Bayesian networks
Principles and Definitions



The focus today . . .

#» Probability theory
s Joint probability
s Marginal probability
» Conditional probabillity
s Chain rule
s Bayes’ rule

# Bayesian networks
s Definition
s Conditional independence
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Why Bayesian networks?

Probabilistic graphical models, such as Bayesian networks,
are now the most popular uncertainty formalisms because:

# Handle noise, missing information and probabillistic
relations

# Learn from data and can incorporate domain knowledge

°

Offer flexible reasoning
# Have compact graphical representation (interface)

# Founded principles: probabillity theory

# Engineering principles: knowledge acquisition, machine
learning and statistics
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General notation

Stochastic (= statistical = random) variable: upper-case
letter, e.g. X, or upper-case string, e.g. FEVER

Values: variables can take on values, e.g. X = z,
FEVER =yes

Binary variables: take one of two values, e.g. X = true
and X = false

Discrete variables: take only one of a finite set of
possible values, e.g. TEMP € {low, medium, high}

Continuous variables: take any value in some interval
or intervals of real numbers R, e.g. TEMP € [—50, 50]

Lecture2: Bayesian networks — p.5



Abbreviated notation

# Binary variables: X =true as x, and X = false as —x

# Non-binary variables: X =z as x or CITY = tokyo as
tokyo

# Sets of variables: analogous to variables

s Example:
X1 =1
X2 — I9 X = (Xl,XQ,...Xn)
— x = (r1,72,...2)
X =z
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Abreviated notation (cont.)

Conjunctions: (X =z)A (Y =y)as (X =2,V = y)

Templates: (X,Y) means (X = z,Y = y), for any value
x, v, I.e. the choice of the values x and y does not really
matter

Examples:

s P X=z0Y=y & PX=xANY =y)

s P(X)Y)e P(X =uxY =y), forany value z,y
s PIX|Y)e P(X=x|Y =y), forany value z,y

> v P(X) = P(x)+ P(—x), where X is binary
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Probability theory

# Probability distribution P: attaches a number in (closed)
interval |0, 1] to Boolean expressions

# Boolean algebra B (for two variables RAIN and
HAPPY):
T (true),
rain, —rain,

happy, —happy,
rain A happy,. . ., rain A happy A —happy, .. .,

—rain A happy,.. ., rain v happy,
1 (false)

such that:

s 1 <rain, rain < (rain vV happy), ... (ingeneral L <=z
for each Boolean expression z € B);

s v < T for each Boolean expression r € B
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Probability distribution

o A probability distribution P is defined as a function
P :B — |0, 1], such that:

s P(1L)=0
s P(T)=1
s PlxVy)=Plx)+Ply),ifzAy=1Lwithz yecB

# Examples:

s P(rain Vv happy) = P(rain) + P(happy), as
rain A happy = L (why? Because | define it that way)
s P(rain A happy) = P(L) =0
s P(—rainVvrain) = P(—-rain) + P(rain) = P(T) =1 =
P(—rain) =1 — P(rain)
s 0< P(rain) <1
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Probability distribution (cont.)

# Boolean algebras < sets:

s T &0 s (xVy) & (XUY)

s 1l &9 s (xNy) & (XNY)

s v X s < (xVy) & X C(XUY)
s & X

with & 1-1 correspondence, e.g.

P(Rain) = 1 — P(Rain)
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Joint probability distribution

Let X and Y be random variables with domains

dom(X) ={x1,x2,...,xp} @and dom(Y) = {y1,y2,. .., Ym}-

The product set
dom(X) x dom(Y) ={x1,x2, ..., 20}t X {y1,y2, ..., Ym}
IS made into a probability space by defining

P(X :CEZ'/\Y:yj) :P(xi,yj)

where P Is a joint probability function of X and Y.
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Marginalisation

Suppose the joint probability distribution of two variables X
and Y Is given; then

since P(aVb)=P(a)+ P(b),IfaANb= 1

= P(z) =) P(zY)
Y
also known as marginal probability function of X.
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Example

# Assume that X, X5, X3 and X4 are binary variables.

Then P(Xl, X9, X3, X4):

P(x1,x2,x3,x4
P(x1,-x2,13, T4
P(x1,x2, 13,14
P(x1,x2,x3, x4
P(—x1,x2,%3, %4

P(—x1, 12,73, 74

)
)
)
)
)
)
)
)

(
P(—z1,x2, 23,24
(

o

—X1,x2,xX3, T4

0.1
0.04
0.03
0.1
0.0
0.2
0.08
0.1

P(—x1,—~x9, ~x3, 14

P(x1,-x2, 23,24
P(x1,-x2, 13, T4
P(x1,xz2, ~x3, T4

P
P

X1, L2, L3, L4

L1, X2, L3, T4

o

L1, X2, I3, T4

(
(
(
P(

L1, T2, X3, T4

)
)
)
)
)
)
)
)

® > x1xox3xa (X1, X0, X3, X4) =1

# Marginalisation:

P(x2, ~x3) =7

0.015
0.1
0.004
0.005
0.01
0.01
0.006
0.2
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Conditional probability

® P(X |Y): Chance that X will occur knowing that Y has
occured

# Definition:

P(XNY)
P(Y)
/!
normalize, so
that uncertainty in Y
IS removed

P(X|Y) =
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Example: flu and fever

o P(flu A fever): chance of flu and fever at the same time

o P(flu | fever): chance of flu knowing that the person
already has fever (conditional probability)

® Definition:

P(flu A fever)
P(fever)

/!

adjust P(flu A fever), so
that uncertainty in ‘fever’
IS removed

P(flu | fever) =

# Recall: P(Flun Fever) is different notation, with same
meaning as P(flu A fever)



Reversal of chances

# P(flu | fever) is usually unknown:

P(flu | fever)

flu fever
h e
(hypothesis) (evidence)
#» Known is:
P(fever | flu) =0.9
P(flu) = 0.05
P(fever) = 0.09
flu P(fever | flu) —  fover

P(flu) = 0.05 P(fever) = 0.09
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Bayes’ rule - Example

# Bayes' rule — reversal of chances:
P(e| h) P(fever|flu) =0.9
P(h) P(flu) = 0.05
P(e) P(fever) = 0.09

P(fever | flu) P(flu)
P(fever)
= 0.9-0.05/0.09 = 0.5

P(flu | fever)

# Definition of Bayes’ rule (the ‘chance reverter’):

Pt o) = LD
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Chain rule (derivation)

Definition of conditional probability:

P(Xq, Xs,...,X,)

P(X,| Xs,...,X,) = P(X, X,)

= P(X1,Xo,....X,)) = P(X1| Xo,..., X2)P(Xo, ..., X,)

Furthermore,

P(Xy,...,Xn) = P(Xo|Xs,....X,)P(Xs,...,X,)

3

A

5
||

P(Xn)

3
5
||
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Chain rule (definition)

P(X1,X2,....X,) = P(X1|Xo,...,




Definition Bayesian network (BN)

A Bayesian network 5B is a pair B = (G, P), where:

= (V(G), A(G)) is an acyclic directed graph, with
V(G) ={v1,v2,...,v,}, & set of vertices (nodes)
A(G) CV(G) x V(@) aset of arcs

» P p(V( )) — [0, 1] Is a joint probability distribution,
such that

n

PV(@) = | [ P(vi | ma(v)

1=1

where ns(v;) denotes the set of iImmediate ancestors
(parents) of vertex v; iIn G

# Notational convenience: v; = X;
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Example of a Bayesian network

Bayesian network B = (G, P), where G = (V(G), A(G)), with
# Set of vertices: V(G) = { X1, X3, X3}

# Setofarcs: A(G) = {(X1, X2), (X1, X3)}

# Joint probabillity distribution:

P(X1, X2, X3) = P(X1)- P(X2 | X1) - P(X3 | X1)



Example (cont.)

P(X1,X2,X3) = P(X1)- P(Xs2 | X1) - P(X3 | X1)

with for example:

P(:El) = 0.7
P(-z1) = 03=1- P(x)
P(xa|x1) = 0.6 P(x3| 1) = 0.1
P(—x2 |x1) = 04 P(—z3| z1) = 0.9
P(:EQ ‘ —le) = 0.1 P(Clig ‘ —le) = 0.8

P(—xo | ~z1) = 0.9 P(—z3 | —~x1) = 0.2
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Conditional independence relation

Let X, Y, Z be sets of variables, such that XY, Z C V(G),
then X Is called conditionally independent of Y given Z,
denoted as

XUpY|Z

If and only If
P(X|Y,Z)=P(X | 2)

Example: Representation of X, 1l p X3 | X7 In a directed

graph

esian networks — p.23



Chain rule - digraph

Do s
) ()

Factorisation (1):
P(X1, X2, X3) = P(X1 | Xo, X3)P(X2 | X3)P(X3)
Other factorisation (2):

P(X1, X2, X3) = P(X2 | X1,X3)P(X1 | X3)P(X3)

= different factorisations possible

cture2: Bayes
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Does the chain rule help?

@‘@

P(X1,X2,X3)=P(X1 | X9, X3)P(Xo | X3)P(X3)
l.e. we need:
P(:El ‘ :Ez,:l?g) P(:El ‘ X9, —15133)
P(—le ‘ :Ez,:l?g) P(—le ‘ X9, —15133)
P(xq | mx2,x3) P(xq | mx2, 0x3)
P(—xy | 22, 23) P(—xy | ~x9, —x3)
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Does the chain rule help?

P (.373)

P(xg | 5173)
P(-z2 | x3)  P(-a3)

P(xg | —x3)

P(—zg | ~x3)

So, 14 probabllities; however
P(Zlﬁl ‘ XQ,Xg) =1 — P(ﬂxl ‘ XQ,Xg),
P(:CQ ‘ Xg) =1 — P(—|ZC2 ’ Xg), and P(:Cg) =1 — P(—lllj‘g)

=/ probabilities required

How many did we have originally for P( X, X5, X3)?
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Does the chain rule help?

($1,x2,x3 P(Clﬁl,ﬁljz,_‘il?g)

P(_'xth) L3 P(_'xbea_'xB)

P(x1, 22,23 P(x1, ~x9, ~x3)

)
)
3)
P(—le, —Iaiz,xg) P(—le, X9, —I.CU3)

8 required? No, because » v , x, P(X1, X2, X3) =1
Hence, e.q.

P(xy,x29,23) = 1-— Z P(—x1, X9, X3)
X, Xs

_ZP(xla_'x27X3) — P(Qfl,ZCQ,_'ZCB)
X3

Lecture2: Bayesian networks — p.27



Let’s use stochastic independence

@‘@

P(Xy, X9, X3) = P(Xo | X1, X3)P(X3 | X1)P(X1)

Now assume that X, and X3 are conditionally independent
given Xj:
P(Xy | X1,X3) = P(Xo | X1)

and
P(X3 | X1,X2) = P(X3| X1)



Stochastic independence: does it help?

P(Xs | X1,X3) = P(X2 | X1)

P(X1, X9, X3) = P(Xy| X1, X3)P(X3 | X1)P(X))
= P(Xg | X1)P(X3 | X1)P(X1)

Only 5 = 2 + 2 + 1 probabilities required instead of 7



Probabilistic inference

P(xy|x3) =0.4
@ @ P(xy | —z3) = 0.1

P(xs|x1,22) = 0.3

Given: @ P(xs | —x1,22) = 0.5

P(xs | x1,—xz2) = 0.7

P(x3 | —x1,—22) = 0.9
@ P(z1) = 0.6

P(xz9) =0.2

Then: P(x4) = P(x4,23)+ P(x4,x3)
(marginalisation)
= P(xyg|x3)P(x3) + P(xg | 723)P(—23)
(conditioning)

= ZP(M | X3)P(X3)
X3
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Probabilistic inference

P(xy|x3) =0.4
@ @ P(xzy4|—z3) =0.1

P(xs|x1,22) = 0.3

P(xs | —z1,22) = 0.5
@ P(xs | x1,—z2) = 0.7

P(x3 | —x1,-22) = 0.9
@ P(x1) = 0.6

P(zs) = 0.2

P(X3)=? <« Compute P(z3) and P(-z3)



Probabilistic inference

T4 ) =04
T4 —|x3) = 0.1

P(
() () r
(3| x1,22) = 0.3
P(z3 | —x1,22) = 0.5
@ P(zs | x1,-x2) = 0.7
(
(
(

X3 | &L, _ICCQ) =0.9
% P

5131) = 0.6
CCQ) = 0.2
P(zs) = > x, x,Plrs, X1, X5)
le,XQP(x?) | X1, Xo) P(X1, Xo)
= ZXLX2P(CE’3 ‘ Xl,XQ)P(Xl)P(XQ) = 0.7
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Back to the mobile application

Prediction of COPD (lung disease) exacerbations

0.9 = 06 M | /N 0 e\ 0.83

0.1 B 0.38 mm 0.17 m

0.86 I | K e, S gt S 0.84 M.

0.14 ® 0.16 m

b o & 0.78 =

0.27 m 0.15 m
0.04 |

0.63 . 0.71 E ). 0.89 mmmmm ™ | 0.02 |

0.37 029 m 0.11 ® 0.01 |

Expert opinion based Bayesian network with prior probabilities shown (top probability is Normal
state). A = activity, C = cough, D = dyspnea, E = exacerbation, F = FEV, | = infection, LF = lung function,
M = malaise, S = SpO5, SC = sputum colour, SV = sputum volume, T = temperature and W = Wheeze.
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Popular applications of BNs

Medical diagnosis and therapy selection: BNs are now the most
popular paradigm for medical intelligent systems

# Mobile healthcare applications by MBSD-Radboud University

— COPD monitoring (www. yout ube. com wat ch?v=zf g\8r XOOpM)
— Pregnancy monitoring (www. yout ube. com wat ch?v=I ze- ydS1Ui U)

Software/Hardware troubleshooting: Microsoft, Boeing, HP
Biological modelling: gene expressions

Art: orchestral music accompaniment

xavi er.informatics.indi ana. edu/ ~craphael / musi c_pl us_one/

and more ... see, e.g.,
“Bayesian Networks: A Practical Guide to Applications”

Olivier Pourret (Ed.), Patrick Naim and Bruce Marcot, Wiley, March 2008
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Bayesian networks software

$» Some software companies in this area.

»

o
o
o

Hugin (Denmark): ww. hugi n. dk

Norsys (USA): www. nor sys. com
Knowledge Industries (USA): www. ki c. com
Bayesia (France): ww. bayesi a. com

$» Some public domain software:

»

e o o o ©

JavaBayes: www. cs. cmu. edu/ ~j avabayes
BayesBuilder: ww. snn. ru. nl / ni j megen
bnlearn package in R: ww. bnl earn. com
Samlam: r easoni ng. cs. ucl a. edu/ sam am
Matlab BNT Toolbox: code. googl e. cont p/ bnt
and many more at

WWw. ¢S. ubc. ca/ ~nur phyk/ Sof t war e/ bnsoft. ht m
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