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ABSTRACT

Fully 3-D phase-unwrapping algorithms are commonly
based on the central assumption that the phase difference
between neighbouring sample points in any dimension is
generally less than half a phase cycle (the Nyquist crite-
ria). In the case of InSAR time series, however, signals
are correlated spatially but uncorrelated over the repeat-
pass time, due chiefly to changes in atmospheric delay.
Here I present an alternative 3-D phase-unwrapping al-
gorithm that treats the problem as a series of maximum a
posteriori probability (MAP) estimation problems. This
is achieved by generating probability density functions
for the unwrapped phase difference between neighbour-
ing points through analysis in time, and then searching
for the solutions in space that maximise the total joint
probability.
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1. INTRODUCTION

There are now many examples of time series InSAR tech-
niques that seek to extract ever more information from
SAR images. These techniques can be divided into those
that rely on analysis of interferograms all with respect
to the same master image, commonly known as per-
sistent scatterer methods [e.g. 1, 2, 3], and those that
analyse interferograms formed with respect to multiple
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Figure 1. Interpolation in space, (a) original data points
and (b) after nearest-neighbour interpolation.

2000 2001 2002 2003 2004 2005 2006 2007
−6

−4

−2

0

2

4

6

φ x1
 −

 φ
x2

Unwrapping in space−time

 

 

Wrapped Phase
Low−pass filtered
Unwrapped filtered

Figure 2. Filtering and unwrapping of phase-differences
in time.

masters, commonly known as small baseline methods
[e.g. 4, 5, 6, 7]. In both sets of algorithms, correctly
estimating the integer ambiguities in the interferogram
phase is a critical step. In general, the chances of suc-
cess are greater when treating the entire time series as
one three-dimensional (3-D) phase-unwrapping problem,
rather than unwrapping the phase of each interferogram
independently in 2-D [8].

Phase-unwrapping algorithms developed for 3-D data
sets [e.g. 9, 10, 8] are typically based on the assumption
that the phase difference between neighbouring sample
points in any dimension is generally less than half a phase
cycle. However, in the case of InSAR time series signals
are correlated spatially, but uncorrelated over the repeat
time, due to changes in atmospheric delay. This can vary
by several phase cycles across an interferogram, leading
to most phase differences in the time dimension being
greater than half a cycle. Deformation, too, can lead to
phase jumps greater than half a cycle.

On the other hand, the phase difference of a sample
point with respect to a nearby sample point is likely to
vary by less than half a cycle between acquisitions, be-
cause the contribution from spatially-correlated signals
between points close in space is usually small. I use this
fact to set up the InSAR time series phase-unwrapping
problem as a series of maximum a posteriori probability
(MAP) estimation problems. First, the temporal evolu-
tion of the phase difference between neighbouring sam-
ples is estimated, by unwrapping the phase difference un-
der the assumption that it consists of a smooth deforma-
tion signal plus random noise. These estimates are used
to build a probability density function for the phase dif-
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Figure 3. Unwrapped phase probability density function
(PDF). The green line describes the PDF derived from
estimates for the expected value of displacement,µ, and
the standard deviation of the phase noise,σ. The red line
gives the PDF after enforcing congruence (not scaled).

ference between each pair of neighbouring sample points
in every interferogram.

In order to take advantage of efficient optimisation rou-
tines that exist for regularly gridded data, the phase
measurements are resampled to a grid using a nearest-
neighbour interpolation routine. We then apply the op-
timisation routines of SNAPHU [11], which uses a gen-
eralised cost function approach to find the approximate
MAP solution, to each interferogram. Usually cost func-
tions are derived within SNAPHU itself, but we set them
externally such that (1) phase jumps cannot be placed be-
tween grid cells interpolated from the same sparse value
and (2) the probability density function of the phase be-
tween other cells depends on the estimated evolution of
the phase difference between the cells with time.

2. METHOD

To utilise efficient algorithms for spatial unwrapping de-
veloped for data sets sampled on a regular grid, e.g.,
SNAPHU [11], we first interpolate each sparse interfer-
ogram in the spatial domain using a nearest-neighbour
algorithm (Fig. 1). This approach was first implemented
in the Stanford method for persistent scatterers (StaMPS)
software [12] and the validity of the method is demon-
strated in [13].

The phase difference between neighbouring grid cells
that were not interpolated from the same point is calcu-
lated for all interferograms. An example of the wrapped
phase difference is indicated by the blue dots in Fig. 2.
These wrapped phase values are low-pass filtered in time
using local linear interpolation weighted by a Gaussian
window. The filtered values are then unwrapped under
the Nyquist assumption, i.e phase differences are inte-
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Figure 4. The time evolution of the volume of the simu-
lated point pressure source. Red circles indicate a simu-
lated SAR acquisition.

grated on the assumption that they lie between−π and
π.

The results from the filtering and phase-unwrapping in
the time dimension are used to builda priori probability
density functions (PDFs) for the unwrapped phase dif-
ferences between neighbouring grid cells in each inter-
ferogram. In the case where both neighbouring cells are
interpolated from the same phase measurement, the PDF
is a Dirac delta function, i.e., the probability of a non-
zero phase difference is zero. In all other cases, the PDF
is the normalised product of a Gaussian PDF and a comb
function. The maximum likelihood value of the Gaus-
sian PDF is the temporally unwrapped, low-pass filtered
value and the variance is derived from the variance of the
residual between the original and low-pass filtered values
(Fig. 3). The purpose of multiplying by a comb function
is to enforce congruence, in other words, to ensure that
the unwrapped phase can only be equal to the wrapped
phase plus an integer number of cycles. The peaks are
therefore atφ+ 2nπ, whereφ is the wrapped phase.

Cost functions are derived from thea priori PDFs by tak-
ing the negative logarithm. The optimisation routines of
SNAPHU are then used to search for the minimum total
cost solution for each interferogram as [14]

minimize

{

−
∑

k

log(f(∆φk|∆ψk))

}

(1)

wheref(∆φ|∆ψ) is the conditional probability density
function of the unwrapped phase gradient between neigh-
bouring points, conditional on the wrapped phase gradi-
ent, and the sum with indexk is taken over all rows and
columns. This is equivalent to maximising the total joint
probability density.
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Figure 5. Wrapped phase for the line-of-sight displace-
ment only, sampled at times given by the red circles in
Fig. 4.

Figure 6. Simulated wrapped phase of single-master in-
terferograms after adding atmospheric and decorrelation
noise to the line-of-sight displacements shown in Fig. 5.

3. SIMULATED DATA

We generated a randomly evolving volume for a point
pressure source [15] at 2 km depth (Fig 4), and simulated
the line-of-sight displacements at random points for a C-
band SAR with a19◦ angle of incidence (Fig. 5). We
added a realistic atmospheric phase screen to each image
and decorrelation noise based on full decorrelation for a
1100 m perpendicular baseline or for 500 days between
passes (Fig 6).

We unwrapped the phase of the simulated data using
the new 3-D algorithm. The results (Fig. 7a) are good
even when the phase seems completely decorrelated to
the human eye (e.g., first few wrapped interferograms in
Fig. 6), with only scattered one cycle errors (Fig. 8a). Re-
sults from 2-D unwrapping are shown for comparison in
Fig. 8c.

a.

b.

Figure 7. Unwrapped phase of interferograms. The new
3-D time series algorithm has been applied to (a) the sin-
gle master time series and (b) the multiple master time
series network (Fig. 9).

We also formed a network of 48 small-baseline inter-
ferograms from the original 20 images (Fig. 9) and un-
wrapped the phase of these interferograms. We then es-
timated the unwrapped phase of the interferograms with
respect to a single master using weighted least-squares,
with a full variance-covariance matrix estimated from the
spatial coherence (Fig. 7b). Again, there are only scat-
tered errors introduced by the phase-unwrapping, and in
this case all of the errors are less than one cycle in mag-
nitude.

4. CONCLUSIONS

We have developed an algorithm to unwrap the phase of
InSAR time series that takes advantage of efficient ex-
isting algorithms. The algorithm can be applied to both
single master time series of interferograms and interfero-
grams generated from multiple master images that cover
overlapping time periods. Hence it is applicable to both
persistent scatterer and small baseline methods.
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Figure 8. Residuals between unwrapped phase and true
phase using (a) the new 3-D time series algorithm applied
to the single master time series, (b) the new algorithm
applied to the multiple master time series network (Fig. 9)
and (c) using a 2-D statistical-cost algorithm applied to
the single master time series.
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formed.
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