the website
18 // such as JavaScript fetch() calls, or HTML tags
19 self.addEventListener('fetch', (event) => event.respondWith(
20 cacheFirst({request: event.request})
21));

3.2 Rendering geometry to a canvas

Source in proof-of-concepts/2-rendering-a-way, online demo at files.george.honeywood.org.uk/2-

rendering-a-way/, or demo video.

My second proof of concept was to draw some geographical data onto the canvas. As a
first step, I had to acquire some data to project. As this was a simple proof of concept I
decided to use the GeoJSON format, which is a popular standard for representing geodata,
in a fairly human-readable format. The main reason I chose it was that it is easier to parse
in JavaScript than the XML data that the OpenStreetMap API provides [9]. For my first
test, I attempted to render the boundary of Egham, which is currently way 666914693. To
convert XML data from OpenStreetMap I used the online geojson.io tool, which allows
you to import OSM XML and export GeoJSON [50].

The main challenge I wanted to solve in this proof of concept was projecting the data. This
stage is necessary, as OpenStreetMap data comes in the WGS84 CRS, and while this can
be naively plotted on a graph as (x, y) coordinates, this would result in the “plate carrée”
projection, as detailed in Section 2.5. The “plate carrée” projection is not particularly
desirable, as it does not have any useful properties like conformality (preservation of
angle) or preservation of area. Hence, for my application I chose to use Web Mercator,
which preserves conformality, and is the de facto standard for web maps.

Initially, I attempted to use the algorithm from Snyder [48, p. 41], as shown in Section 2.5.
Unfortunately, I had some issues with getting these equations to produce reasonable re-
sults. Therefore, I turned to the OpenStreetMap Wiki, which helpfully provides a reference
for transforming WGS84 data into the Web Mercator projection [14]. I translated the C
example into TypeScript, and it correctly projected the data — see Listing 3.2 for the
implementation.

Page 18 of 55

https://files.george.honeywood.org.uk/2-rendering-a-way/
https://files.george.honeywood.org.uk/2-rendering-a-way/
https://youtu.be/2F_vpCrQsO4
https://www.openstreetmap.org/way/666914693

Offline HTML5 Maps Application George Honeywood

Listing 3.2: Projecting to Web Mercator

1 const RADIANS_TO_DEGREES = 180 / Math.PI;
2
3 // calculate x/long
4 const x = long;
5 // calculate y/lat
6 const y = Math.log(Math.tan(
7 (lat / RADIANS_TO_DEGREES) / 2 + Math.PI / 4
8)) * RADIANS_TO_DEGREES;

Figure 3.1: Rendering some GeoJSON data to the canvas

This proof of concept was entirely static, with the viewport and zoom level hardcoded into
the program. To make the implementation simpler I wrote a function that scaled all the
coordinates to be around (0,0), so that I didn’t have to handle offsetting the viewport.

3.3 Adding interactivity — panning and zooming

Source in proof-of-concepts/3-panning-and-zooming, online demo at files.george.honeywood.org.

Page 19 of 55

https://files.george.honeywood.org.uk/3-panning-and-zooming/
https://files.george.honeywood.org.uk/3-panning-and-zooming/

Offline HTML5 Maps Application George Honeywood

uk/3-panning-and-zooming/, or demo video.

The third proof of concept heavily built upon the second — with the additional goal of
adding interactivity in the form of panning and zooming. Since being mobile friendly is
a priority for my project, I made sure to add touch controls once I had it working with
mouse events.

The first part I tackled was the zooming. This turned out to be as simple as multiplying
each projected coordinate by some scale factor, which I was already doing in the previous
proof of concept. To modify this scale factor, the user can use the +/- buttons, the mouse
scroll wheel, or a pinch gesture on a touch device. Pinch gestures were the most challenging
to implement, as you have to handle and interpret Touch events for each separate finger
on the screen.

Panning also turned out to be relatively easy — my implementation involved adding some
offsets to the projected and scaled coordinates in the latitude and longitude axes. More
involved was zooming the map about some arbitrary point. For example, on desktop, you
expect a map to zoom into the position of your mouse cursor, when on mobile you expect
the middle of your pinch gesture. To achieve this, I update the x and y offsets whenever
you zoom, with a smaller offset change when zooming into the top left, and a larger one
for the bottom right. Another issue I had to handle is that at a low zoom level, zooming
was relatively quick, but once you reached higher zoom levels, it got slower and slower.
To compensate for this I made the scale factor logarithmic.

Figure 3.2: An interactive world map, using Natural Earth data [51]

For testing the zooming between low and high zoom, I needed some “large scale” data
to supplement the localized OSM data that I had downloaded for the previous proof of
concept. Natural Earth Cultural Vector data seemed suitable, as it is readily available as
GeoJSON, is released in the public domain, and is suitably low-detail for my purpose [51].

Page 20 of 55

https://files.george.honeywood.org.uk/3-panning-and-zooming/
https://files.george.honeywood.org.uk/3-panning-and-zooming/
https://youtu.be/_JvGwLra_Q4

Offline HTML5 Maps Application George Honeywood

Once again I used geojson.io [50], this time to merge these two sets of data.

To begin with, I was simply redrawing the map every time a Touch or Mouse event fired.
This worked, but these events would often fire very rapidly (>60 times/second), resulting
in a slow panning experience, where rendering was occurring unnecessarily. My solution
for this was requestAnimationFrame(), which allows you to have some function executed
at a regular interval by the browser [52]. Therefore, I could modify the state of the map
as often as necessary, then have it smoothly rendered at regular intervals to reflect any
changes to zoom or offsets.

Unfortunately, this change meant the canvas re-rendered 60 times a second at all times,
even when no state change had occurred. This is a waste of processing power and energy,
especially on mobile devices. To remedy this I introduced a dirty flag, which I set
whenever a state change had occurred. I then check this dirty flag at the beginning of
the render() function, and return early if the internal state is unchanged — as shown in
Listing 3.3. The end result was a map that updated smoothly 60 times a second when
state changes were occurring, and not at all when the map was static.

Listing 3.3: Only rendering when the map state is dirty

1 public render() {
2 // if nothing has changed, don't bother re-rendering
3 if (!this.dirty) {
4 requestAnimationFrame(() => this.render());
5 return;
6 }
7 this.dirty = false;
8 [...]
9 }

3.4 Rendering tiled data from a Mapsforge file

Source in proof-of-concepts/4-rendering-osm-data, online demo at files.george.honeywood.org.

uk/4-rendering-osm-data/, mobile demo video, or desktop demo video.

My final proof of concept revolved around reading tiled vector OSM data. This allows for
a map viewer that is performant at a wide range of zoom levels, as it can switch to more
detailed data as you zoom in, and less detailed as you zoom out. It also solves the issue
of which data to render — my previous proof of concepts rendered all the data, all the
time, even if it was off canvas. With tiled data, you only have to render the tiles that are
currently within the viewport.

The bulk of the work for this proof of concept came in the form of writing a parser for the

Page 21 of 55

https://files.george.honeywood.org.uk/4-rendering-osm-data/#15/50.7895/-1.8938
https://files.george.honeywood.org.uk/4-rendering-osm-data/#15/50.7895/-1.8938
https://youtu.be/2cvZ-veBUto
https://youtu.be/0evN3RT42QQ

Offline HTML5 Maps Application George Honeywood

Mapsforge format [12]. I decided to use this format based on my report on OpenStreetMap
data sources, in Section 2.4. This was because it seemed simpler to parse than MBTiles,
which is the other popular choice for tiled vector map files. It is a binary format that
is designed to space-efficiently encode geographical data, such that it can be rendered on
low-power mobile devices.

3.4.1 The Mapsforge format

Here I will explain the main concepts of the Mapsforge format, that I had to understand
whilst writing the parser. This information is mostly as per the specification [12], supple-
mented by what I learnt as I progressed.

Points of Interest (PoIs)

These represent tagged OpenStreetMap nodes, such as shops, bus stops, or any other
objects that have been mapped as a node. They are also used for city/town/place labels
at low zoom levels.

Ways

Ways are an abstraction over OpenStreetMap ways and relations, presenting both as a
single type. OSM represents complex structures such as buildings with internal courtyards
as multiple ways, for the outer and inner parts. These are then linked by a multipolygon
relation that labels each part as inner or outer [53]. These are non-trivial to efficiently
interpret, especially with large amounts of data, so it makes sense to push this complexity
to the map-writer software.

Indexes

In order to retrieve a specific tile of data, we need to know where in the file it is stored.
This is achieved through a set of indexes for each sub file. Each index entry stores a
pointer to the start of a tile. The indexes are stored as row major 5 byte integers, with
the first value being for the first tile (x, y) (0, 0) in the sub-file. You can then read the
(1, 0) index by adding a 5 byte offset, or the (0, 1) index by adding 5 × the amount of x
tiles in the sub-file.

Page 22 of 55

Offline HTML5 Maps Application George Honeywood

Figure 3.3: Raw tiled data from zoom 14 base tiles

Sub-files

Sub-files store map data for a range of zoom levels. For example, the file proof-of-
concepts/4-rendering-osm-data/data/ferndown.map is compromised of three sub-files,
one for z1-z7, based at z5, another for z8-z11, based at z10, and a final one for z12-z21,
based at z14. This system provides a compromise between storage space and geographical
correctness — if, say, we want data for z18, we “over-zoom” the z14 sub-file, and vice
versa for z1, we “under-zoom” the z5 sub-file. Therefore, we don’t need to store much
duplicated data, compared to storing each zoom level separately.

The over-zoom/under-zoom functionality is supported by each sub-file containing a “zoom
table”, which contains how many PoIs/Ways need to be read for the tile at the requested
zoom level. For example, when under-zooming a z14 tile to z12, you will be showing around
112 z14 base tiles (on a 1080p screen). This is too many tiles to be able to render all of
their features with acceptable performance. To enable this zoom-table feature, the Way
and PoI data in each tile is sorted by “feature importance”, meaning that data to be shown
at low zoom levels, like place labels or important roads, comes first, and less important
geometries like houses are placed last. Therefore, you can read that there should be x
amount of PoIs/Ways for this tile, for the zoom level you are decoding, read the specified
amount, then skip over the rest.

Variable length integers

To save file space, coordinates and other numbers are encoded in a custom format. This
means that both large and small numbers can use the same representation, whilst requiring

Page 23 of 55

Offline HTML5 Maps Application George Honeywood

a minimal amount of bytes to store them. The format is based around the idea that the
first bit of a byte is used as a continuation bit — i.e., in 1000 0000 the continuation bit is
set. If the continuation bit is set, you continue to read the next byte as part of the same
number, until you reach an unset continuation bit.

The format is little-endian, meaning that the first byte of the number is the least signifi-
cant1. Hence, you can read the whole number by shifting each of the subsequent numbers
by 7n, then applying a bitwise OR (represented by | in JavaScript) against the current
total. I’ve provided the commented implementation in Listing 3.4, as the code is easier to
understand than my prose explaination.

Listing 3.4: Parsing variable length integers

1 // decode a variable length unsigned integer as a number
2 getVUint() {
3 // if the first bit is 1, need to read the next byte rest of the 7 bits
4 // are the numeric value, starting with the least significant
5 let value = 0;
6 let shift = 0;
7
8 // check if we need to continue
9 while ((this.data.getUint8(this.offset) & 0b1000_0000) != 0) {

10 // if this not the first byte we've read, each bit is worth more
11 value |= (this.data.getUint8(this.offset) & 0b0111_1111) << shift
12 this.offset++
13 shift += 7
14 }
15
16 // read the seven bits from the last byte
17 value |= (this.data.getUint8(this.offset) << shift)
18 this.offset++
19 return value
20 }

Signed integers follow a similar scheme with the continuation bit, but also sacrifice the
second bit of the last byte to indicate the sign of the number, e.g., 0100 0000. There is
no concept of a floating point number in the format. Instead, you divide numbers when
it is required, such as for coordinates, which are stored in the file in microdegree units.

3.4.2 Writing a parser

In my first iteration of this proof of concept, I was decoding the file inline, using a
DataView, manually keeping track of offsets within the blob. This worked, but led to
a lot of duplicate code that was just handling offsets, and a number of errors caused by

1Note that the bytes themselves are still stored in big-endian format

Page 24 of 55

Offline HTML5 Maps Application George Honeywood

me making some trivial mistake when incrementing the offset by the wrong amount. To
remedy this smell, I refactored the code to use the abstraction of a Reader. You construct
the Reader with a blob, then call methods like .getVUint(), or .getBigUint64(). These
methods increment an offset internal to the Reader class.

3.4.3 Rendering the tiles

Figure 3.4: Styling of data from Mapsforge file

When rendering the map, I first convert the current zoom level to the corresponding base
zoom level of one of the sub-files. Once I have this I then calculate the coordinates at
the top-left and bottom-right of the screen, then convert these into Z/X/Y tile numbers,
which I can then fetch from the file. To improve rendering performance, only the PoIs
and Ways specified in the zoom table for that zoom level are shown.

I handled styling fairly simplistically, setting a number of booleans based on way tags, as
the tiles load in. This moves the more complicated (and slow) logic out of the rendering
hot path. Inside the render() function I then check these booleans and choose whether
a stroke or fill should be used for that way, and what colour it should be. This is shown
in Figure 3.4.

To make sure that the map always draw labels on top, I make two passes through the
data. In the first, I render out all the areas and lines, then in the second, the way labels
and PoIs. Before I implemented this, areas from other tiles would often overlap labels.

Page 25 of 55

Offline HTML5 Maps Application George Honeywood

4: Final application development process: OSMO

Source in final-deliverable/, online demo at files.george.honeywood.org.uk/final-deliverable/,

or watch the demo video.

In the second term, I worked on the final application, named OSMO. This started off as
a direct clone of the final proof of concept — as discussed in section 3.4.

4.1 Dynamic tile loading

The final proof of concept (section 3.4) rendered data from a preloaded Mapsforge file,
requiring the whole map to be downloaded into RAM before any tiles could be drawn.
This works fine for small map files, but is not reasonable for larger ones — the map file
that covers England is around 800 MB — which is too much data to download and store
in RAM, especially on mobile devices.

To circumvent this issue, we can use HTTP range requests, which allow us to request only
certain chunks of a file from a web server [54]. Range requests are natively supported by
popular web servers like Apache and nginx. This approach is a little unusual, typically
vector/raster tile based online maps utilise a dedicated server application known as a tile
server. The tile server takes a web request shaped like example.org/z/x/y, and then
responds to this with data for the requested tile.

Listing 4.1: Using curl to make a HTTP range request

% curl -v 'https://files.george.honeywood.org.uk/final-deliverable/data/england.map' \
-H 'range: bytes=0-23'

> GET /final-deliverable/data/england.map HTTP/2
> Host: files.george.honeywood.org.uk
> range: bytes=0-23

< HTTP/2 206
< server: nginx/1.18.0 (Ubuntu)
< content-length: 24
< content-range: bytes 0-23/844019294

[... 24 bytes of data ...]

The first 24 bytes of the file contain the magic bytes, then length of the rest of the header.
Once we have this, we can then request the rest of the header, and based on this, the
tile indexes. We then use these parts of the Mapsforge file to calculate which tiles the file

Page 26 of 55

https://files.george.honeywood.org.uk/final-deliverable/#16/51.4313/-0.5472
https://youtu.be/2XLOaLw82c8

Offline HTML5 Maps Application George Honeywood

contains, and their offsets within the file.

The Mapsforge format is not specifically designed for this type of use. Instead, data
is typically read from a locally stored file by a native application. This range request
approach was inspired by the PMTiles project, which stores tiles in “pyramids built on
compressed Hilbert ordering”, allowing for efficient random access to tiles [55]. This
specifically designed PMTiles format saves initial network traffic compared to using the
Mapsforge format, but the overhead is relatively low for my use case. For the 800 MB
England map, the file header is only 8.0 KB, and the tile indexes are just over 1.1 MB.
The PMTiles approach makes more sense for larger world scale maps, as they will have
many more tiles, and hence larger tile indexes.

Additionally, PMTiles is intended as a general purpose map library, whereas OSMO is
more specifically designed as a standalone offline map application. This means that we
can assume that the indexes will only need to be fetched once, and from then will be
cached in the service worker.

The dynamic tile loading implementation is transparent to the parsing code, as it loads the
required bytes via an abstracted fetchBytes(start, end) function. Depending on how
the MapsforgeParser was constructed, it will then either read data from a pre-downloaded
blob, or dynamically via an HTTP range request.

4.2 Caching dynamically loaded tiles

As discussed in the previous section, the final proof of concept read data from a pre-
downloaded map blob. This made offline use quite simple, as the entire blob could be
stored in the service worker cache. Working with only partial range requested data,
however, requires a more specialized approach, as the service worker cache cannot natively
store partial data [31, see Section 5.4.5: Cache.put(request, response)].

To work around this limitation I instead decided to store the data with an extra key
appended to the URL, which contains the byte range that is stored within that response.
For example, if we had stored the two byte ranges in the cache (that make up the file
header), we would have two keys in the cache: england.map?bytes=0-23 and england.
map?bytes=24-8021. As the same tile will stay at the same byte offset, later, when we
are offline, we can use the same key to retrieve the tile data, with cache.match(url).

Page 27 of 55

Offline HTML5 Maps Application George Honeywood

4.3 Downloading a region

Caching the partially downloaded map file became more complicated when I wanted to
add the download region feature. This would allow the user to click the “Download”
button, which recursively downloads all the tiles below the current map viewport. The
use case for this is that a disk space restricted user will be able to download a subset of
the map, without needing to download the entire 800 MB england.map file.

My initial, naïve downloading approach was as follows:

1. Calculate which tiles are contained within the current viewport.
2. Generate the byte ranges which these tiles are stored at within the file.
3. Call fetchBytes() to load these bytes into the service worker cache for later offline

use.

While functional, this approach was less than ideal. For one, this meant storing thousands
of individual byte ranges within the cache — an area the size of Cornwall contains about
11,000 tiles at z14. The other main problem was that dispatching hundreds of HTTP
range requests to the server was very slow, and it makes much more sense to download
larger chunks of the data at once. Conveniently to this end, the Mapforge format stores
the tile data for the (x, y) (0, 0) and (1, 0) tiles in a contiguous range of bytes. This means
that instead of downloading each tile individually, we can download a whole row of tiles
at once.

Taking this request chunking approach meant that the service worker code had to be
altered, to allow a partial read of data from within a larger cached range. For example,
if we had the range england.map?bytes=100-200, we not only need to be able to read
bytes 100 to 200, but also any arbitrary subset of that range. The implementation for this
was fairly simple (see Listing 4.2).

Listing 4.2: Reading a range from a cached response

1 const requested_range = {
2 start: [...] // parsed from Range header in request
3 end: [...]
4 };
5
6 [...] // elided logic to choose which cached range to use
7 cached_range = {
8 start: [...] // parsed from bytes= query parameter in cache key
9 end: [...]

10 };
11
12 return new Response(

Page 28 of 55

Offline HTML5 Maps Application George Honeywood

13 (await responseFromCache.blob())
14 .slice(
15 requested_range.start - cached_range.start,
16 // NOTE: ranges in the cache are end exclusive,
17 // so need add one here to get the final byte
18 (requested_range.end - cached_range.start) + 1,
19),
20 { status: 206 }
21);

One minor complication caused by allowing the partial reads of cached ranges was that we
could no longer use the cache.match(url) method, as this only matches an exact request
URL. Instead, I had to create my own implementation, where I looped over the keys in
the cache (using cache.keys()) and manually checked if the requested byte range was a
subset of one of the cached ranges. This was done with a linear search, which isn’t ideal,
but the runtime should remain reasonable so long as the number of cached ranges is small.

4.4 Experimenting with WebGL

Whilst profiling the render() function of my application, it became apparent that the
draw calls on the <canvas> were the limiting factor in my applications’ performance
(see 5.5). Instead of using CanvasRenderingContext2D, popular vector map rendering
libraries like Mapbox GL use the WebGL2RenderingContext. This allows for GPU ac-
celerated rendering, even providing enough power to render complex 3D graphics. This
would have been the best way to reduce the time needed to render a frame, and make the
application more responsive to panning and zooming.

During the beginning of term two, I decided to experiment with using WebGL for ren-
dering. WebGL2 provides a very low level interface to the GPU, employing the concepts
of fragment shaders and vertex shaders. These allow you to draw triangles that you can
then use to make up more complex shapes — for example, a square would be made up of
two equilateral triangles. You have to handle all of this work yourself, unless you choose
to employ a library.

Following a tutorial, I was able to implement basic drawing using the WebGL2Rendering-
Context [56]. This simple experiment rendered a million one pixel wide lines to the
screen, which required over 150 lines of code. The implementation can be seen on
the feat/web-gl branch. This was in stark contrast to the relative simplicity of the
CanvasRenderingContext2D API. Granted, the performance was very impressive, but it
would have taken a significant effort to implement the same functionality as my existing
application using the simpler 2D rendering context. Therefore, I decided to continue using
the CanvasRenderingContext2D and instead focus on adding more functionality to my

Page 29 of 55

https://gitlab.cim.rhul.ac.uk/zhac152/PROJECT/-/blob/feat/web-gl/final-deliverable/src/map/map.ts#L87

Offline HTML5 Maps Application George Honeywood

application.

4.5 Svelte: using a frontend framework

The search box was the first feature I added that wasn’t primarily using the canvas for
display and interaction. I initially implemented it in vanilla JavaScript, which worked fine,
but I found myself writing a lot of error-prone boilerplate code to update the DOM. In
addition to this, I was following the antipattern of creating references to the DOM, then
passing around these references to other functions. This made it difficult to reason about
the state of the application, and harder to refactor the code.

Figure 4.1: Searching for “Egham” in OSMO

To remedy this I decided to start using a frontend framework. This would allow me to
write declarative code, and abstract away the DOM manipulation. I chose to use Svelte,
as it is relatively lightweight & performant, and I’ve used it before. Svelte also solved my
issue of passing DOM references, by allowing them to be created next to the point of use.
This allowed me to write self-contained components, which each manage their own state.

Another benefit of Svelte is that it provides a simple interface to allow you to write
animations that aren’t normally possible with CSS. For example, in the search box, when

Page 30 of 55

Offline HTML5 Maps Application George Honeywood

the result box appears, it slides in from the top — see Figure 4.1. This is cannot be done
with pure CSS, as CSS animations only trigger when the properties of the element are
changed. For example, when setting el.style.height = "200px". In reality, you don’t
know the height that the results box will be, so this method is untenable. Svelte allows
you to overcome this limitation by providing means to write animations that are triggered
by changing the state of the component.

Svelte also provides scoped CSS, which allows you to write styles that will only apply to
the component. This means you don’t have to be careful about giving your DOM elements
unique IDs or class names, as they will only be used within the component. This then
means you can often get away with just styling a plain div, span or p element, without
having to give it a class name.

4.6 Progressive web apps (PWAs)

PWAs are web apps that are able to present themselves as and have similar features to
native applications [57]. For example, a PWA could include offline support, the ability to
“install” the website on mobile platforms, and features like push notifications. In order to
make web app installable, you have to write a web manifest, and have a service worker
that provides offline content. The manifest provides metadata about your application,
allowing you to control how it will be displayed in the user’s app list. In my manifest I
provide icons to use, long and short names to use, and a description.

To ensure my application was a valid PWA that could be installed on mobile devices, I
used Google Chrome’s Lighthouse testing tool. Unfortunately, this did not catch an issue
I experienced, which was that my app could be “added to home screen” but it was not
installed into the application drawer. When using the Chrome remote debug functionality
to see the console output on my phone, I saw a message: Failed to install WebAPK
for ’<url>’.

Figure 4.2: OSMO installed in the app drawer of an Android phone

Page 31 of 55

Offline HTML5 Maps Application George Honeywood

After some searching, I found that PWA installation on Android has a few indirections,
principally that clicking “Install” sends a request to a Google server to bundle the website
into a WebAPK. Bundling as a WebAPK means your app is treated like a native app, and
hence can handle URL ranges or custom URI schemes1. Unfortunately, this terse message
did not provide any detail into why the installation failed. Eventually after considerable
debugging, I found that the issue was that I had provided my icon in the manifest as an
SVG, instead of a PNG. See Figure 4.2 for a screenshot of OSMO installed on my phone.

4.7 Service worker quirks

Near the end of the project I spent some time polishing the offline user experience. One
of the principal issues was due to a quirk in service worker registration behaviour. When
a new service worker installs, it will not control the page that registered it until the next
page refresh. This creates the unexpected behaviour that if you download a region on the
initial page load, then go offline, you will not be able to see the downloaded region after
a refresh. This is because when the service worker is not controlling, it cannot intercept
fetch events, and so the cache will not be populated. Luckily some escape hatches are
provided, such as skipWaiting() and clients.claim(). These allow you to force the
service worker to take control of the page, and intercept requests immediately.

However, this led to a race condition issue — that critical resources would be loaded before
the service worker had finished installing. For example, on initial page load, the header
& tile index would be loaded before the service worker had claimed the page, meaning it
wouldn’t get cached.

The simplest way to remedy this would have been to force a page reload when the ser-
vice worker finished installing, but this would have been a poor user experience. Instead,
I added another event listener, for the controllerchange event, which is fired when
clients.claim() is called. Once this event fires, I then instantiate the Svelte app, en-
suring that the service worker is ready to intercept and cache the header & tile indexes —
see Listing 4.3.

Listing 4.3: Waiting for the service worker to claim the page before starting the app

navigator.serviceWorker.register('./sw.js', { scope: './' }).then(() => {
return new Promise<void>(resolve => {

if (navigator.serviceWorker.controller) {
resolve();

} else {

1In the case of my application, registering to handle geo URIs would have allowed users to open links
to specific locations [58]. Unfortunately I did not have time to implement this.

Page 32 of 55

Offline HTML5 Maps Application George Honeywood

navigator.serviceWorker.addEventListener('controllerchange', () => {
resolve();

});
}

});
}).then(() => {

console.log(`starting app, service worker is ready, took {performance.now() -
start_time}ms`)

new App({
target: document.getElementById('app'),

})
})

4.8 Handling HiDPI displays

One long-standing bug was the map rendering slightly blurry on devices with HiDPI
screens, such as mobile phones or 4K monitors. This is due to how the px unit works in
CSS — they are just a unit of length, not a representation of the physical pixels on the
screen. This means that on a HiDPI screen, if the canvas.width and height are set to
the canvas width in CSS pixels, the canvas pixels have will be stretched across multiple
physical pixels.

Therefore, to render at the correct resolution, you must use the window.devicePixelRatio
property to determine how many physical pixels there are per CSS pixel. You can then
use this to set the canvas.width and height to be the same as the screen’s physical pixel
height and width. As you are now rendering more pixels, you’ll then need scale the canvas
back down to the size it is rendering at, which will remove the blur.

Unfortunately, as many of the rendering calculations assumed that the canvas size would
be the same as the size in CSS px, I had to fix some subtle bugs. One example was
that extra tiles were being rendered off the edge of the canvas, resulting in performance
losses. This was challenging to debug, as the extra tiles could not be seen — I ended up
translating the whole canvas across, then scaling it down, allowing me to see where the
extra tiles were being drawn (see Figure 4.3).

Page 33 of 55

Offline HTML5 Maps Application George Honeywood

Figure 4.3: Scaling and translating the canvas to debug tile rendering — the black area
represents the scaled down viewport

Page 34 of 55

Offline HTML5 Maps Application George Honeywood

5: Software engineering

In order to successfully deliver a project, it is important to follow good software engineering
practices. These should help you create something that has minimal technical debt, is
correct, is maintainable, and can be easily understood by other members of a team.

I decided to write my project in TypeScript over plain JavaScript, as it provides an ex-
tremely helpful layer to help solve runtime type issues. It also allows my IDE, Visual
Studio Code, to provide far more useful suggestions, compared to writing JS. This is be-
cause it is aware what types variables are at all times, instead of using a fallible heuristic
approach.

Conveniently, the JavaScript bundler I chose, esbuild, has built in support for stripping
TypeScript annotations, meaning I only have a single build step. It doesn’t have the
ability to check types itself, but this was not an issue for me, as VS Code performs this
function natively in the editor. esbuild also has a convenient “dev-server” mode, where
it bundles up the latest code as the requests come in, removing the need for a file-watcher.

5.1 Testing

Testing is critical to producing a piece of software that works as expected. It helps you to
define what your function should return before you write it, and ensures that the function
returns exactly what you expect.

In my project a significant amount of the work is rendering data to the HTML5 canvas.
This portion of the project is very difficult to test — at least while development is still
occurring. Therefore, I directed my testing efforts towards the non-visual portions of the
application, such as parsing the Mapsforge file, geometry operations, and projecting data.

I implemented testing using the Jest framework. Initially I had some issues setting it up
to be able to understand tests and code written in TypeScript. Once it was set up, it
was irritatingly slow, taking 5+ seconds to run with only a single test. The cause of this
was two-fold; I was using the ts-jest package, which uses Babel to transpile TypeScript
to JS (which is slow), and I had written my jest.config.ts in TypeScript. This meant
that when I ran jest test, it had to spin up ts-node to interpret the file, which is also
relatively slow. To fix this I rewrote the config file in plain JavaScript, and switched Jest
to use @swc-node/jest instead of ts-jest to transpile the JavaScript, which reduced the
time taken to under 2 seconds for the whole suite.

Page 35 of 55

Offline HTML5 Maps Application George Honeywood

Figure 5.1: Rendering incorrectly parsed geometries

In particular, the tests for the Reader class proved very useful. At first, I didn’t write any
formal tests for the .getVSint() method — instead running it and checking if the output
seemed reasonable. This got me so far, with it returning some well-formed data, but when
it came to rendering the geometries were all corrupted, as is shown in Figure 5.1. During
the debugging process, I wrote exhaustive table tests for this function (see Listing 5.1),
and I realized that I was incrementing my offset through the file on the wrong line.

These tests made it much easier to refactor the code, without worrying about breaking
functionality. This is because I could just run pnpm test to ensure I had not introduced
any regressions, and did not need to manually check various different cases.

Listing 5.1: Output from the .getVSint() test suite

should be able to decode signed variable ints
pass: 1 byte max negative: [01111111].getVSint() == -63
pass: 1 byte max positve: [00111111].getVSint() == 63
pass: 2 byte min: [10000000,00000001].getVSint() == 128 (1 ms)
pass: 2 byte max: [11111111,01111111].getVSint() == -8191
pass: 3 byte min: [10000000,10000000,01000001].getVSint() == -16384
pass: 3 byte max: [11111111,11111111,01111111].getVSint() == -1048575
pass: 4 byte min: [10000000,10000000,10000000,00000001].getVSint() == 2097152

Page 36 of 55

Offline HTML5 Maps Application George Honeywood

5.1.1 Test suite coverage

Test coverage is the percentage of lines of code that are executed by the test suite. This
can be a useful tool to determine which parts of the codebase your tests are covering, and
which cases you had not considered. You can then use this information to write more tests
to cover the untested parts of the program. However, chasing 100% coverage is usually not
a productive use of time, as testing every single trivial case or condition is often necessary,
and adds noise to the test suite.

Listing 5.2: Test suite coverage

---------------|---------|----------|---------|---------|-------------------
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 92.73 | 75.23 | 94.82 | 92.4 |
map | 100 | 100 | 100 | 100 |
geom.ts | 100 | 100 | 100 | 100 |
map/mapsforge | 92.42 | 75.23 | 93.75 | 92.06 |
mapsforge.ts | 91.25 | 63.38 | 100 | 90.93 | 117,137-166,192,[..snip..]
objects.ts | 90.9 | 100 | 85 | 89.36 | 196-202,212
reader.ts | 100 | 100 | 100 | 100 |
util.ts | 100 | 100 | 100 | 100 |
---------------|---------|----------|---------|---------|-------------------
Tests: 38 passed, 38 total
Snapshots: 0 total
Time: 1.125 s

5.2 GitLab CI

In industry, it is common to run tests and deploy code automatically, as commits are
pushed to the repository — this is known as CI/CD (continuous integration/continuous
deployment). I set up GitLab CI to automatically run tests when new commits were
pushed. The advantage of this is that if I accidentally push code that breaks the tests,
I get an email to alert me (see Figure 5.2). As the CIM GitLab doesn’t provide any CI
runners, I had to set up my own “self-managed” runner. There are a number of options for
how the job should be run (known as “executors”), such as in a Docker container, or over
SSH. As my use case is fairly simple, without any complicated dependencies or required
state, I decided to use the shell executor, which simply downloads the Git repository, and
runs the shell code specified in the .gitlab-ci.yml file.

When working in a team it is good practice to have a centrally managed deployment
system (CD), where team members can initiate or view the current state of a deployment
of an application. For my project, as I am the sole developer, it is acceptable to have a

Page 37 of 55

Offline HTML5 Maps Application George Honeywood

Figure 5.2: GitLab CI failure notification

simple deploy script that copies files to my web server using rsync.

5.3 Version control

Another important software engineering practice is making good use of version control.
Throughout this project I have made use of Git branches, primarily to develop each of my
proof of concepts. This has helped make sure that the code in the main branch is always
in a working state.

I have rigorously followed the Conventional Commits specification, prefixing all commits
with a type, such as feat:, fix:, test: or report: [59]. This indicates the basic purpose
of a commit at a glance, and encourages me to split up large changes into smaller atomic
units of a single type. When changes are complicated or have subtle side effects, I have
written a longer commit body, to supplement the information in the commit name.

5.4 Documentation

Regarding user documentation, so far my proof of concepts have been simple enough that
detailed documentation is not yet necessary. For each proof of concept I have written
a README.md that details how it can be run (or a link to it hosted online), and any

Page 38 of 55

Offline HTML5 Maps Application George Honeywood

dependencies or extra files required.

In terms of developer documentation, where appropriate I have written JSDoc comments,
particularly for functions that provide a public API. These explicitly detail the purpose of
the function, how it should be used, and what the arguments should be set to. In addition
to these JSDoc comments, where the code itself is not completely clear or intentions aren’t
obvious, I have written comments inline.

5.5 Profiling and optimization

The render() function is critically important to the responsiveness of the application. As
the requestAnimationFrame() callback fires 60 times a second, we should aim to have
the render() function run in under 1000/60 = 16.666 ms, so that we have a new frame
to show with each refresh of the screen.

The first tool I implemented to work towards achieving this was adding a frame time
metric to the debug information at the top of the canvas. This allowed me to test various
different configurations and code changes to see which resulted in the best performance.
Measuring the frame time is helpful for gauging performance overall, but it is not very
precise — you cannot see exactly what is consuming the CPU time within the render()
call.

Figure 5.3: Using the profiler

This is where the profiler comes in. It is a tool that lets you visualize how long different
function calls within your code take to execute. Both Firefox and Chrome include one
within their Developer Tools. I marginally prefer the one Firefox provides (for its Flame
Graph, see Figure 5.3), but it is important to test in both browsers, as their performance

Page 39 of 55

Offline HTML5 Maps Application George Honeywood

characteristics are surprisingly different. This led me to discover that the vast majority of
the time spent in the render() function is in calls on the CanvasRenderingContext2D, to
either stroke(), fill(), or draw a lineTo(). Therefore, the most important factor to
optimize in this scenario is to reduce the amount of geometries that need to be rendered.

Page 40 of 55

Offline HTML5 Maps Application George Honeywood

6: Professional issues

Accessibility is a particularly relevant concern for my project. People with disabilities still
need to be able to be able to interpret geographic data, and may have different priorities
to able-bodied users. Those with visual impairments need larger map label sizes, and
wheelchair users may need extra context about sloped kerbs. My application should
accommodate as many of these needs as possible.

Through assistive technologies like screen readers or magnification, most text-based web
content is accessible to partially sighted or blind users. Android and iOS both have built-
in screen-readers — TalkBack and VoiceOver respectively. These tools assist users by
providing a full alternate means of interaction that is more complete and usable than
simply reading out the text on screen. TalkBack disables the usual touch/swipe gestures
on the phone, instead allowing the user to swipe left or right to navigate through tab
stops in the interface. At each tab stop TalkBack announces the type and content of the
selected screen element, and the user can double-tap to interact with it if necessary. The
system navigation gestures can be accessed through two-finger swipes, instead of the usual
single finger ones.

Talkback works for not only native apps, but also web based content. This is enabled
through use of semantic HTML elements, supplemented by ARIA tagging where this is not
possible [60]. The idea behind semantic HTML is that the HTML markup should convey
meaning, instead of providing information purely visually through CSS. For example,
UI buttons should be tagged as <button> elements, over plain <div>s, so that a screen
reader can relay this context to the user. There are numerous HTML elements that
have semantics, such as basics like and <h1>, and others that convey more complex
concepts, like <nav> for navigation menus [61].

Even most non-text based media can be made accessible to blind people, through alt
tags on images and subtitling on videos. Unfortunately, this is simply not possible for
web maps, as they convey meaning in a visual form that cannot be textually described
easily. MDN advises that, in general, web developers should use semantic HTML over the
<canvas> element, as the canvas is opaque bitmapped data that cannot be interpreted by
a screen reader [62]. Notwithstanding this, blind and visually impaired people still need to
navigate the world. Grierson, Zelek and Carnahan [63] found that a “Tactile Way-finding
Belt”, could help facilitate navigation for those with “visual impairment or Alzheimer’s
disease”. They based their study on a system of four vibrating motors, with one for each
cardinal direction, which provide signals directing the wearer to their destination. By
design this format is more limited than a map, but it does work towards making one of
their main uses, navigation, more accessible.

Page 41 of 55

Offline HTML5 Maps Application George Honeywood

Figure 6.1: Simulating deuteranopia, in Firefox Developer Tools

A common form of visual impairment is colour vision deficiency (colour blindness). Ac-
cording to the NHS [64], the red-green form affects around 1 in 12 men and 1 in 200
women. This can be more easily accommodated than other forms of visual impairment
by ensuring that text and backgrounds have a suitable contrast ratio, described in the
Web Content Accessibility Guidelines [65]. It is also important to visually check colour
contrast through simulators. The Developer Tools in Firefox provide one such simulator,
which can visualize various forms of colour vision deficiency — see Figure 6.1.

Physical disabilities can also be accommodated in an OpenStreetMap-based map. In its
simplest form, a point of interest can be tagged with wheelchair=(yes|limited|no).
This tag indicates to what degree an amenity can be accessed by a wheelchair user.
wheelchair=* tagging is quite well-used, though not ubiquitous, with around 2.5 million
uses worldwide according to Taginfo [66]. Routing software for wheelchair and walking
frame users must avoid features like stairs (highway=steps) and full-height kerbs. Adding
this tagging is well-supported in “on-the-go” map editing apps like StreetComplete, which
has a “quest” dedicated to adding this adding kerb details — see Figure 6.2 [67].

There are specialized map viewers, specifically designed to make viewing wheelchair tag-
ging simple — most popularly Wheelmap, which uses green, orange, or red to indicate
wheelchair accessibility [68]. Wheelmap can also be used to add this tagging to amenities,
through a simple form, that lowers the barrier of entry for contributing this information
to OSM. smoothness=* tagging is also valuable to wheelchair users [69]. This key has
textual values ranging from excellent to very_horrible, with wheelchair users unlikely
to be able to traverse anything at the level of smoothness=bad or worse. Routers can use
this information to inform the paths they choose.

Page 42 of 55

Offline HTML5 Maps Application George Honeywood

Figure 6.2: Adding kerb height data using the StreetComplete app

One accessibility consideration that I have made whilst developing this project is to include
multiple alternative interaction gestures where possible. For example, when zooming the
map, you can pick from either the two finger “pinch” zoom gesture, or alternatively a
single finger tap and hold. This allows people with the ability to use only one hand, such
as amputees or walking stick users, to make full use of the application.

Page 43 of 55

Offline HTML5 Maps Application George Honeywood

7: Conclusion & evaluation

Overall the project has been a success. OSMO is capable of decoding and rendering
Mapsforge files, and can sparsely download map regions for offline use. A novel aspect
of the project is the usage of HTTP range requests to fetch only the required bytes from
the Mapsforge file, meaning that no specialized map tile server is required. I am also
happy with the UX on mobile, where the web app can be “installed” as a PWA, giving a
native-like experience.

Figure 7.1: OSMO rendering Cornwall

In term one I successfully followed the timeline I set out in subsection 1.3.1. I mildly
deviated from the plan in that I added an extra research report. This was on the basics
of web technologies, to provide a basis of understanding for the rest of my project — as I
had written my other reports assuming quite a high level of base knowledge. The proof of
concepts were useful, helping me to understand key technologies and discover how is best
to build the final deliverable.

In term two the plan was less useful, as the way that I had built the proof of concepts on one
another meant that no integration work was necessary. I also allocated a generous amount
of time for mobile design & testing, which wasn’t required as I conducted this through the
development of proof of concepts. In addition, I did not allow time specifically for working
on the UI, when in reality I spent some time working adding a frontend framework (see
section 4.5).

In term two I also spent some time refining the tile loading system to use HTTP range
requests, which was not planned for. This had the knock-on effect of complicating offline
support with the service worker, taking up extra time. Other than that, however, the

Page 44 of 55

Offline HTML5 Maps Application George Honeywood

rest of the deliverables were non-blocking to the project, meaning I had some flexibility in
what I worked on. I ended up not implementing deliverables 10 (online routing) and 11
(Wikipedia integration), instead prioritizing polishing the offline user experience.

In retrospect, I should have put some more thought into alternative rendering strategies
— the renderer is definitely the weakest part of the project. Both mobile and desktop
performance is broadly acceptable until you zoom out past zoom level 13, at which point
the frame time becomes >100ms (<10fps). At zoom 7, where you can see the whole of
the UK, the frame time is >500ms (<2fps). This is unacceptable, especially for an app
targeted at mobile devices with limited CPU power & battery life.

At the start of the project I should have spent time researching alternative rendering
strategies that would have allowed for a more responsive experience. One way I could
have achieved this would have been to use WebGL, which is GPU accelerated — see
section 4.4 for more detail. Or, instead of WebGL, I could have adopted a hybrid raster
approach, in which the tiles are each rendered once for each zoom level, then reused,
instead of re-rendering everything on every frame. The drawbacks of this approach would
be additional complexity, and that you would only be able to view the map at discrete
zoom levels.

Due to this ever-present need to keep the frame time down, I was apprehensive to add
advanced rendering features, like way labels that follow road curvature — as they would
make the process even slower. In addition, I would have liked to add a label collision
prevention algorithm. While the Mapsforge format handles some of this issue, mostly by
reducing the number of city/town labels, a more sophisticated solution would have been
useful for areas with a high density of labels, such as town centres.

Finally, it would have been valuable to implement some form of theming system. Most
map rendering libraries provide some sort of interface that can be used to customize how
features render. This could be used to provide a dark theme, or customize the cartography
of the map for a specific use.

I am pleased with the implementation of online/offline mode switching, where if a user
loads any tile that has not already been cached, it will be stored in the service worker
for later offline use. The user can also choose to download the tiles currently below the
viewport, if they know that they will need access to that specific area when offline later.

Page 45 of 55

Offline HTML5 Maps Application George Honeywood

8: Appendix

8.1 diary.md

Final Year Project Diary

Term 1

Week 2 (2022-09-26)

Worked on the initial project plan. Read through "OpenStreetMap -- Using and Enhancing the
Free Map of the World".

Week 3 (2022-10-03)

Got feedback on initial plan from my supervisor (Reuben Rowe), and made alterations based
on it. Specifically, I shorted the abstract by moving content to an introduction section,
wrote a general "Aims & objectives" section, and added a "Deliverables" section,
referencing these deliverables in the timeline. I also polished the "Risks & mitigations"
section, and changed inline links to references.

Week 4 (2022-10-10)

Worked on the first report, about offline HTML5 applications (deliverable 1).

Week 5 (2022-10-17)

Worked on the offline HTML5 proof of concept (deliverable 2). Implemented a demo offline
app using service workers, with the ability to load a large file either from the local
disk using the File API, or from the service worker cache with the Cache API.

Completed report on OpenStreetMap data sources (deliverable 3). Completed report on map
projections (deliverable 4).

Week 6 (2022-10-24)

Implemented the proof of concept that renders some array of wgs84 coordinates to a
Mercator projected map (deliverable 5, proof-of-concepts/2-rendering-a-way). Allows you to
render the boundaries of three different towns -- with manually chosen zoom factor.

Started a report on the HTML5 canvas.

Started work on the panning and zooming proof of concept (deliverable 6, proof-of-concepts
/3-panning-and-zooming). Got WASD panning, and scrollwheel zoom working.

Week 7 (2022-10-31)

Page 46 of 55

Offline HTML5 Maps Application George Honeywood

Continued work on the panning and zooming proof of concept. Implemented click panning and
touch controls: pinch zoom & single finger panning. Also made zooming work around the
mouse/pinch gesture instead of the centre of the screen.

Made the map linkable, i.e. you can send a link to a position on the map. This is done by
writing the current map centre position and zoom level to the end of the URL.

Add esbuild (JavaScript bundler). This means I can write JavaScript in multiple files, but
have them merged together be served to the user. I can also use newer JavaScript features

, and have them transpiled into older syntax.

Week 8 (2022-11-07)

Began work on the Mapsforge file parser. Added testing using Jest to help develop the
Mapsforge parser. Finished decoding the file header, which contains metadata and other
information needed to parse the rest of the file.

Week 9 (2022-11-14)

More Mapsforge parser work. Specifically decoding the tile data itself. First reading PoIs
from the file, then Ways. Used the Mapsforge map file creator to generate map files with

debug information, to make writing the parser easier. Created a `Reader` abstraction over
the JavaScript `DataView` API, storing and updating the offset that the data is being read
from, making the code much cleaner.

Got a single tile of data to appear in the canvas map, but there is some issue with the
transformation of the coordinate data.

Week 10 (2022-11-21)

Worked on the interim report in preparation for supervisor meeting, then for the interim
submission. Fixed a tricky bug that was a result of an incorrect interpretation of the
signed integer values. This was discovered and fixed by writing some tests that I should
have written in the first place.

Got multiple tiles to appear on the map, being loaded dynamically as you pan and zoom.
Currently always loads the high resolution subfile, at z14, so zooming out quickly becomes
slow. Fixing this is my next goal.

Week 11 (2022-11-28)

Worked on getting the correct base tiles to render as you zoom in/out, significantly
improving performance, and letting you get a high level overview of the map.

Added styling for Ways and PoIs, with some zoom-conditional rendering logic. Continuing
with the interim report.

Week 12 (2022-12-05)

Page 47 of 55

Offline HTML5 Maps Application George Honeywood

Improved multipolygon handling, rendering each ring separately. Still not perfect, as it
currently in-fills everything inside the outer way, when it should only fill up to the
inner ways.

Worked on handling v5 files. These have variable tag values, so data other than the
hardcoded tags supported by the format can be stored.

Added an online mode, where instead of fetching the whole map blob in one go, we fetch
only the chunks we need, using HTTP range requests. This allows you to interactively use
huge map files, like the whole of England (~800 MB), as it only fetches the necessary bits
of the file for your current viewport.

Term 2

Week 18 (2023-01-16)

Added geolocation support, using `geolocation.watchPosition()`, which updates with your
position. Also added double tap + hold gesture for zooming with a single finger on mobile.

Worked on the professional issues' section of the report, talking about accessibility.

Week 19 (2023-01-23)

Finished off the professional issues section. Talked about visual impairments and physical
disabilities, and how they impact usage of an OSM-based map. Also discussed how mappers

can help make OSM accessible by using certain tags, like `wheelchair=*` or `smoothness=*`.
Debating writing a conclusion paragraph for it.

Worked on map fling --- where map continues to scroll after fast movement. Only for mouse
controls at the moment.

Started work on search (geocoding), using the Nominatim API hosted by the OSMF. Improved
styling, by making the canvas fullscreen, and overlaying the title atop it.

Week 20 (2023-01-30)

Added the ability to bind the search to the current map viewport. Made search results show
up beneath the search bar, where you can click them to pan the map to the location.

UI improvements. Made search bar responsive, and always visible. Replaced text with icons
where possible.

Week 21 (2023-02-06)

Big refactor to use Svelte front-end framework. This made all the UI code much cleaner,
with no more passing DOM references through the JavaScript code. Now there is a big `Map.
svelte` component, which holds all the Touch/Mouse/Keyboard event handlers. Also allowed
me to scope the CSS to each component, instead of having a single massive chunk of CSS in
`index.html`.

Page 48 of 55

Offline HTML5 Maps Application George Honeywood

Using a proper UI framework made it much easier to make the search form reactive. Worked
on making it resettable. Also added a nice dropdown animation for when the results pop in.

Week 22 (2023-02-13)

Improved offline handling, swapping the search bar for an offline icon when there is no
internet access. New fancy favicon.

Added support for opening a local map file, on the user's device. Set up Gitlab CI, with
self-hosted runner. Spent a while debugging why tests were taking 3 minutes, when locally
they take 2 seconds. Turned out to be [this bug](https://gist.github.com/charlyie/76
ff7d288165c7d42e5ef7d304245916). Also upgraded dependencies.

Week 23 (2023-02-20)

Added support for Hi-DPI screens. Previously the canvas size was always just the window.
innerWidth/Height value, which is in CSS pixels -- which aren't necessarily correlated to
real screen pixels. Now the canvas renders at a higher resolution to look crisp on screens
with a higher DPI.

Week 24 (2023-02-27)

Grammar and spelling fixes in report. Fixed bug where labels were duplicated on tile
borders. Tested using map inside an iframe -- this is a common map usecase, i.e. embedded
on a business website.

Added support for exact range requests in the service worker cache -- this means we can do
offline mode with the dynamic range requests. Added a download/precache button that lets

you download a whole area in advance.

Week 25 (2023-03-06)

Added a PWA webmanifest, to make the website "installable" on mobile phones. Did some
refactoring on the touch event handling code, to remove some necessary helpers. Made it so
loading/not found tiles are rendered crossed out.

Improved partial service worker caching, so that it can retrieve smaller chunks of larger
files. This makes downloading and storing many map tiles much more efficient, as (x,y) (x
+1,y) tiles are contiguous bytes in the mapsforge file. Adapted prefetch code to fetch
these contiguous ranges. Added loading spinner, and an "about" page.

Week 26 (2023-03-13)

Fixed bug with inconsistent behaviour with dynamic mode and blob mode -- turned out to be
due to HTTP range requests including the last requested byte, i.e. `Range: bytes=0-10`
will return 11 bytes, whereas `slice(0, 10)` will return 10 bytes. Fixed another bug in
the handling of files with debug info.

Made it so that the service worker takes control on the first page load. Before it was
only "controlling" the page after a refresh. This meant that tiles were not cached until a

Page 49 of 55

Offline HTML5 Maps Application George Honeywood

reload occurred, which is unexpected behaviour. Also set up proper resource precaching,
to ensure we get all files we need.

Week 27 (2023-03-20)

Fixed "installing" PWA on Android -- before it would add a shortcut to the homescreen, but
not add the icon to the app drawer. This was due to providing an SVG icon in the

webmanifest, when a PNG was required.

Page 50 of 55

Offline HTML5 Maps Application George Honeywood

Bibliography

[1] Frederik Ramm, Jochen Topf and Steve Childon. OpenStreetMap — Using and Enhancing
the Free Map of the World. Note: A good summary of the basics of the OpenStreetMap
project. Some content is a little out of date, especially the sections on editors and tools for
mappers. Notably the online editor referred to here, Potlatch, is no longer available, having
been superseded by iD in 2013. UIT Cambridge Ltd., 2011 (cit. on pp. 4, 6).

[2] Pascal Neis. OSMStats — Statistics of the free wiki world map. Note: Useful set of statistics
about the OpenStreetMap project. This includes the number of registered users, the number
of edits, and the number of objects in the database. url: https : / / osmstats . neis -
one.org/?item=members (visited on 29/09/2022) (cit. on p. 4).

[3] Ilya Zverev. Every Door. Note: A new mobile OSM editor, released in 2022, focussed on
adding points of interest and other data best gathered on foot. In July 2022, I added the
ability to view the history of an element to the app via a pull request. url: https://every-
door.app/ (cit. on p. 4).

[4] OsmAnd BV. OsmAnd. Note: Offline OSM map viewer for Android and iOS. The app is
open source, and provides a swiss army knife of features. url: https://osmand.net/ (cit.
on p. 4).

[5] Maps.me (Cyprus) Limited. Maps.me. Note: Most popular OSM-based map app on the
Android platform. Was historically open source, but was acquired by another company and
made closed source. url: https://maps.me/ (cit. on p. 4).

[6] Magic Earth. Magic Earth. Note: Proprietary OSM-based mobile map viewer. url: https:
//www.magicearth.com/ (cit. on p. 5).

[7] KDE Marble Contributors. KDE Marble. Note: Open source map viewer for desktop, with
cross-platform support. Has basic support for downloading OSM maps. url: https://
marble.kde.org/ (cit. on p. 5).

[8] OpenStreetMap Foundation. Tile Usage Policy: Bulk Downloading. url: https://operatio
ns.osmfoundation.org/policies/tiles/%5C#bulk-downloading (visited on 29/09/2022)
(cit. on pp. 5, 14).

[9] OpenStreetMap Wiki Contributors. OpenStreetMap API. url: https://wiki.openstreet
map.org/wiki/API (visited on 29/09/2022) (cit. on pp. 5, 18).

[10] OpenStreetMap Wiki Contributors. API: Terms of use. url: https://wiki.openstreetm
ap.org/wiki/API%5C#Terms_of_use (visited on 29/09/2022) (cit. on p. 5).

[11] devemux86. Cruiser. Note: A cross-platform offline first OSM map viewer. Is based on the
Mapsforge library, but is not open source. url: https://wiki.openstreetmap.org/wiki/
Cruiser (cit. on p. 5).

[12] Mapsforge. Mapsforge Binary Map File Format Specification. Note: The specification for
the Mapsforge binary map format. This format is quite popular, and is used by a number
of applications. 2017. url: https://github.com/mapsforge/mapsforge/blob/master/
docs/Specification-Binary-Map-File.md (visited on 29/09/2022) (cit. on pp. 5, 10, 15,
22).

Page 51 of 55

https://osmstats.neis-one.org/?item=members
https://osmstats.neis-one.org/?item=members
https://github.com/Zverik/every_door/pull/338
https://every-door.app/
https://every-door.app/
https://osmand.net/
https://maps.me/
https://www.magicearth.com/
https://www.magicearth.com/
https://marble.kde.org/
https://marble.kde.org/
https://operations.osmfoundation.org/policies/tiles/%5C#bulk-downloading
https://operations.osmfoundation.org/policies/tiles/%5C#bulk-downloading
https://wiki.openstreetmap.org/wiki/API
https://wiki.openstreetmap.org/wiki/API
https://wiki.openstreetmap.org/wiki/API%5C#Terms_of_use
https://wiki.openstreetmap.org/wiki/API%5C#Terms_of_use
https://devemux86.github.io/
https://wiki.openstreetmap.org/wiki/Cruiser
https://wiki.openstreetmap.org/wiki/Cruiser
https://github.com/mapsforge/mapsforge/blob/master/docs/Mapsforge-Applications.md
https://github.com/mapsforge/mapsforge/blob/master/docs/Mapsforge-Applications.md
https://github.com/mapsforge/mapsforge/blob/master/docs/Specification-Binary-Map-File.md
https://github.com/mapsforge/mapsforge/blob/master/docs/Specification-Binary-Map-File.md

Offline HTML5 Maps Application George Honeywood

[13] OpenStreetMap Wiki Contributors. OpenStreetMap Wiki: Main Page. url: https://wiki.
openstreetmap.org/wiki/Main_Page (visited on 30/11/2022) (cit. on p. 6).

[14] OpenStreetMap Wiki Contributors. Mercator. url: https://wiki.openstreetmap.org/
wiki/Mercator (visited on 25/11/2022) (cit. on pp. 6, 18).

[15] OpenStreetMap Wiki Contributors. Slippy map tilenames. url: https://wiki.openstree
tmap.org/wiki/Slippy_map_tilenames (visited on 20/10/2022) (cit. on pp. 6, 14).

[16] MDN Contributors. MDN Web Docs. url: https://developer.mozilla.org/en- US/
(visited on 30/11/2022) (cit. on p. 6).

[17] MDN Contributors. Canvas API. 2022. url: https : / / developer . mozilla . org / en -
US/docs/Web/API/Canvas_API (visited on 02/11/2022) (cit. on pp. 6, 9, 12).

[18] MDN Contributors. Service Worker API. url: https://developer.mozilla.org/en-
US/docs/Web/API/Service_Worker_API (visited on 30/11/2022) (cit. on pp. 6, 12).

[19] MDN Contributors. HTML: HyperText Markup Language. url: https://developer.mozi
lla.org/en-US/docs/Web/HTML (visited on 30/11/2022) (cit. on p. 9).

[20] MDN Contributors. JavaScript modules. url: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Modules (visited on 30/11/2022) (cit. on p. 10).

[21] SitePoint Pty. Ltd. Using ES Modules in the Browser Today. url: https://www.sitepoint.
com/using-es-modules/ (visited on 30/11/2022) (cit. on p. 10).

[22] Evan Wallace. esbuild. url: https://esbuild.github.io/ (visited on 30/11/2022) (cit.
on p. 10).

[23] Joshua Bell. File and Directory Entries API. W3C Draft Community Group Report. W3C,
Sept. 2022. url: https://wicg.github.io/entries-api/ (cit. on pp. 10, 11).

[24] MDN Contributors. Introduction to the File and Directory Entries API. 2022. url: https:
//developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/
Introduction (visited on 12/10/2022) (cit. on p. 10).

[25] WHATWG. HTML Living Standard: 7.11.2 Application caches. Tech. rep. Note: link to a
snapshot, as this has since been removed from the standard. WHATWG, 2020. url: https:
//html.spec.whatwg.org/commit-snapshots/27ca698a224a4fcf59b647be80a0c86c3c6
abba5/#appcache (visited on 17/10/2022) (cit. on p. 10).

[26] MDN Contributors. Window.applicationCache. 2022. url: https://developer.mozilla.
org/en-US/docs/Web/API/Window/applicationCache (visited on 17/10/2022) (cit. on
p. 10).

[27] Mapbox. MBTiles Specification. 2018. url: https://github.com/mapbox/mbtiles-spec
(visited on 12/10/2022) (cit. on p. 10).

[28] Marijn Kruisselbrink. File API. W3C Editor’s Draft. W3C, Oct. 2022. url: https://w3c.
github.io/FileAPI/ (cit. on pp. 11, 17).

[29] MDN Contributors. File and Directory Entries API support in Firefox: Limitations. 2022.
url: https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_
Entries_API/Firefox_support#limitations_in_firefox (visited on 17/10/2022) (cit.
on p. 11).

Page 52 of 55

https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Mercator
https://wiki.openstreetmap.org/wiki/Mercator
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://www.sitepoint.com/using-es-modules/
https://www.sitepoint.com/using-es-modules/
https://esbuild.github.io/
https://wicg.github.io/entries-api/
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Introduction
https://html.spec.whatwg.org/commit-snapshots/27ca698a224a4fcf59b647be80a0c86c3c6abba5/#appcache
https://html.spec.whatwg.org/commit-snapshots/27ca698a224a4fcf59b647be80a0c86c3c6abba5/#appcache
https://html.spec.whatwg.org/commit-snapshots/27ca698a224a4fcf59b647be80a0c86c3c6abba5/#appcache
https://developer.mozilla.org/en-US/docs/Web/API/Window/applicationCache
https://developer.mozilla.org/en-US/docs/Web/API/Window/applicationCache
https://github.com/mapbox/mbtiles-spec
https://w3c.github.io/FileAPI/
https://w3c.github.io/FileAPI/
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Firefox_support#limitations_in_firefox
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API/Firefox_support#limitations_in_firefox

Offline HTML5 Maps Application George Honeywood

[30] Google Developers. Managing HTML5 Offline Storage. 2018. url: https://developer.
chrome.com/docs/apps/offline_storage/ (visited on 17/10/2022) (cit. on p. 12).

[31] Jake Archibald and Marijn Kruisselbrink. Service Workers Nightly: Caches. W3C Editor’s
Draft. W3C, June 2022. url: https://w3c.github.io/ServiceWorker/#cache-objects
(cit. on pp. 12, 17, 27).

[32] Steve Fulton and Jeff Fulton. HTML5 Canvas: Native Interactivity and Animation for the
Web. O’Reilly Media, 2013. isbn: 9781449335885. url: https://books.google.co.uk/
books?id=zLUyKvtdCQwC (cit. on p. 12).

[33] MDN Contributors. WebGL2RenderingContext. 2022. url: https://developer.mozilla.
org/en- US/docs/Web/API/WebGL2RenderingContext (visited on 02/11/2022) (cit. on
p. 12).

[34] Mapbox. Mapbox GL JS. 2022. url: https://docs.mapbox.com/mapbox-gl-js/guides/
(visited on 02/11/2022) (cit. on p. 12).

[35] MDN Contributors. Canvas API: Drawing text. 2022. url: https://developer.mozilla.
org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_text (visited on 02/11/2022)
(cit. on p. 13).

[36] MDN Contributors. Canvas API: Transformations: Rotating. 2022. url: https://devel
oper.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations#
rotating (visited on 21/11/2022) (cit. on p. 13).

[37] MDN Contributors. Canvas API: Path2D. 2022. url: https://developer.mozilla.org/
en-US/docs/Web/API/Path2D (visited on 21/11/2022) (cit. on p. 13).

[38] OpenStreetMap Wiki Contributors. Downloading data: Choose your region. url: https:
//wiki.openstreetmap.org/wiki/Downloading_data#Choose_your_region (visited on
20/10/2022) (cit. on p. 14).

[39] OpenStreetMap Wiki Contributors. Using OpenStreetMap offline: Frameworks. url: https:
//wiki.openstreetmap.org/wiki/Using_OpenStreetMap_offline#Frameworks (visited
on 20/10/2022) (cit. on p. 15).

[40] Mapsforge. Mapsforge Project Homepage. url: https://github.com/mapsforge/mapsfor
ge (visited on 20/10/2022) (cit. on p. 15).

[41] Mapsforge. Applications using Mapsforge software. url: https://github.com/mapsforge/
mapsforge/blob/master/docs/Mapsforge- Applications.md (visited on 20/10/2022)
(cit. on p. 15).

[42] Mapbox. MBTiles. url: https://docs.mapbox.com/help/glossary/mbtiles/ (visited on
20/10/2022) (cit. on p. 15).

[43] Frank Canters. Small-Scale Map Projection Design. In Focus–Routledge Film Readers. CRC
Press, 2002. isbn: 9780203472095. url: https://books.google.co.uk/books?id=RZDUDw
AAQBAJ (cit. on p. 15).

[44] OpenStreetMap Wiki Contributors. Converting to WGS84. url: https://wiki.openstre
etmap.org/wiki/Converting_to_WGS84 (visited on 23/10/2022) (cit. on p. 15).

[45] EPSG. EPSG:4326 — WGS84: World Geodetic System 1984, used in GPS. url: https:
//epsg.io/4326 (visited on 23/10/2022) (cit. on p. 15).

Page 53 of 55

https://developer.chrome.com/docs/apps/offline_storage/
https://developer.chrome.com/docs/apps/offline_storage/
https://w3c.github.io/ServiceWorker/#cache-objects
https://books.google.co.uk/books?id=zLUyKvtdCQwC
https://books.google.co.uk/books?id=zLUyKvtdCQwC
https://developer.mozilla.org/en-US/docs/Web/API/WebGL2RenderingContext
https://developer.mozilla.org/en-US/docs/Web/API/WebGL2RenderingContext
https://docs.mapbox.com/mapbox-gl-js/guides/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_text
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_text
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations#rotating
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations#rotating
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations#rotating
https://developer.mozilla.org/en-US/docs/Web/API/Path2D
https://developer.mozilla.org/en-US/docs/Web/API/Path2D
https://wiki.openstreetmap.org/wiki/Downloading_data#Choose_your_region
https://wiki.openstreetmap.org/wiki/Downloading_data#Choose_your_region
https://wiki.openstreetmap.org/wiki/Using_OpenStreetMap_offline#Frameworks
https://wiki.openstreetmap.org/wiki/Using_OpenStreetMap_offline#Frameworks
https://github.com/mapsforge/mapsforge
https://github.com/mapsforge/mapsforge
https://github.com/mapsforge/mapsforge/blob/master/docs/Mapsforge-Applications.md
https://github.com/mapsforge/mapsforge/blob/master/docs/Mapsforge-Applications.md
https://docs.mapbox.com/help/glossary/mbtiles/
https://books.google.co.uk/books?id=RZDUDwAAQBAJ
https://books.google.co.uk/books?id=RZDUDwAAQBAJ
https://wiki.openstreetmap.org/wiki/Converting_to_WGS84
https://wiki.openstreetmap.org/wiki/Converting_to_WGS84
https://epsg.io/4326
https://epsg.io/4326

Offline HTML5 Maps Application George Honeywood

[46] Sarah E. Battersby et al. “Implications of Web Mercator and Its Use in Online Mapping”. In:
Cartographica: The International Journal for Geographic Information and Geovisualization
49.2 (2014), pp. 85–101. doi: 10.3138/carto.49.2.2313 (cit. on p. 16).

[47] Utah Geospatial Resource Center. The Earth is Not Round! Utah, NAD83 and WebMerca-
tor Projections. url: https://gis.utah.gov/nad83-and-webmercator-projections/
(visited on 23/10/2022) (cit. on p. 16).

[48] John P. Snyder. Map Projections: A Working Manual. Geological Survey Bulletin Series. U.S.
Government Printing Office, 1987. isbn: 9780160033605. url: https://books.google.co.
uk/books?id=nPdOAAAAMAAJ (cit. on pp. 16, 18).

[49] Jakob Nielsen. “Enhancing the explanatory power of usability heuristics”. In: Proceedings of
the SIGCHI conference on Human Factors in Computing Systems. 1994, pp. 152–158 (cit. on
p. 17).

[50] Mapbox. geojson.io. url: https://geojson.io/ (visited on 25/11/2022) (cit. on pp. 18,
21).

[51] Natural Earth. 1:110m Cultural Vectors: Admin 0 — Countries. url: https://www.natur
alearthdata.com/downloads/110m-cultural-vectors/ (visited on 26/11/2022) (cit. on
p. 20).

[52] MDN Contributors. Window.requestAnimationFrame(). 2022. url: https://develope
r . mozilla . org / en - US / docs / Web / API / window / requestAnimationFrame (visited on
26/11/2022) (cit. on p. 21).

[53] OpenStreetMap Wiki Contributors. Relation:multipolygon. url: https://wiki.openstree
tmap.org/wiki/Relation:multipolygon (visited on 27/11/2022) (cit. on p. 22).

[54] MDN Contributors. HTTP range requests. 2023. url: https://developer.mozilla.org/
en-US/docs/Web/HTTP/Range_requests (visited on 15/03/2023) (cit. on p. 26).

[55] Brandon Liu. Protomaps. 2023. url: https://protomaps.com/ (visited on 15/03/2023)
(cit. on p. 27).

[56] Gregg Tavares. WebGL2 Fundamentals. 2023. url: https://webgl2fundamentals.org/
(visited on 17/03/2023) (cit. on p. 29).

[57] MDN Contributors. Progressive web apps (PWAs). 2023. url: https://developer.mozil
la.org/en-US/docs/Web/Progressive_web_apps (visited on 22/03/2023) (cit. on p. 31).

[58] Christian Spanring and Alexander Mayrhofer. A Uniform Resource Identifier for Geographic
Locations (’geo’ URI). RFC 5870. RFC Editor, June 2010. doi: 10.17487/RFC5870. url:
https://www.rfc-editor.org/info/rfc5870 (cit. on p. 32).

[59] Conventional Commits. Conventional Commits: Specification. url: https://www.convent
ionalcommits.org/en/v1.0.0/#specification (visited on 30/11/2022) (cit. on p. 38).

[60] James Nurthen, Michael Cooper and Peter Krautzberger. Accessible Rich Internet Applica-
tions (WAI-ARIA) 1.3. W3C Editor’s Draft. W3C, Jan. 2023. url: https://w3c.github.
io/aria/ (cit. on p. 41).

[61] MDN Contributors. HTML: A good basis for accessibility. 2022. url: https://developer.
mozilla.org/en-US/docs/Learn/Accessibility/HTML (visited on 23/01/2023) (cit. on
p. 41).

Page 54 of 55

https://doi.org/10.3138/carto.49.2.2313
https://gis.utah.gov/nad83-and-webmercator-projections/
https://books.google.co.uk/books?id=nPdOAAAAMAAJ
https://books.google.co.uk/books?id=nPdOAAAAMAAJ
https://geojson.io/
https://www.naturalearthdata.com/downloads/110m-cultural-vectors/
https://www.naturalearthdata.com/downloads/110m-cultural-vectors/
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://wiki.openstreetmap.org/wiki/Relation:multipolygon
https://wiki.openstreetmap.org/wiki/Relation:multipolygon
https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests
https://protomaps.com/
https://webgl2fundamentals.org/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://doi.org/10.17487/RFC5870
https://www.rfc-editor.org/info/rfc5870
https://www.conventionalcommits.org/en/v1.0.0/#specification
https://www.conventionalcommits.org/en/v1.0.0/#specification
https://w3c.github.io/aria/
https://w3c.github.io/aria/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML

Offline HTML5 Maps Application George Honeywood

[62] MDN Contributors. Element Reference: <canvas>: The Graphics Canvas element. url: http
s://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas#accessibility_
concerns (visited on 19/01/2023) (cit. on p. 41).

[63] Lawrence Grierson, John Zelek and Heather Carnahan. “The Application of a Tactile Wayfind-
ing Belt to Facilitate Navigation in Older Persons”. In: Ageing International 34 (Dec. 2009),
pp. 203–215. doi: 10.1007/s12126-009-9039-2 (cit. on p. 41).

[64] NHS. Colour vision deficiency (colour blindness). 2019. url: https://www.nhs.uk/condit
ions/colour-vision-deficiency/ (visited on 23/01/2023) (cit. on p. 42).

[65] Andrew Kirkpatrick et al. Web Content Accessibility Guidelines (WCAG) 2.1. W3C Recom-
mendation. W3C, June 2018. url: https://www.w3.org/TR/WCAG21/#contrast-enhanced
(cit. on p. 42).

[66] Jochen Topf and Christian Topf. Wheelchair | Keys | OpenStreetMap Taginfo. 2023. url:
https://taginfo.openstreetmap.org/keys/wheelchair (visited on 24/01/2023) (cit. on
p. 42).

[67] Tobias Zwick and Contributors. StreetComplete. 2023. url: https://github.com/streetc
omplete/StreetComplete (visited on 24/01/2023) (cit. on p. 42).

[68] Sozialhelden e.V. Wheelmap. 2023. url: https://wheelmap.org/ (visited on 24/01/2023)
(cit. on p. 42).

[69] OpenStreetMap Wiki Contributors. Key:smoothness. url: https://wiki.openstreetmap.
org/wiki/Key:smoothness (visited on 25/01/2023) (cit. on p. 42).

Page 55 of 55

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas#accessibility_concerns
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas#accessibility_concerns
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas#accessibility_concerns
https://doi.org/10.1007/s12126-009-9039-2
https://www.nhs.uk/conditions/colour-vision-deficiency/
https://www.nhs.uk/conditions/colour-vision-deficiency/
https://www.w3.org/TR/WCAG21/#contrast-enhanced
https://taginfo.openstreetmap.org/keys/wheelchair
https://github.com/streetcomplete/StreetComplete
https://github.com/streetcomplete/StreetComplete
https://wheelmap.org/
https://wiki.openstreetmap.org/wiki/Key:smoothness
https://wiki.openstreetmap.org/wiki/Key:smoothness

	Table of Contents
	Abstract
	Introduction
	Literature review
	Aims and objectives
	Deliverables & timeline
	Term one
	Term two

	Research
	Basic web technologies
	Offline HTML5 applications
	Using the HTML5 canvas
	OpenStreetMap data sources
	Projecting map data

	Proof-of-concept development process
	Simple offline HTML5 app
	Rendering geometry to a canvas
	Adding interactivity — panning and zooming
	Rendering tiled data from a Mapsforge file
	The Mapsforge format
	Writing a parser
	Rendering the tiles

	Final application development process: OSMO
	Dynamic tile loading
	Caching dynamically loaded tiles
	Downloading a region
	Experimenting with WebGL
	Svelte: using a frontend framework
	Progressive web apps (PWAs)
	Service worker quirks
	Handling HiDPI displays

	Software engineering
	Testing
	Test suite coverage

	GitLab CI
	Version control
	Documentation
	Profiling and optimization

	Professional issues
	Conclusion & evaluation
	Appendix
	diary.md

	Bibliography

