TomOpt: Investigation into detector scattering

Maxime Lagrange

December 8, 2021

Investigation: Scattering in active detector volume

TomOpt does not take into account muon scattering in active detector volume neither during **muon propagation** simulation nor **scattering inference**.

Question:

- Is muon scattering in active detector volume a dominant effect ?
- Consequences on tracking efficiency, inference ?

How to anwser:

• GEANT4 simulation with several detector configuration using realistic cosmic muon source

Qualitative study

- Scattering in planes 3 and 4 induces uncertainties on track inference in the passive volume: θ
- Affect the number of voxels involved during POCA/ML algorithm

Cosmic muon generation: CRY

Scattering amplitude depends on momentum and path length in the material:

$$\theta_0 = \frac{13.6 MeV}{\beta c_p} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$
(1)

• Need of a realistic muon source:

$$\Phi(\theta, \phi, p)$$

- CRY generates correlated cosmic-ray particle shower distributions: muons, neutrons, protons, electrons, photons, and pions.
- Realistic energy and angular distributions

Sea Level Muons

Simulation configuration

Scattering amplitude depends on detector configuration: material, plane width, etc...

$$\theta_0 = \frac{13.6 MeV}{\beta cp} z \sqrt{\frac{x}{X_0}} [1 + 0.038 \ln(\frac{x}{X_0})]$$
(2)

Configuration 1

- Scintillator based detector
- Single plane, simplified muon source

Configuration 2

- Scintillator based detector
- 3 planes, plane width = 2, 5 cm, realistic muon source

- Muon source generated by CRY
- Only **coincident** muons reaching passive volume are considered
- Muons split in 4 categories according to energy range: E < 1, 1 < E < 2.2
 2.2 < E < 5 and E > 5 GeV
- Study of θ distribution

Configuration 1: Simplified setup

	E < 1	1 < E < 2.2	2.2 <e< 5<="" th=""><th>E> 5</th><th>full range</th></e<>	E> 5	full range
Relative # of events	22%	22%	25%	31%	/
Mean scattering Angle $ heta_1$	0.55°	0.14°	0.07°	0.02°	0.13°
$P(heta_1>2^\circ)$	3.4%	0.5%	0.2%	0.2%	0.7%

Configuration 2: Realistic setup

Plane width 2cm Plane width 5cm Scattering Angle θ Scattering Angle 0 ×10⁵ 14000 # event E>5 GeV 140 E>5 GeV - 2.2<F<5 GeV - 2.2<E<5 GeV - 1<F<2.2 GeV - 1<E<2.2 GeV 12000 120 - 0<E<1 GeV 10000 100 8000 80 6000 60 4000 40 2000 20 0.2 0.1 0.3 0.5 0.6 0.7 0.8 0.2 0.3 0.5 0.6 0.4 04 Scattering angle [deg] <E< 2.2 2.2 <E< 5 E> 5 full range E < 1<E< 2.2 2.2 <E< 5 E> 5 E < 11 26% 25% Relative # of events 25% 24% Relative # of events 26% 25% 25% 24% 1.2° Mean scattering angle θ 1.7° 1.5° Mean scattering angle θ 1.4° 1.4° 1.5° 1.4° 2.9% $P(\theta > 2^\circ)$ 5.1% 3.3% 4.5% 4.0% $P(\theta > 2^{\circ})$ 7.3% 3.2% 3.6% 4.5%

full range

 1.6°

4.8%

0.7 0.8

ering angle [deg]

- Scattering in active detector volume mainly affects low-energy muons E < 1 GeV
- 2 regimes in the distribution: Gaussian $(\tilde{\theta} \approx 0.2^{\circ}) + 1/sin^4$ tail $(\tilde{\theta} \approx 1.6^{\circ})$ for hard scattering
- Depends on detector geometry, muon momentum

- Edge and coincidence bias appears when using realistic muon source
- Hard scattering dominated by large zenith angle muons

Perspectives: PID

"Atmospheric ray tomography for low-Z materials: implementing new methods on a proof-of-concept tomograph" arXiv:2102.12542v1

Analysis friendly information

Scattering in active volume provide **partial** but **relevant** information as regards PID and momentum estimation

 Scattering angle spectrum may be divided in 3 regions: one dominated by muons, one by electrons and a mixed regime

"*Muography of different structures using muon scattering and absorption algorithms*" http://dx.doi.org/10.1098/rsta.2018.0051

- Instead of raw scattering angle, one can use the χ^2 of the track to infer particle momentum
- Momentum range can be divided into classes according to the average χ^2 value of the track

Consequences for TomOpt

- **Tracking resolution** becomes function of detector parameters (# of plane, plane width)
- X₀ inference via likelihood method could benefit from momentum estimation
- Consider a set of tracks weighted by θ(p) distribution instead of a single one during POCA algorithm?

Implementation in TomOpt

PROS:

• Adaptation to every geometry

CONS:

- Computation time
- Scattering model accuracy

Use of parametric models obtained <u>from GEANT4 simulation</u>

PROS:

- Computation time
- Scattering model accuracy

CONS:

• Adaptation to every geometry

CRY partgun $0.1m^2$ generation surface

$\mathsf{Plane width} = 5\mathsf{cm}$

	E< 1	1 <e< 2.2<="" th=""><th>2.2 <e< 5<="" th=""><th>E> 5</th><th>full range</th></e<></th></e<>	2.2 <e< 5<="" th=""><th>E> 5</th><th>full range</th></e<>	E> 5	full range
Relative $\#$ of events	22%	22%	25%	31%	/
Mean scattering angle θ	0.55°	0.14°	0.07°	0.02°	0.13°
$P(heta > 2^\circ)$	3.4%	0.5%	0.2%	0.2%	0.7%

CRY $1m^2$ generation surface

$\mathsf{Plane width} = 2\mathsf{cm}$

	E< 1	1 <e< 2.2<="" th=""><th>2.2 <e< 5<="" th=""><th>E> 5</th><th>full range</th></e<></th></e<>	2.2 <e< 5<="" th=""><th>E> 5</th><th>full range</th></e<>	E> 5	full range
Relative $\#$ of events	26%	25%	25%	24%	/
Mean scattering angle $ heta$	1.4°	1.2°	1.4°	1.8°	1.5°
$P(heta > 2^\circ)$	5.1%	2.9%	3.3%	4.5%	4.0%

Plne width = 5cm

	E< 1	1 < E < 2.2	2.2 <e< 5<="" th=""><th>E> 5</th><th>full range</th></e<>	E> 5	full range
Relative $\#$ of events	26%	25%	25%	24%	/
Mean scattering angle $ heta$	1.7°	1.4°	1.5°	1.9°	1.6°
$P(heta > 2^\circ)$	7.3%	3.2%	3.6%	4.5%	4.8%