
BINAURAL SOUND SOURCE LOCALIZATION USING A HYBRID TIME AND FREQUENCY
DOMAIN MODEL

Gil Geva⋆, Olivier Warusfel†, Shlomo Dubnov‡, Tammuz Dubnov⋆, Amir Amedi⋆, Yacov Hel-Or⋆

⋆ Reichman University, Herzliya, Israel ‡University of California, San Diego
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ABSTRACT
This paper introduces a new approach to sound source lo-

calization using head-related transfer function (HRTF) char-
acteristics, which enable precise full-sphere localization from
raw data. While previous research focused primarily on us-
ing extensive microphone arrays in the frontal plane, this
arrangement often encountered limitations in accuracy and
robustness when dealing with smaller microphone arrays.
Our model proposes using both time and frequency domain
for sound source localization while utilizing Deep Learning
(DL) approach. The performance of our proposed model,
surpasses the current state-of-the-art results. Specifically,
it boasts an average angular error of 0.24◦ and an average
Euclidean distance of 0.01 meters, while the known state-
of-the-art gives average angular error of 19.07◦ and average
Euclidean distance of 1.08 meters. This level of accuracy is
of paramount importance for a wide range of applications,
including robotics, virtual reality, and aiding individuals with
cochlear implants (CI).

Index Terms— Deep-Learning, Sound source localiza-
tion, Binaural, Head-related transfer function

1. INTRODUCTION

Sound localization, the ability to determine a sound’s three-
dimensional position, is vital in applications such as robotics,
virtual reality, and human-computer interactions. It is espe-
cially crucial for CI users. CI users often struggle with accu-
rate sound direction estimation compared to those with nor-
mal hearing [1], which has significant implications for safety
and their ability to navigate complex listening situations.

Traditional sound localization methods face two key chal-
lenges. Firstly, small microphone arrays face a significant
performance decline, while large arrays are impractical for
CI users. Secondly, prior studies on binaural sound localiza-
tion have primarily concentrated on the frontal sphere, leav-
ing the broader spectrum of sound localization largely unex-
plored. This research explores the potential of DL to address
these challenges by learning complex features from binaural
microphone signals while achieving high accuracy.

HRTF describes how the human head and ears alter sound
signals before they reach the eardrums.

Our research attempt to integrate DL techniques into
sound localization utilizing a two-microphone setup and
using the HRTF. This work proposes a model capable of
accurately learning sound source localization from binaural
recordings, especially for limited microphones or wearable
devices such as hearing aids and CIs.

2. RELATED WORK

2.1. Traditional sound localization and Duplex Theory

Traditional research in sound localization primarily focused
on understanding the role of interaural time differences
(ITDs), interaural level differences (ILDs), and interaural
phase differences (IPDs). Pioneering works by Rayleigh [2]
and Wallach [3] established the foundational importance of
these parameters in the context of sound localization. The
Duplex Theory posits that there is a fundamental trade-off
between IPD and ILD in sound source localization across dif-
ferent frequencies. At lower frequencies (below 1,360 Hz),
minimal spectral differences exist due to wave diffraction
caused by sound wave wavelengths exceeding 0.25 meters
(for a head size of 0.25 meters at room temperature). Con-
versely, at frequencies above this threshold, more significant
level differences are expected. However, the upper frequency
limit for detecting phase differences with two ears separated
by 0.25 meters, is around 680 Hz. This limitation arises from
the ambiguity in discerning which ear’s wave arrived first
beyond a 180-degree phase difference. Consequently, IPD
is more critical for lower frequencies, while ILD is more
valuable for higher frequencies.

Middlebrooks’ work in 1991 [4] expanded our knowl-
edge by highlighting spectral cues and the role of the pinna in
sound elevation localization, bridging anatomical and acous-
tic aspects of the outer ear.

2.2. Machine Learning Methods for Sound Localization

In recent years, the field of sound localization has seen sig-
nificant developments with a focus on the role of HRTF.
Wightman and Kistler [5] used Principal Component Analy-
sis (PCA) to customize HRTF for individual listeners, based
on their specific anatomical characteristics. Talagala and



Thushara [6] introduced a novel approach by integrating
various localization cues, including both time and phase dif-
ferences, with spectral interaural differences.

Machine Learning (ML) has played a crucial role in
enhancing sound localization accuracy. Early algorithms
such as Gaussian Mixture Models (GMM) and Expecta-
tion–Maximization (EM) were employed [7][8].

Using DL for sound localization was done by Tsuzuki et
al. [9] who used Multilayer-Perceptrons to estimate sound
source localization from time delay and amplitude difference.
Takeda et al. [10] used Deep neural networks (DNNs) using
phase information. Hirvonen et al. [11] were the first to use
feature extraction from spectrograms. Recent DL advance-
ments were also introduced by Chakrabarty [12], Yang [13]
and HU [14].

The field of sound localization has been enriched by no-
table challenges, among which is the LOCATA Challenge, or-
ganized by the IEEE [15]. This competition tackles sound
localization and tracking using various microphone array se-
tups. It is noteworthy that the LOCATA challenge focuses
on a single microphone array configuration based on binaural
recordings and, interestingly, only one team chose to publish
their work for this particular challenge [16].

Audio-Visual Correspondence, as demonstrated in “Look,
Listen, and Learn” [17] combines audio and visual data to
acquire semantic knowledge. This approach processes au-
dio and visual modalities separately with convolutional tech-
niques and then combines them using dense layers. This ap-
proach had a distinct effect on the audio processing research.

The Hybrid Spectrogram and Waveform Source Separa-
tion method, introduced by Facebook AI Research [18], ex-
tends the U-Net model to handle both time and frequency do-
mains in separating sources from hybrid waveform and spec-
trogram data. Despite the emphasis on improving large mi-
crophone arrays, efficient techniques for limited microphone
setups are essential, as demonstrated by challenges such as
LOCATA.

2.3. Benchmark model comparison

Vecchiotti et al. [19] introduced an influential method using
CNNs to analyze waveform data directly for sound localiza-
tion, diverging from traditional feature engineering. We use
this work as a benchmark model for our comparison. Their
model excelled in classifying sound sources location within a
frontal 180-degree range among 37 speakers. We retrained it
using our dataset and evaluated it using the same metrics.

The benchmark’s model architecture includes a convolu-
tional layer with linear activation function for frequency anal-
ysis, applied separately on both recording. Subsequent lay-
ers process both recordings, followed by two fully-connected
hidden layers. The output layer uses softmax activation for
sound localization classification, with training guided by the
root mean square error (RMSE) loss function.

3. METHODOLOGY

3.1. Approach to address the challenge

We adopted a hybrid approach that combines time and fre-
quency domain data. Waveform data inherently contain tem-
poral, spectral, and phase details. However, incorporating
spectrogram information, has been shown to improve perfor-
mance. Recent advances in DL, particularly in audio process-
ing, have emphasized the utility of end-to-end systems for di-
verse applications.

Hence, we embraced an end-to-end hybrid model that
leverages the strengths of both waveform and spectrogram
representations. We believe that our model maximizes the
benefits of recent advancements.

3.2. Data collection and modeling

Data collection occurred at the IRCAM studio in Paris, using
the KU 100 dummy head microphone system. A precise
arrangement of 24 strategically positioned speakers spanned
three dimensions, with meticulous alignment using laser
pointers for precision.

Fig. 1. Recording studio and KU100 Dummy head

Recordings involved generating “sweeps” across the fre-
quency spectrum from 0 to 20,000 Hz, emitted from vari-
ous speakers. These recordings were used to generate Head-
Related Impulse Responses (HRIRs) for all directions and
speakers. HRIRs are representations of how a sound impulse
transforms in the time domain as it traverses from a defined
spatial direction to reach a listener’s ears.

Once HRIRs were established for each ear and sound
source location, the recordings were convolved with these
HRIRs. This convolution process allowed for the simulation
of playback as if the recordings were emanating from specific
spatial positions.

From the MUSDB18 dataset, 10 songs were randomly se-
lected and convolutions were applied across 24 directions for
both ears to create two datasets:

1. Raw Waveforms: This dataset consists of paired
recordings from the left and right ears, concatenated
along the channel dimension.

2. Spectrogram Dataset: We applied Short-Time Fourier
Transform (STFT) on the waveform, using a 256-
sample STFT window with a hop length of 64.



Fig. 2. Hybrid time and frequency domain model architecture

To prevent data contamination, we applied these processes
exclusively to five songs for the test dataset.

For GPU compatibility, we randomly selected 30% of
the training data and 15% of the test data while keeping the
dataset size at 24 GB for training and evaluation.

3.3. Architecture

Our sound localization model (Figure 2) comprised of three
key components: spectrogram unit, waveform unit and hy-
brid element that process the concatenation of both previous
components through Relu activated DNN. The architecture is
summarized in the following table.

Spectrogram Waveform Hybrid
conv 4x4, 25 chan, Relu conv 63, 75 chan, Relu 1024 units

max-pool 3x3, Relu conv 59, 91 chan, tanh 128 units
conv 5x5, 25 chan, Relu conv 58, 96 chan, tanh 3 units
2 max-pool 3x3, Relu max-pool 10

conv 4x4, 40 chan, Relu flatten

Table 1. Model’s architecture

3.4. Loss Function and Experimental Configuration

Previous studies [20] have shown that using Cartesian coordi-
nates produces better results than polar coordinates, therefore,
we selected this representation.

We initially used the MSE loss function but observed sub-
optimal convergence during the learning phase. To achieve
a stable convergence and prioritize directional accuracy over
distance accuracy, we used a sum of the Euclidean distance
and the angular error.

Loss =
1

n

(
n∑

i=1

||xi − x′
i||2 +

180

π
arccos(

n∑
i=1

x̂i · x̂′
i)

)

Where n is the number of instances, x is the sound source
location, x′ is the model prediction and x̂ is the normalized
vector location.

The model was trained using the Adam optimizer with a
learning rate of 1×10−3 and a batch size of 128 samples. The
training process spanned 100 epochs, although models typi-
cally reached saturation between 40 to 70 epochs. A dynamic
learning rate schedule was employed to enhance training.

4. RESULTS

This section presents the outcomes achieved by our model,
accompanied by a comprehensive analysis. We also present
the performance of the benchmark model when applied to the
same dataset and evaluation framework.

Figure 3 illustrates the average angular error associated
with each speaker. The initial nine speakers are positioned on
the lowest level, speakers 10 through 18 occupy the second
level, speakers 19 to 23 are situated on the third level, and
the 24th speaker is located precisely at the top of the spheri-
cal arrangement. Within each level, speakers are sequentially
numbered starting from the front and proceeding in a clock-
wise direction.

Our model achieving an average angular error of 0.24◦

and average Euclidean distance of 0.01 meters. Notably, there
is no discernible consistent trend in the quality of results con-
cerning either direction or frequency range. It is worth high-
lighting that there are two instances of directional outliers ob-
served on the mid-level front side.

Figure 4 presents a similar metric, this time categorizing
it according to frequency spans. The assignment of each data
sample to a particular frequency range was determined by iso-
lating the frequency component with the highest magnitude in
that sample. It is evident that there is no visible pattern across
different frequency ranges. Furthermore, there is a notable
outlier around the 3,000 Hz range, displaying a substantially
larger angular error compared to other frequencies.



Fig. 3. Mean angular error in degrees for each speaker. The
model’ average angular error is 0.24◦ while the benchmark’s
average angular error is 19.07◦

Fig. 4. Mean angular error in degrees for each frequency
range in kHz. We can see the high outlier at 3kHz of 2.7◦

and the other frequencies below or around 0.5◦

Figure 5 displays angular errors by speaker location. The
second graph features 10 random samples, with blue verti-
cal line denoting the actual localization and orange horizon-
tal line representing the model’s predictions. Notably, the
model’s predictions closely match the ground truth for all
samples.

Fig. 5. Left graph shows the mean angular error for each
speaker. Right graph present example of source location (blue
line) and the model’s prediction (orange line).

4.1. Benchmark model results comparison

The benchmark model results show an average angular error
of 19.07◦ and an average Euclidean distance of 1.08 meters.
Table 2 shows the comparison between our model and the
benchmark model.

Benchmark model Hybrid model

Angular error 19.07◦ 0.24◦

Euclidean distance 1.08 m 0.01 m

Table 2. Hybrid Model and Benchmark model results

Besides performance differences, the benchmark model
shows distinctions in predicting frontal, rear, and above lo-
cations. Ablation studies using only waveform data on our
model produced similar results, suggesting that incorporating
frequency domain data enhances front-rear differentiation due
to spectral cues from the pinna.

Figure 6 shows how the Benchmark model’s performance
declines as the horizontal angle increases, further supporting
the hybrid time and frequency domain model’s effectiveness.

Fig. 6. Horizontal angular error by θ for hybrid and bench-
mark models. It is important to note both the magnitude of
the angular error and how it trends concerning θ

5. DISCUSSION AND CONCLUSIONS

Our study advances sound localization by extending its capa-
bilities from a 180-degree range to a full-sphere context. We
introduce a hybrid model that outperforms existing methods.
Looking ahead, three promising research directions emerge:

1. Head-Agnostic, Configuration-Flexible Model: We
aim to develop a model adaptable to diverse users and
settings, eliminating the need for user-specific training.

2. Unified Model for Localization and Noise Cancelling:
Integrating sound localization with noise cancellation
or source separation could enhance both accuracy and
noise handling.

3. Optimized Pinna Design: We believe it is possible to
achieve reliable sound localization using a single mi-
crophone. This innovation could potentially reduce
costs and enhance user comfort.

We hope that these directives will enhance the quality of
life for CI users and contribute to the advancement of various
contemporary technologies.
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