Bayesian networks
 Principles and Definitions

The focus today . . .

- Probability theory
- Joint probability
- Marginal probability
- Conditional probability
- Chain rule
- Bayes' rule
- Bayesian networks
- Definition
- Conditional independence

Intelligent patient monitoring at home

Why Bayesian networks?

Probabilistic graphical models, such as Bayesian networks, are now the most popular uncertainty formalisms because:

- Handle noise, missing information and probabilistic relations
- Learn from data and can incorporate domain knowledge
- Offer flexible reasoning
- Have compact graphical representation (interface)
- Founded principles: probability theory
- Engineering principles: knowledge acquisition, machine learning and statistics

General notation

- Stochastic (= statistical = random) variable: upper-case letter, e.g. X, or upper-case string, e.g. FEVER
- Values: variables can take on values, e.g. $X=x$, FEVER = yes
- Binary variables: take one of two values, e.g. $X=$ true and $X=$ false
- Discrete variables: take only one of a finite set of possible values, e.g. TEMP $\in\{$ low, medium, high $\}$
- Continuous variables: take any value in some interval or intervals of real numbers \mathcal{R}, e.g. TEMP $\in[-50,50]$

Abbreviated notation

- Binary variables: $X=$ true as x , and $X=$ false as $\neg \mathrm{x}$
- Non-binary variables: $X=x$ as x or CITY = tokyo as tokyo
- Sets of variables: analogous to variables
- Example:

$$
\begin{aligned}
& X_{1}=x_{1} \\
& X_{2}=x_{2} \\
& \cdot\left.\left.\Longrightarrow \quad \begin{array}{l}
X \\
\\
\cdot
\end{array} \quad \begin{array}{l}
x \\
\\
\end{array} \quad \begin{array}{l}
X \\
X
\end{array}\right)=x, x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

$$
X_{n}=x_{n}
$$

Abreviated notation (cont.)

- Conjunctions: $(X=x) \wedge(Y=y)$ as $(X=x, Y=y)$
- Templates: (X, Y) means ($X=x, Y=y$), for any value x, y, i.e. the choice of the values x and y does not really matter
- Examples:
- $P(X=x, Y=y) \Leftrightarrow P(X=x \wedge Y=y)$
- $P(X, Y) \Leftrightarrow P(X=x, Y=y)$, for any value x, y
- $P(X \mid Y) \Leftrightarrow P(X=x \mid Y=y)$, for any value x, y
- $\sum_{X} P(X)=P(\mathrm{x})+P(\neg \mathrm{x})$, where X is binary

Probability theory

- Probability distribution P : attaches a number in (closed) interval $[0,1]$ to Boolean expressions
- Boolean algebra \mathbb{B} (for two variables RAIN and HAPPY):
T (true),
rain, \neg rain,
happy, ᄀhappy,
rain \wedge happy,..., rain \wedge happy $\wedge \neg$ happy, ...,
\neg rain ^ happy,..., rain \vee happy,
\perp (false)
such that:
- $\perp \leq$ rain, rain \leq (rain \vee happy), ... (in general $\perp \leq x$ for each Boolean expression $x \in \mathbb{B}$);
- $x \leq T$ for each Boolean expression $x \in \mathbb{B}$

Probability distribution

- A probability distribution P is defined as a function $P: \mathbb{B} \rightarrow[0,1]$, such that:
- $P(\perp)=0$
- $P(T)=1$
- $P(x \vee y)=P(x)+P(y)$, if $x \wedge y=\perp$ with $x, y \in \mathbb{B}$
- Examples:
- $P($ rain \vee happy $)=P($ rain $)+P($ happy $)$, as rain \wedge happy $=\perp$ (why? Because I define it that way)
- $P($ rain \wedge happy $)=P(\perp)=0$
- $P(\neg$ rain \vee rain $)=P(\neg$ rain $)+P($ rain $)=P(T)=1 \Rightarrow$ $P(\neg$ rain $)=1-P($ rain $)$
- $0 \leq P($ rain $) \leq 1$

Probability distribution (cont.)

- Boolean algebras \Leftrightarrow sets:

$$
\begin{array}{ll}
\text { - } T \Leftrightarrow \Omega & \text { ค }(x \vee y) \Leftrightarrow(X \cup Y) \\
\text { - } \perp \Leftrightarrow \varnothing & \text { ค }(x \wedge y) \Leftrightarrow(X \cap Y) \\
\text { - } x \Leftrightarrow X & \text { ค } x \leq(x \vee y) \Leftrightarrow X \subseteq(X \cup Y) \\
\text { - } \neg x \Leftrightarrow \bar{X} &
\end{array}
$$

with $\Leftrightarrow 1-1$ correspondence, e.g.

$$
P(\overline{\text { Rain }})=1-P(\text { Rain })
$$

Joint probability distribution

Let X and Y be random variables with domains

$$
\operatorname{dom}(X)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \text { and } \operatorname{dom}(Y)=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} .
$$

The product set

$$
\operatorname{dom}(X) \times \operatorname{dom}(Y)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \times\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
$$

is made into a probability space by defining

$$
P\left(X=x_{i} \wedge Y=y_{j}\right)=P\left(x_{i}, y_{j}\right)
$$

where P is a joint probability function of X and Y.

Marginalisation

Suppose the joint probability distribution of two variables X and Y is given; then

$$
\begin{aligned}
P(x)=P(X=x) & =P(x \wedge \top) \\
& =P(x \wedge(y \vee \neg y)) \\
& =P((x \wedge y) \vee(x \wedge \neg y)) \\
& =P(x \wedge y)+P(x \wedge \neg y)
\end{aligned}
$$

since $P(a \vee b)=P(a)+P(b)$, if $a \wedge b=\perp$

$$
\Longrightarrow P(x)=\sum_{Y} P(x, Y)
$$

also known as marginal probability function of X.

Example

- Assume that X_{1}, X_{2}, X_{3} and X_{4} are binary variables. Then $P\left(X 1, X_{2}, X_{3}, X_{4}\right)$:

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =0.1 \\
P\left(x_{1}, \neg x_{2}, x_{3}, x_{4}\right) & =0.04 \\
P\left(x_{1}, x_{2}, \neg x_{3}, x_{4}\right) & =0.03 \\
P\left(x_{1}, x_{2}, x_{3}, \neg x_{4}\right) & =0.1 \\
P\left(\neg x_{1}, x_{2}, x_{3}, x_{4}\right) & =0.0 \\
P\left(\neg x_{1}, \neg x_{2}, x_{3}, x_{4}\right) & =0.2 \\
P\left(\neg x_{1}, x_{2}, \neg x_{3}, x_{4}\right) & =0.08 \\
P\left(\neg x_{1}, x_{2}, x_{3}, \neg x_{4}\right) & =0.1
\end{aligned}
$$

$$
\begin{aligned}
P\left(x_{1}, \neg x_{2}, \neg x_{3}, x_{4}\right) & =0.015 \\
P\left(x_{1}, \neg x_{2}, x_{3}, \neg x_{4}\right) & =0.1 \\
P\left(x_{1}, x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.004 \\
P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}, x_{4}\right) & =0.005 \\
P\left(\neg x_{1}, \neg x_{2}, x_{3}, \neg x_{4}\right) & =0.01 \\
P\left(\neg x_{1}, x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.01 \\
P\left(x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.006 \\
P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}, \neg x_{4}\right) & =0.2
\end{aligned}
$$

- $\sum_{X 1, X 2, X 3, X 4} P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=1$
- Marginalisation:

$$
P\left(x_{2}, \neg x_{3}\right)=\text { ? }
$$

Conditional probability

- $P(X \mid Y)$: Chance that X will occur knowing that Y has occured
- Definition:

$$
P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}
$$

normalize, so that uncertainty in Y is removed

Example: flu and fever

- $P(f / u \wedge$ fever $)$: chance of flu and fever at the same time
- $P(f l u \mid$ fever $)$: chance of flu knowing that the person already has fever (conditional probability)
- Definition:

$$
\begin{aligned}
P(\text { flu } \mid \text { fever })= & \frac{P(\text { flu } \wedge \text { fever })}{P(\text { fever })} \\
& \nearrow \\
& \text { adjust } P(\text { flu } \wedge \text { fever }) \text {, so } \\
& \text { that uncertainty in 'fever' } \\
& \text { is removed }
\end{aligned}
$$

- Recall: P (Flu \cap Fever) is different notation, with same meaning as $P(f l u \wedge$ fever $)$

Reversal of chances

- $P($ flu \mid fever $)$ is usually unknown:
- Known is:

$$
\begin{aligned}
& P(\text { fever } \mid \text { flu })=0.9 \\
& P(\text { flu })=0.05 \\
& P(\text { fever })=0.09
\end{aligned}
$$

$$
\begin{array}{cl}
\text { flu } \quad P(\text { fever } \mid \text { flu }) & \text { fever } \\
P(\text { flu })=0.05 & P(\text { fever })=0.09
\end{array}
$$

Bayes' rule - Example

- Bayes' rule - reversal of chances:

$$
\begin{array}{ll}
P(e \mid h) & P(\text { fever } \mid \text { flu })=0.9 \\
P(h) & P(\text { flu })=0.05 \\
P(e) & P(\text { fever })=0.09
\end{array}
$$

$$
\begin{aligned}
P(\text { flu } \mid \text { fever }) & =\frac{P(\text { fever } \mid \text { flu }) P(\text { flu })}{P(\text { fever })} \\
& =0.9 \cdot 0.05 / 0.09=0.5
\end{aligned}
$$

- Definition of Bayes' rule (the 'chance reverter'):

$$
P(h \mid e)=\frac{P(e \mid h) P(h)}{P(e)}
$$

Chain rule (derivation)

Definition of conditional probability:

$$
\begin{gathered}
P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right)=\frac{P\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{P\left(X_{2}, \ldots, X_{n}\right)} \\
\Rightarrow P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) P\left(X_{2}, \ldots, X_{n}\right)
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
P\left(X_{2}, \ldots, X_{n}\right) & =P\left(X_{2} \mid X_{3}, \ldots, X_{n}\right) P\left(X_{3}, \ldots, X_{n}\right) \\
\vdots & \vdots \\
P\left(X_{n-1}, X_{n}\right) & =P\left(X_{n-1} \mid X_{n}\right) P\left(X_{n}\right) \\
P\left(X_{n}\right) & =P\left(X_{n}\right)
\end{aligned}
$$

Chain rule (definition)

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)= & P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) \\
& P\left(X_{2} \mid X_{3}, \ldots, X_{n}\right) \\
& P\left(X_{3} \mid X_{4}, \ldots, X_{n}\right) \\
& \vdots \\
& P\left(X_{n-1} \mid X_{n}\right) \\
& P\left(X_{n}\right) \\
= & \prod_{i=1}^{n-1} P\left(X_{i} \mid X_{i+1}, \ldots, X_{n}\right) P\left(X_{n}\right)
\end{aligned}
$$

Definition Bayesian network (BN)

A Bayesian network \mathcal{B} is a pair $\mathcal{B}=(G, P)$, where:

- $G=(V(G), A(G))$ is an acyclic directed graph, with
- $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, a set of vertices (nodes)
- $A(G) \subseteq V(G) \times V(G)$ a set of arcs
- $P: \wp(V(G)) \rightarrow[0,1]$ is a joint probability distribution, such that

$$
P(V(G))=\prod_{i=1}^{n} P\left(v_{i} \mid \pi_{G}\left(v_{i}\right)\right)
$$

where $\pi_{G}\left(v_{i}\right)$ denotes the set of immediate ancestors (parents) of vertex v_{i} in G

- Notational convenience: $v_{i} \approx X_{i}$

Example of a Bayesian network

Bayesian network $\mathcal{B}=(G, P)$, where $G=(V(G), A(G))$, with

- Set of vertices: $V(G)=\left\{X_{1}, X_{2}, X_{3}\right\}$
- Set of arcs: $A(G)=\left\{\left(X_{1}, X_{2}\right),\left(X_{1}, X_{3}\right)\right\}$
- Joint probability distribution:

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot P\left(X_{3} \mid X_{1}\right)
$$

Example (cont.)

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) \cdot P\left(X_{2} \mid X_{1}\right) \cdot P\left(X_{3} \mid X_{1}\right)
$$

with for example:

$$
\begin{array}{rlrl}
P\left(x_{1}\right) & =0.7 & & \\
P\left(\neg x_{1}\right) & =0.3=1-P\left(x_{1}\right) & & \\
P\left(x_{2} \mid x_{1}\right) & =0.6 & P\left(x_{3} \mid x_{1}\right) & =0.1 \\
P\left(\neg x_{2} \mid x_{1}\right) & =0.4 & P\left(\neg x_{3} \mid x_{1}\right) & =0.9 \\
P\left(x_{2} \mid \neg x_{1}\right) & =0.1 & P\left(x_{3} \mid \neg x_{1}\right) & =0.8 \\
P\left(\neg x_{2} \mid \neg x_{1}\right) & =0.9 & P\left(\neg x_{3} \mid \neg x_{1}\right) & =0.2
\end{array}
$$

Conditional independence relation

Let X, Y, Z be sets of variables, such that $X, Y, Z \subseteq V(G)$, then X is called conditionally independent of Y given Z, denoted as

$$
X \Perp_{P} Y \mid Z
$$

if and only if

$$
P(X \mid Y, Z)=P(X \mid Z)
$$

Example: Representation of $X_{2} \Perp_{P} X_{3} \mid X_{1}$ in a directed graph

Chain rule - digraph

(1)

Factorisation (1):

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) P\left(X_{3}\right)
$$

Other factorisation (2):

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{2} \mid X_{1}, X_{3}\right) P\left(X_{1} \mid X_{3}\right) P\left(X_{3}\right)
$$

\Rightarrow different factorisations possible

Does the chain rule help?

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) P\left(X_{3}\right)
$$

i.e. we need:

$$
\begin{array}{rr}
P\left(x_{1} \mid x_{2}, x_{3}\right) & P\left(x_{1} \mid x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1} \mid x_{2}, x_{3}\right) & P\left(\neg x_{1} \mid x_{2}, \neg x_{3}\right) \\
P\left(x_{1} \mid \neg x_{2}, x_{3}\right) & P\left(x_{1} \mid \neg x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1} \mid \neg x_{2}, x_{3}\right) & P\left(\neg x_{1} \mid \neg x_{2}, \neg x_{3}\right)
\end{array}
$$

Does the chain rule help?

$$
\begin{array}{rc}
P\left(x_{2} \mid x_{3}\right) & P\left(x_{3}\right) \\
P\left(\neg x_{2} \mid x_{3}\right) & P\left(\neg x_{3}\right) \\
P\left(x_{2} \mid \neg x_{3}\right) & \\
P\left(\neg x_{2} \mid \neg x_{3}\right) &
\end{array}
$$

So, 14 probabilities; however
$P\left(x_{1} \mid X_{2}, X_{3}\right)=1-P\left(\neg x_{1} \mid X_{2}, X_{3}\right)$,
$P\left(x_{2} \mid X_{3}\right)=1-P\left(\neg x_{2} \mid X_{3}\right)$, and $P\left(x_{3}\right)=1-P\left(\neg x_{3}\right)$
$\Rightarrow 7$ probabilities required
How many did we have originally for $P\left(X_{1}, X_{2}, X_{3}\right)$?

Does the chain rule help?

$$
\begin{array}{rc}
P\left(x_{1}, x_{2}, x_{3}\right) & P\left(x_{1}, x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1}, x_{2}, x_{3}\right) & P\left(\neg x_{1}, x_{2}, \neg x_{3}\right) \\
P\left(x_{1}, \neg x_{2}, x_{3}\right) & P\left(x_{1}, \neg x_{2}, \neg x_{3}\right) \\
P\left(\neg x_{1}, \neg x_{2}, x_{3}\right) & P\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right)
\end{array}
$$

8 required? No, because $\sum_{X_{1}, X_{2}, X_{3}} P\left(X_{1}, X_{2}, X_{3}\right)=1$ Hence, e.g.

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}\right)= & 1-\sum_{X_{2}, X_{3}} P\left(\neg x_{1}, X_{2}, X_{3}\right) \\
& -\sum_{X_{3}} P\left(x_{1}, \neg x_{2}, X_{3}\right)-P\left(x_{1}, x_{2}, \neg x_{3}\right)
\end{aligned}
$$

Let's use stochastic independence

$$
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{2} \mid X_{1}, X_{3}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right)
$$

Now assume that X_{2} and X_{3} are conditionally independent given X_{1} :

$$
P\left(X_{2} \mid X_{1}, X_{3}\right)=P\left(X_{2} \mid X_{1}\right)
$$

and

$$
P\left(X_{3} \mid X_{1}, X_{2}\right)=P\left(X_{3} \mid X_{1}\right)
$$

Stochastic independence: does it help?

$$
P\left(X_{2} \mid X_{1}, X_{3}\right)=P\left(X_{2} \mid X_{1}\right)
$$

$$
\begin{aligned}
P\left(X_{1}, X_{2}, X_{3}\right) & =P\left(X_{2} \mid X_{1}, X_{3}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right) \\
& =P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right)
\end{aligned}
$$

Only $5=2+2+1$ probabilities required instead of 7

Probabilistic inference

Given:

Then: $P\left(x_{4}\right)=P\left(x_{4}, x_{3}\right)+P\left(x_{4}, \neg x_{3}\right)$

(marginalisation)

$$
=P\left(x_{4} \mid x_{3}\right) P\left(x_{3}\right)+P\left(x_{4} \mid \neg x_{3}\right) P\left(\neg x_{3}\right)
$$

(conditioning)
$=\sum_{X_{3}} P\left(x_{4} \mid X_{3}\right) P\left(X_{3}\right)$

Probabilistic inference

$$
\begin{aligned}
& P\left(x_{4} \mid x_{3}\right)=0.4 \\
& P\left(x_{4} \mid \neg x_{3}\right)=0.1 \\
& P\left(x_{3} \mid x_{1}, x_{2}\right)=0.3 \\
& P\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5 \\
& P\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7 \\
& P\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9 \\
& P\left(x_{1}\right)=0.6 \\
& P\left(x_{2}\right)=0.2
\end{aligned}
$$

$P\left(X_{3}\right)=? \quad \Longleftrightarrow \quad$ Compute $P\left(x_{3}\right)$ and $P\left(\neg x_{3}\right)$

Probabilistic inference

$$
\begin{aligned}
& \begin{array}{lll}
X_{1} \\
y / n
\end{array} \begin{array}{ll}
X_{2} \\
\mathrm{y} / \mathrm{n} & P\left(x_{4} \mid x_{3}\right)=0.4 \\
P\left(x_{4} \mid \neg x_{3}\right)=0.1 \\
& P\left(x_{3} \mid x_{1}, x_{2}\right)=0.3
\end{array} \\
& P\left(x_{3} \mid \neg x_{1}, x_{2}\right)=0.5 \\
& P\left(x_{3} \mid x_{1}, \neg x_{2}\right)=0.7 \\
& P\left(x_{3} \mid \neg x_{1}, \neg x_{2}\right)=0.9 \\
& P\left(x_{1}\right)=0.6 \\
& P\left(x_{2}\right)=0.2 \\
& P\left(x_{3}\right)=\sum_{X_{1}, X_{2}} P\left(x_{3}, X_{1}, X_{2}\right) \\
& =\sum_{X_{1}, X_{2}} P\left(x_{3} \mid X_{1}, X_{2}\right) P\left(X_{1}, X_{2}\right) \\
& =\sum_{X_{1}, X_{2}} P\left(x_{3} \mid X_{1}, X_{2}\right) P\left(X_{1}\right) P\left(X_{2}\right)=0.7 \\
& \Rightarrow P\left(x_{4}\right)=\sum_{X_{3}} P\left(x_{4} \mid X_{3}\right) P\left(X_{3}\right)=0.4 \cdot 0.7+0.1 \cdot 0.3=0.31
\end{aligned}
$$

Back to the mobile application

Prediction of COPD (lung disease) exacerbations

Expert opinion based Bayesian network with prior probabilities shown (top probability is Normal state). $\mathrm{A}=$ activity, $\mathrm{C}=$ cough, $\mathrm{D}=$ dyspnea, $\mathrm{E}=$ exacerbation, $\mathrm{F}=\mathrm{FEV}_{1}, \mathrm{I}=$ infection, $\mathrm{LF}=$ lung function, $\mathrm{M}=$ malaise $, \mathrm{S}=\mathrm{SpO}_{2}, \mathrm{SC}=$ sputum colour, $\mathrm{SV}=$ sputum volume, $\mathrm{T}=$ temperature and $\mathrm{W}=$ Wheeze.

Popular applications of BNs

- Medical diagnosis and therapy selection: BNs are now the most popular paradigm for medical intelligent systems
- Mobile healthcare applications by MBSD-Radboud University
- COPD monitoring (www. youtube. com/watch?v=zfqW8rx00pM)
- Pregnancy monitoring (www.youtube.com/watch?v=Ize-ydS1UiU)
- Software/Hardware troubleshooting: Microsoft, Boeing, HP
- Biological modelling: gene expressions
- Art: orchestral music accompaniment
xavier.informatics.indiana.edu/~craphael/music_plus_one/
- and more ... see, e.g.,
"Bayesian Networks: A Practical Guide to Applications"
Olivier Pourret (Ed.), Patrick Naïm and Bruce Marcot, Wiley, March 2008

Bayesian networks software

- Some software companies in this area:
- Hugin (Denmark): www.hugin.dk
- Norsys (USA): www.norsys.com
- Knowledge Industries (USA): www.kic.com
- Bayesia (France): www.bayesia.com
- Some public domain software:
- JavaBayes: www.cs.cmu.edu/~javabayes
- BayesBuilder: www.snn.ru.nl/nijmegen
- bnlearn package in R: www.bnlearn.com
- Samlam: reasoning.cs.ucla.edu/samiam
- Matlab BNT Toolbox: code.google.com/p/bnt
- and many more at www.cs.ubc.ca/~murphyk/Software/bnsoft.html

