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Abstract—Highly penetrating cosmic ray muons constantly
shower the earth at a rate of about 1 muon per cm2 per minute.
We have developed a technique which exploits the multiple
Coulomb scattering of these particles to perform nondestructive
inspection without the use of artificial radiation. In prior work
[1]–[3], we have described heuristic methods for processing muon
data to create reconstructed images. In this paper, we present
a maximum likelihood/expectation maximization tomographic
reconstruction algorithm designed for the technique. This algo-
rithm borrows much from techniques used in medical imaging,
particularly emission tomography, but the statistics of muon
scattering dictates differences. We describe the statistical model
for multiple scattering, derive the reconstruction algorithm, and
present simulated examples. We also propose methods to improve
the robustness of the algorithm to experimental errors and events
departing from the statistical model.

Index Terms—Expectation maximization (EM), homeland secu-
rity, iterative methods, tomography.

I. INTRODUCTION

TOMOGRAPHIC methods are generally used to construct
an image or model of an object from multiple projections

taken from different directions. Here, we discuss a relatively
new kind of tomography based on the scattering of cosmic
ray muons. Coming from deep space, stable particles, mostly
protons, continuously bombard the Earth. These particles in-
teract with atoms in the upper atmosphere to produce showers
of particles that include many short-lived pions which decay
and produce longer-lived muons. Muons interact with matter
primarily through the Coulomb force, having no nuclear in-
teraction and radiating much less readily than electrons. They
lose energy only slowly through electromagnetic interactions.
Consequently, many of the muons arrive at the Earth’s surface
as highly penetrating charged radiation. The muon flux at
sea level is about one muon per cm per minute. As a muon
moves through material, Coulomb scattering off of the charges
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Fig. 1. Muon tomography concept. Muon detectors above and below the object
provide the positions and angles of both incoming and outgoing muon tracks
(shown by solid lines with arrows). The muons penetrating dense object (black
tracks) scatter significantly stronger than muons going through air (gray tracks).
From multiple track measurements both object geometry and electron density
of the material can be reconstructed.

of subatomic particles perturb its trajectory. The total deflec-
tion depends on several material properties, but the dominant
parameters are the atomic number, Z, of the nuclei and the
material density. The trajectories are more strongly affected by
special nuclear material (SNM) and materials that make good
gamma ray shielding (such as lead and tungsten) than by the
materials that make up more ordinary objects (such as water,
plastic, aluminum, and steel). Each muon carries information
about the objects that it has penetrated, and by measuring the
scattering of multiple muons, one can probe the properties
of these objects. In particular, one can detect high-Z objects
amongst more typical low-Z and medium-Z matter [1]–[3].

Fig. 1 illustrates the muon tomography concept. A set of two
or more planes of position sensitive muon detectors arranged
above a volume to be imaged provides the position and angle of
incoming muon tracks. These detectors measure muon position
in two orthogonal coordinates. Muons pass through the volume
and are scattered in a manner that depends on the materials
through which they pass. Another set of muon detectors records
outgoing muon positions and angles. Side detectors (not shown)
may be used to detect more horizontally oriented muon tracks.
The scattering angle of each muon is computed from the coinci-
dent incoming and outgoing measurements. Muon momentum
is estimated from the slight scattering occurring in the detectors
themselves. A description of our experimental implementation
and discussion of the practical aspects of muon tracking appear
in [4].

A discrete tomographic reconstruction of the volume of in-
terest is performed based on the data provided by many muons.
We use an instance of the iterative expectation maximization
(EM) algorithm to find maximum likelihood estimates of
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Fig. 2. Two-dimensional projection of scattering and displacement used to de-
scribe multiple Coulomb scattering. In this and other figures, the magnitude of
scattering is greatly exaggerated.

density profiles of objects. Maximum likelihood is widely used
in medical image reconstructions, in particular, for PET and
SPECT reconstructions. Although muon tomography is similar
to these methods, there are several important differences which
preclude our use of standard methods developed for those
applications. First, the measured signal—scattering angle—is
stochastic, with mean equal to zero and standard deviation
defined by the properties of the penetrated material. Second,
cosmic-ray muons do not come from defined discrete direc-
tions, but rather have a broad angular distribution around zenith.
Finally, muon trajectories are not straight; it is the bending that
enables us to find the rough location of a strongly scattering
object. While we used a Newton method to calculate maximum
likelihood estimates of density profiles of simple geometries
in earlier work [5], here we describe an EM algorithm which
is flexible and computationally efficient and we illustrate its
application to complex geometries.

II. MULTIPLE SCATTERING STATISTICAL MODEL

A. Single Layer of Homogeneous Material

A cosmic ray muon passing through material experiences
multiple Coulomb scattering as illustrated in Fig. 2. The out-
going muon track may be characterized by the scattering angle

and displacement , taken relative to the orientation and
position of the incident muon. The magnitude of scattering is
exaggerated in the figure for illustrative purposes. Typical scat-
tering angles are a few tens of mrads (1 mrad ), and scat-
tering angles of more than a few degrees are very uncommon.

The distribution of the central 98% of scattering angles may
be approximated as a zero-mean Gaussian [6]

(1)

though the actual distribution has heavier tails than a Gaussian.
The width of the distribution may be expressed approximately in
terms of material properties. Many researchers have presented
empirically developed expressions for scattering as a function

of various material properties, as reviewed in [6]. A particularly
simple form was presented by Rossi [7]

(2)

Here, is the particle momentum in MeV/c, is the depth of
the material, and is the radiation length of the material.

is velocity, and we will assume . Radiation length
decreases as atomic number and material density increase.

We establish a nominal muon momentum, , and define the
scattering density of a material with radiation length, , as

(3)

The scattering density of a material thus represents the mean
square scattering angle of muons with nominal momentum
passing through a unit depth of that material. Values (in mrad
per centimeter) are about 3 for aluminum, 14 for iron, and 78
for uranium, for example.

So, the variance of scattering of a muon with momentum
passing through a material with scattering density and depth

is

(4)

Let

(5)

so

(6)

The displacement is correlated with the scattering angle
. Taken together, scattering angle and displacement provide

information suggesting the position of local scattering contrib-
utors in a large volume, as suggested by the “kinks” in the paths
in Fig. 1. The distribution of scattering angle and displacement
may be characterized as jointly Gaussian [6], with zero mean
and

(7)

(8)

We may express the covariance matrix as

(9)

Let

(10)

so

(11)
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Fig. 3. Parameters used to adjust model for 3-D scattering.

In three dimensions, we may characterize scattering by con-
sidering a coordinate orthogonal to , and refer to scattering
angles and , and displacements and . Deflec-
tions into the and planes are independent and identically
distributed [6]. The development above is based on a coordinate
system which is oriented orthogonal to the direction of the inci-
dent muon. In a 3-D model we must account for 3-D path length
and project displacement measurements to a plane orthogonal to
the incident muon path. In Fig. 3, we illustrate a muon incident
at a projected angle of from vertical. We ask the reader to
imagine the associated projected angle in an orthogonal
coordinate directed out of the page.

The straight line extension of the muon path through the layer
to the projected (unscattered) point (i.e., the 3-D path
length) is

(12)

Define the outgoing muon position and angle as ,
then let

(13)

The measured displacement would be computed as
, but we must rotate this measurement into the plane

orthogonal to the ray path and adjust for the 3-D path length.
Define displacement as

(14)

where the middle two terms account for 3-D path length and the
final term projects the measurement to the proper orientation.
Finally, redefine the covariance weightings as

(15)

Proceed in a similar fashion for the scattering and displace-
ment and (11) defines the covariance matrix for both and

coordinate scattering. Scattering measurements are made

Fig. 4. Scattering through multiple layers of material.

independently in two orthogonal, horizontal coordinates. To
simplify notation, we develop the analysis for only one coor-
dinate. Combining the information from the two coordinates
will be discussed later. We must note that the model is valid
for “small” scattering angles and displacements. Second-order
terms ignored in the derivation of the model may become
significant for large angle scattering.

B. Nonhomogeneous Volume Represented With 3-D Voxels

For a nonhomogeneous volume of material, we represent the
density profile for purposes of reconstruction in terms of a linear
combination of 3-D basis functions with co-
efficients , i.e.,

(16)

Though many choices exist for the basis functions, we re-
strict our attention to rectangular 3-D voxels. We will use to
denote the coefficient of the th basis function, i.e., the density
in the th voxel. One approach to expressing the distribution of
scattering for a muon passing through a volume so represented
would be to use continuous integrals of the form presented in
[8] and recast the integrals in terms of the basis function rep-
resentation. For voxels, however, we can use a more intuitive
geometric development.

Considering Fig. 4, three layers (or voxels) are shown, with a
ray passing through the stack, delivering observed information

and . “Hidden” scattering and displacement in the th
voxel are denoted and , respectively. Again, the mag-
nitude of scattering is exaggerated in the figure. We may relate
observed to hidden data through the expressions

(17)

(18)

Here, we rely on the assumption of small angle scattering in the
second equation, and define as the 3-D ray path length from
the exit point of the th voxel to the exit point from the recon-
struction volume. More generally, for a ray passing through a
set of voxels

(19)
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Fig. 5. Using point of closest approach for path-length calculations.

(20)

Finally, we may express the covariance of aggregate scat-
tering/displacement for the th ray by first noting that, for the
th voxel

(21)

where

(22)

and is the path length of the th ray through the th voxel,
defined to be zero for voxels not “hit” by the ray. Combining
(19)–(22), we may write

(23)

Here, is the total number of voxels and we define the weight
matrix

(24)

based on a simple but lengthy calculation [5] for the elements.
We must make some assumption about the unknown muon

path in order to estimate ray path lengths through voxels. Refer-
ring to Fig. 5, our original method was to simply connect mea-
sured entry point and exit point with a straight
line. For small angle scattering, there is little error in this as-
sumption. It is clear, however, that this method biases the as-
sumed path away from the true path for larger angle scatters.
We observed blur in numerical testing due to this bias. A more
accurate approximation begins with computation of the point
of closest approach (PoCA) of incoming and outgoing tracks

[3]. Then, entry to PoCA to exit points are connected
to estimate voxel path lengths. This approximation dramatically
reduced blur in numerical tests (see Section IV).

Finally, define the data vector

(25)

and let denote denote all of the measurements from
muons. We write the likelihood of the density profile as

(26)

with factors

(27)

One goal of this paper is to describe an efficient procedure for
calculating an estimate, , of the density profile that maximizes
the likelihood. Our first approach via Newton-type methods for
small simulated examples does not scale well to larger inversion
problems because of the computation and storage requirements
for the Hessian matrix [5]. In the next section, we describe an
EM approach capable of dealing with practical sized problems.

C. Extensions for Experimental Effects

Real muon detectors exhibit finite position resolution. The in-
coming and outgoing muon tracks are characterized by angles
and positions derived from track fits to multiple position mea-
surements. Measurement errors thus propagate to the scattering
angle and displacement measurements that constitute the dataset
for muon tomography. We characterize the precision of a given
detector by RMS error . For a particular arrangement of de-
tectors, the error matrix

(28)

may be defined based on how propagates. See Schultz [5] for
a calculation of this error matrix for a particular experiment.

Such error is relatively easy to deal with in iterative recon-
struction methods. In our case, we may account for detector
error by supplementing the covariance matrix of (23)

(29)

In this way, we reduce noise that would otherwise appear in re-
constructions due to detector error. In fact, even when recon-
structing simulated data wherein detectors are “perfect” we as-
sume a very small to avoid artifacts due to finite numerical
precision. A more accurate model for detector error should ac-
count for momentum dependency, since one source of tracking
error is scattering in the detectors themselves, and scattering de-
creases as particle momentum increases. If an estimate of indi-
vidual muon momentum, , is available, then the error matrix

could be estimated for each ray.
As is evident from (2), the width of multiple Coulomb scat-

tering depends on the particle momentum. We accounted for
different muon momenta by introducing the factor in (5). In
practice, we do not know the muon momentum precisely but
may estimate the momentum of an individual muon from mea-
surements and the known spectrum of cosmic-ray muons. We
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discuss methods of muon momentum measurement elsewhere
[3], [4]. Here, we will assume that we have a good estimate of

for each muon.

III. ML/EM RECONSTRUCTION

The EM algorithm1 relies on expressing the likelihood of the
“incomplete” data in terms of the “complete” data, i.e., the ob-
served data plus the hidden data.2 In our application, the ob-
served data is the measured scattering.
The hidden data is the
scattering angle and displacement of the th muon by the th
voxel. Dempster, Laird and Rubin [9] described the algorithm
in terms of the following auxiliary function:

(30)

This function is the expected value of the log likelihood of both
the observed and unobserved data, given the parameter vector
with respect to the conditional distribution of given and the
parameter vector . Each iteration of the algorithm consists
of the following two steps.

E step: Estimate or characterize the
conditional distribution of the hidden data.

E step: Maximize the auxiliary function which is an
expected value with respect to the distribution
characterized in the E step.

In our case, since the hidden data determines the observed
data uniquely, by using the simpler auxiliary function

(31)

we obtain the same sequence of estimates that one
would obtain by using . From the parameter estimate,

, an iteration of the algorithm produces the new estimate,
, by

(32)

We start by noting that the probability distribution for scattering
of a single muon through a single voxel follows simply from the
statistical model for a single layer (Section II-A)

(33)

where is defined in (21). Since the unconditional distribu-
tion of scattering in each voxel is independent of the scattering
in other voxels, the probability of the aggregate set of hidden

1Although earlier papers by others described the algorithm, Dempster, Laird,
and Rubin [9] coined the name EM algorithm and the standard terminology to
define it.

2We develop our EM algorithm from a statistical perspective, but EM can be
shown to be equivalent to scaled gradient descent [10], as well as a special case
of incremental optimization transfer [11].

data is the product of the probability of each element. There-
fore, the log likelihood may be written

(34)

where represents terms not containing . Taking the condi-
tional expectation we write the function as

(35)

with summands

(36)

Here, is the number of rays for which (i.e., the
number of rays hitting the th voxel), and is defined

(37)

Setting the derivative with respect to of (36) to zero, we
find the following iterative formula for maximizing the auxiliary
function (M-step)

(38)

The quadratic form of guarantees positivity of . We
also note that (38) represents a mean over rays hitting a voxel.
The convenience of this form will be exploited in the next
section.

It remains to calculate the conditional expectations . Let
denote the random variable . The expected value of

the quadratic form is

(39)

where and are the mean and covariance of . Since
depends linearly on they are jointly Gaussian. The con-

ditional distribution of given is also Gaussian (a result
from multivariate distribution theory; using this theory and the
fact that and each have zero mean, we find

(40)

(41)

Here, , the covariance of the observed data, is given by (29),
and , the covariance of the hidden data element, may be
expressed via (21). Rather than writing the covariance of ob-
served-hidden data, , explicitly, we can perform a simple
(though lengthy) matrix calculation to show that

(42)
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Fig. 6. Summary of the ML/EM algorithm for muon tomography.

Substituting results from (39)–(42) into (37), we find that

(43)

where we have used in the last step.
Finally, to incorporate both and coordinate scattering

data, we simply use the average

(44)

in the update (38).

IV. NUMERICAL EXAMPLES AND ROBUST RECONSTRUCTION

To illustrate the ML/EM algorithm, we simulated a setup
similar to that shown in Fig. 1. As a first validation test, we
used a simple simulation designed to closely match our model.
Single detector planes (rather than the 3 shown in the figure)
were sized 2 2 m , and the vertical separation between top
and bottom detectors was 1.1 m. These detectors perfectly
recorded muon positions and angles. We used a simplified
muon spectrum, with muons of momenta uniformly distributed
from 500–10 000 MeV/c. Particles entered the volume at
the upper detector plane at projected angles uniformly
spanning from vertical. Muon multiple scattering
and displacement were simulated according to the model of
Section II. Objects were placed in the central 1.1 1.1 m
portion of the volume as visualized in Figs. 7 and 8. We sim-
ulated three 10 10 10 cm cubes of materials tungsten,

Fig. 7. Perspective view of simulated objects.

Fig. 8. Overhead view of simulated objects.

iron, and aluminum, with scattering densities 71.5, 14.2, and
2.8, shown in red, blue, and green, respectively. We simu-
lated 400 000 muons, incident on the upper detector stack,
corresponding to about 10 min of exposure. About 160 000 of
these muons missed the lower detector plane, leaving 240 000
for reconstruction. We used a voxel size of 5 5 5 cm for
reconstruction and implemented the methods described in the
previous section, assuming perfect knowledge of each muon’s
momentum. We started with a volume filled with air, and ran
the algorithm for 100 iterations (sufficient for convergence of
the block features).3

Results appear in Fig. 9. In this and other 3-D visualizations
to follow, voxels with scattering density mrad per cen-
timeter are colored red, [5,30) blue, and [.5,5) green, roughly
corresponding to high, medium, and low-Z material, respec-
tively [3]. Visualized in this way, the reconstruction appears
identical to the object scene. The averages of the reconstructed
values for the 8 voxels corresponding to each of the three objects
are (74.0, 14.7, 2.7) for the (W, Fe, Al) blocks, respectively. The
fractional spreads (rms/mean) of the 8 voxels making up each
cube are (12.6%, 13.2%, 12.1%). This result validates the in-
version algorithm and implementation, given a match between
simulation and inversion models. For comparison, we show, in
Fig. 10, a reconstruction made from the same dataset but using
the straight line voxel path-length calculation rather the PoCA

3Rather than use regularization, some stop iterative ML algorithms before
convergence to control noise. We do not address this issue here.
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Fig. 9. Reconstruction of Gaussian scattering simulation with path lengths es-
timated assuming two lines connected at the PoCA point.

Fig. 10. Reconstruction of Gaussian scattering simulation with path lengths
estimated assuming a single straight line.

method (see Section II-B). Note the slight blur around the tung-
sten and iron blocks.

Next, we resimulated the same scene using the GEANT4
[12] Monte Carlo package. GEANT4 implements a more com-
plete, accurate, and validated model for multiple scattering. This
model includes a more refined calculation of the width of the
central Gaussian portion of the scattering distribution, imple-
mentation of the heavy tails, and the simulation of the energy
loss of muons as they pass through material. We also used a
muon event generator which replicated the sea-level angular
and momentum distribution of cosmic ray muons. We still as-
sumed that detectors were perfect in this simulation, with perfect
knowledge of each muon’s momentum, and we did not include
cosmic ray electrons or track secondary particles.

Results appear in Fig. 11. Averages of voxels values cor-
responding to (W, Fe, Al) blocks are (674.4, 63.4, 5.4),
respectively. These values are much too high and the misclas-
sification of several of the medium and low Z areas is apparent.
Normalizing the reconstruction by dividing all voxel values by
approximately 4 to produce a correct average voxel value for
the medium-Z voxels does not produce correct values for high
and low-Z voxels or eliminate all misclassification. The cause
of this effect is a small percentage of the muons scattering in a
manner not well described by the Gaussian model.

We claimed that the central 98% of the projected angular dis-
tribution of scattering is well approximated as Gaussian. About
2% of all muons scatter to angles that are large relative to the sta-
tistical model described here. Because we attend to the square
of scattering angles, the effect can be dramatic. Muon scatter-
ings that fall in these tails produce density estimates that are
too large. Moreover, other processes such as decay of a muon
within the instrument of Fig. 1 or significant detector errors may

Fig. 11. Reconstruction of simulated data using scattering with non-Gaussian
tails.

Fig. 12. Reconstruction of simulated data with non-Gaussian tails via the me-
dian method.

be erroneously recorded as very large angle scattering events
(though these sources were not present in our simulation). This
can happen anywhere in the volume, and tends to generate single
voxels with unreasonably large scattering density. We have con-
sidered revising our statistical model to account for these pro-
cesses, but have not yet found a simple way to do so. Instead,
we have experimented with an altered algorithm, starting with
the observation that the update rule (38) is a mean over rays
passing through each voxel. To make the algorithm tolerant to
non-Gaussian data, we replace (38) with

(45)

i.e., take the median rather than the mean over rays to update
each voxel. We will term the update rule (45) the median method
and (38) the mean method.

Results using the median method appear in Fig. 12. Voxel
averages for (W, FE, Al) regions are (79.2, 14.2, 2.1), re-
spectively, with fractional spreads of (21.5%, 26.3%, 23.2%).
Clearly, using the median update rule improves the robustness
of the inversion algorithm. though with some loss of efficiency
relative to Gaussian data/mean update. Although this empirical
result suggests that the median update rule is better than the
mean update rule, we do not yet completely understand how it
affects efficiency, monotonicity, positivity, and other intrinsic
advantages of the mean method.

These simple block scenes were designed for validation of the
statistical model and inversion algorithm and are not illustrative
of the potential practical applications of cosmic ray muon to-
mography. Though it is outside the scope of this paper to delve
deeply into such applications, we conclude with a more inter-
esting scene. We produced a detailed GEANT4 simulation of a
passenger van. An illustration of the major components with the
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Fig. 13. Illustration of major objects in a simulated passenger van.

Fig. 14. Reconstruction of 1 min of simulated muon exposure of the passenger
van via the mean method.

Fig. 15. Reconstruction of the passenger van scene via the median method.

van body cut away appears in Fig. 13. The red block in the center
of the illustration represents a 10 10 10 cm solid piece of
tungsten, a proxy for a high-Z threat object. In this case we used
simulated detector planes located on the four long sides of the
scene to take advantage of more horizontally oriented muons.
We simulated 1 minute of cosmic ray muon exposure and per-
formed reconstructions from the data using 5 5 5 cm sized
voxels. In Figs. 14 and 15, we show visualizations of recon-
structions made using both the mean and median EM methods,
respectively.

The effect of non-Gaussian data is quite apparent in the mean
method reconstruction of this scene, manifested as red spots
scattered over the image. In the median reconstruction, these ar-
tifacts are entirely gone, and the denser components of the van
(engine, battery, drive train) show up as green (low-Z) or blue
(medium-Z), while the threat object stands out as red.

V. CONCLUDING REMARKS

Implementing cosmic ray muon tomography required de-
veloping new information processing algorithms. We have
described a statistical tomographic inversion algorithm specif-
ically designed to mine the information present from passive
cosmic ray muons which are constantly passing through terres-
trial objects.

Each iteration of the algorithm took about 2 s for the block
scenes (32 000 voxels, 240 000 muons), and about 1 s for the van
scene (240 000 voxels, 90 000 muons) on a standard PC for ei-
ther the mean or median update rule. Since each voxel is updated
independently at each iteration, parallel implementation is quite
feasible and could provide for near real-time reconstruction.

Future work includes the addition of regularization to our
algorithm. We are currently modifying it to evaluate the ef-
fect of quadratic and edge preserving penalty terms as in [13].
With colleagues we have constructed a large muon tracker [4]
that is providing the means to validate the algorithm on exper-
imental data. Finally, we are evaluating the efficacy of cosmic
ray muon tomography for various homeland security inspection
applications. Two key parts of the evaluation are establishing
automatic detection methods and evaluating exposure time, de-
tection probability, and false alarm rates. For this work we are
considering additional real world effects such as finite detector
resolution and estimated muon momentum, with key aspects
validated against experiments. We anticipate that detector spa-
tial resolution will have little effect on reconstructions, since
muon detectors have been built that exhibit good resolution (a
few hundred microns rms [4]) relative to voxel sizes and scat-
tering angles of interest. The achievable precision of the muon
momentum estimate will affect required exposure times [5], [3].

ACKNOWLEDGMENT

The authors would like to thank E. Siciliano of the Pacific
Northwest National Laboratory for the original MCNP van
model.

REFERENCES

[1] K. Borozdin, G. Hogan, C. Morris, W. Priedhorsky, A. Saunders, L.
Schultz, and M. Teasdale, “Radiographic imaging with cosmic-ray
muons,” Nature, vol. 422, p. 277, Mar. 2003.

[2] W. Priedhorsky, K. Borozdin, G. Hogan, C. Morris, A. Saunders, L.
Schultz, and M. Teasdale, “Detection of high-z objects using multiple
scattering of cosmic ray muons,” Rev. Sci. Instrum., vol. 74, no. 10, pp.
4294–4297, Oct. 2003.

[3] L. Schultz, K. Borozdin, J. Gomez, G. Hogan, J. McGill, C. Morris,
W. Priedhorsky, A. Saunders, and M. Teasdale, “Image reconstruction
and material z discrimination via cosmic ray muon radiography,” Nucl.
Instrum. Meth. A, vol. 519, pp. 687–694, Mar. 2004.

[4] J. Green et al., “Optimizing the tracking efficiency for cosmic ray muon
tomography,” in Proc. IEEE Nuclear Science Symp. Conf. Rec., Oct.
2006, pp. 286–288.

[5] L. Schultz, “Cosmic ray muon radiography,” Ph.D. dissertation, Port-
land State Univ., Portland, OR, 2003.

[6] S. Eidelman et al., “Review of particle physics,” Phys. Lett., vol. B592,
p. 1, 2004.

[7] B. Rossi, High Energy Particles. Englewood Cliffs, NJ: Pren-
tice-Hall, 1952.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on March 31,2022 at 11:45:49 UTC from IEEE Xplore.  Restrictions apply. 



SCHULTZ et al.: STATISTICAL RECONSTRUCTION FOR COSMIC RAY MUON TOMOGRAPHY 1993

[8] U. Schneider and E. Pedroni, “Multiple coulomb scattering and spa-
tial resolution in proton radiography,” Med. Phys., vol. 21, no. 11, pp.
1657–1663, Nov. 1994.

[9] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from in-
complete data via the EM algorithm,” J. Roy. Statist. Soc. B, vol. 39,
pp. 1–78, 1977.

[10] Y. Vardi, L. Shepp, and L. Kaufman, “A statistical model for positron
emission tomography,” J. Amer. Statist. Assoc., vol. 80, no. 389, pp.
8–20, Mar. 1985.

[11] S. Ahn, J. Fessler, D. Blatt, and A. Hero, “Convergent incremental opti-
mization transfer algorithms: Application to tomography,” IEEE Trans.
Med. Imag., vol. 25, no. 5, pp. 283–296, Mar. 2006.

[12] J. Allison, “Geant4 developments and applications,” IEEE Trans. Nucl.
Sci., vol. 53, no. 1, pp. 270–278, Feb. 2006.

[13] I. Elbakri and J. Fessler, “Statistical image reconstruction for polyen-
ergetic x-ray computed tomography,” IEEE Trans, Med. Imag., vol. 21,
no. 2, pp. 89–99, Feb. 2002.

Larry J. Schultz (M’01) received the M.S. and
Ph.D. degrees in electrical engineering from Portland
State University, Portland, OR, in 2000 and 2003,
respectively.

He has been a technical staff member in the Ap-
plied Modern Physics Group at Los Alamos National
Laboratory, Los Alamos, NM, since 2001, special-
izing in signal and image processing for national se-
curity applications.

Gary S. Blanpied received the Ph.D. degree in
1977 based partially on nuclear physics research
using 800-MeV protons at the linac at Los Alamos
National Laboratory, Los Alamos, NM (at that time,
the C. P. Anderson Meson Physics facility).

He has been a Professor of physics at the Univer-
sity of South Carolina, Columbia, since 1979.

Konstantin N. Borozdin received the M.S. degree
in experimental nuclear physics from the Moscow
Engineering Physics Institute in 1988, Moscow,
Russia, and the Ph.D. degree in astrophysics and
radioastronomy from the Moscow Space Research
Institute in 1995.

He is currently a technical staff member with the
Space Science and Applications Group, Los Alamos
National Laboratory, Los Alamos, NM. He has been
at Los Alamos since 1998, working in the fields of as-
trophysics, physical modeling, information technolo-

gies, radiation detection, and national security applications.
He received an Order of Merit medal for his involvement in the Mir-Kvant

space experiments in 1997.

Andrew M. Fraser (SM’79) received the Ph.D. degree in physics from the Uni-
versity of Texas at Austin in 1988 with a dissertation on algorithms for analyzing
chaotic signals.

He is a member of the machine learning team of the ISR division at Los
Alamos National Laboratory, Los Alamos, NM. Before graduate school, he de-
signed bipolar memories at Fairchild Semiconductor, and from 1989 to 2005,
he was on the faculty of Portland State University, Portland, OR.

Nicholas W. Hengartner received the B.A. degree in mathematics from the
Universite Laval, Quebec, QC, Canada, in 1987, the M.S. degree in statistics
from the University of Waterloo, Waterloo, ON, Canada, in 1988, and the Ph.D.
degree in statistics from the University of California, Berkeley, in 1993.

Upon graduation, he joined the Department of Statistics, Yale University,
New Haven, CT, as an Assistant Professor, and was promoted to Associate Pro-
fessor in 1999. In 2002, he joined the Statistical Science Group at Los Alamos
National Laboratory, Los Alamos, NM. He is active in academic outreach activi-
ties, and in 2004, was given an Adjunct Professor in the Department of Statistics
at Simon Fraser University, Burnaby, BC, Canada. His research interests are in
trans-disciplinary application of statistics, stochastic modeling, and information
science to physics, epidemiology, and large-scale socio-technical simulations.

Alexei V. Klimenko received the B.S. and M.S. degrees in electrical engi-
neering from the Moscow Institute of Steel and Alloys (Moscow University of
Technology), Moscow, Russia, in 1998 and 1999, respectively, and the M.S. and
Ph.D. degrees in nuclear physics from Old Dominion University, Norfolk, VA,
in 2001 and 2004, respectively.

From 2004 to 2006, he was a Postdoctoral Research Associate at Los Alamos
National Laboratory, Los Alamos, NM. He is currently a Staff Scientist at Pass-
port Systems, Inc., Acton, MA, specializing in modeling and threat detection
algorithm development for nonintrusive cargo screening systems.

Christopher L. Morris (M’06) received the B.S. de-
gree from Lehigh University, Lehigh, PA, in 1969,
and the Ph.D. degree from the University of Virginia,
Charlottesville, in 1973.

He is currently a technical staff member at Los
Alamos National Laboratory, Los Alamos, NM,
specializing in nuclear physics and national security
research.

Dr. Morris is a Fellow of the American Physical
Society (1986) and a Fellow of Los Alamos National
Laboratory (1996).

Chris Orum received the B.A. degree in chemistry from the University of
Oregon, Eugene, and the M.S. and Ph.D. degrees in mathematics from Oregon
State University, Corvallis, in 1996 and 2004, respectively.

He is currently a Postdoctoral Research Associate at Los Alamos National
Laboratory, Los Alamos, NM.

Michael J. Sossong received the B.S., M.S., and Ph.D. degrees in physics from
the University of Illinois at Urbana-Champaign, Urbana, in in 1998, 2000, and
2005, respectively.

He is a technical staff member working on the particle transport applications
team in the Applied Science and Methods Development Group, Applied Physics
(X) Division, Los Alamos National Laboratory, Los Alamos, NM. He special-
izes in nuclear and particle physics, particle transport simulation, information
processing, and applications to national security.

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on March 31,2022 at 11:45:49 UTC from IEEE Xplore.  Restrictions apply. 


