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Intelligent patient monitoring at home
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Why Bayesian networks?

Probabilistic graphical models, such as Bayesian networks,
are now the most popular uncertainty formalisms because:

Handle noise, missing information and probabilistic
relations

Learn from data and can incorporate domain knowledge

Offer flexible reasoning

Have compact graphical representation (interface)

Founded principles: probability theory

Engineering principles: knowledge acquisition, machine
learning and statistics
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General notation

Stochastic (= statistical = random) variable: upper-case
letter, e.g. X, or upper-case string, e.g. FEVER

Values: variables can take on values, e.g. X = x,
FEVER = yes

Binary variables: take one of two values, e.g. X = true
and X = false

Discrete variables: take only one of a finite set of
possible values, e.g. TEMP ∈ {low, medium, high}

Continuous variables: take any value in some interval
or intervals of real numbers R, e.g. TEMP ∈ [−50, 50]
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Abbreviated notation

Binary variables: X = true as x, and X = false as ¬x

Non-binary variables: X = x as x or CITY = tokyo as
tokyo

Sets of variables: analogous to variables
Example:

X1 = x1

X2 = x2 X = (X1, X2, . . . Xn)

· =⇒ x = (x1, x2, . . . xn)

· X = x

Xn = xn
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Abreviated notation (cont.)

Conjunctions: (X = x) ∧ (Y = y) as (X = x, Y = y)

Templates: (X,Y ) means (X = x, Y = y), for any value
x, y, i.e. the choice of the values x and y does not really
matter

Examples:
P (X = x, Y = y) ⇔ P (X = x ∧ Y = y)

P (X,Y ) ⇔ P (X = x, Y = y), for any value x, y

P (X | Y ) ⇔ P (X = x | Y = y), for any value x, y

∑
X P (X) = P (x) + P (¬x), where X is binary
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Probability theory

Probability distribution P : attaches a number in (closed)
interval [0, 1] to Boolean expressions
Boolean algebra B (for two variables RAIN and
HAPPY):
⊤ (true),
rain, ¬rain,
happy, ¬happy,
rain ∧ happy,. . ., rain ∧ happy ∧ ¬happy, . . .,
¬rain ∧ happy,. . ., rain ∨ happy,
⊥ (false)

such that:
⊥ ≤ rain, rain ≤ (rain ∨ happy), . . . (in general ⊥ ≤ x
for each Boolean expression x ∈ B);
x ≤ ⊤ for each Boolean expression x ∈ B
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Probability distribution

A probability distribution P is defined as a function
P : B → [0, 1], such that:

P (⊥) = 0

P (⊤) = 1

P (x ∨ y) = P (x) + P (y), if x ∧ y = ⊥ with x, y ∈ B

Examples:
P (rain ∨ happy) = P (rain) + P (happy), as
rain ∧ happy = ⊥ (why? Because I define it that way)
P (rain ∧ happy) = P (⊥) = 0

P (¬rain ∨ rain) = P (¬rain) + P (rain) = P (⊤) = 1 ⇒
P (¬rain) = 1− P (rain)
0 ≤ P (rain) ≤ 1
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Probability distribution (cont.)

Boolean algebras ⇔ sets:
⊤ ⇔ Ω

⊥ ⇔ ∅

x ⇔ X

¬x ⇔ X̄

(x ∨ y) ⇔ (X ∪ Y )

(x ∧ y) ⇔ (X ∩ Y )

x ≤ (x ∨ y) ⇔ X ⊆ (X ∪ Y )

with ⇔ 1-1 correspondence, e.g.

P (Rain) = 1− P (Rain)
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Joint probability distribution

Let X and Y be random variables with domains

dom(X) = {x1, x2, . . . , xn} and dom(Y ) = {y1, y2, . . . , ym}.

The product set

dom(X)× dom(Y ) = {x1, x2, . . . , xn} × {y1, y2, . . . , ym}

is made into a probability space by defining

P (X = xi ∧ Y = yj) = P (xi, yj)

where P is a joint probability function of X and Y .
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Marginalisation

Suppose the joint probability distribution of two variables X
and Y is given; then

P (x) = P (X = x) = P (x ∧ ⊤)

= P (x ∧ (y ∨ ¬y))

= P ((x ∧ y) ∨ (x ∧ ¬y))

= P (x ∧ y) + P (x ∧ ¬y)

since P (a ∨ b) = P (a) + P (b), if a ∧ b = ⊥

=⇒ P (x) =
∑

Y

P (x, Y )

also known as marginal probability function of X.
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Example

Assume that X1, X2, X3 and X4 are binary variables.
Then P (X1, X2, X3, X4):

P (x1, x2, x3, x4) = 0.1

P (x1,¬x2, x3, x4) = 0.04

P (x1, x2,¬x3, x4) = 0.03

P (x1, x2, x3,¬x4) = 0.1

P (¬x1, x2, x3, x4) = 0.0

P (¬x1,¬x2, x3, x4) = 0.2

P (¬x1, x2,¬x3, x4) = 0.08

P (¬x1, x2, x3,¬x4) = 0.1

P (x1,¬x2,¬x3, x4) = 0.015

P (x1,¬x2, x3,¬x4) = 0.1

P (x1, x2,¬x3,¬x4) = 0.004

P (¬x1,¬x2,¬x3, x4) = 0.005

P (¬x1,¬x2, x3,¬x4) = 0.01

P (¬x1, x2,¬x3,¬x4) = 0.01

P (x1,¬x2,¬x3,¬x4) = 0.006

P (¬x1,¬x2,¬x3,¬x4) = 0.2

∑
X1,X2,X3,X4

P (X1, X2, X3, X4) = 1

Marginalisation:

P (x2,¬x3) =?
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Conditional probability

P (X | Y ): Chance that X will occur knowing that Y has
occured

Definition:

P (X | Y ) =
P (X ∩ Y )

P (Y )

ր

normalize, so
that uncertainty in Y

is removed
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Example: flu and fever

P (flu ∧ fever): chance of flu and fever at the same time

P (flu | fever): chance of flu knowing that the person
already has fever (conditional probability)

Definition:

P (flu | fever) =
P (flu ∧ fever)

P (fever)
ր

adjust P (flu ∧ fever), so
that uncertainty in ‘fever’
is removed

Recall: P (Flu ∩ Fever) is different notation, with same
meaning as P (flu ∧ fever) Lecture2: Bayesian networks – p.15



Reversal of chances

P (flu | fever) is usually unknown:

feverf lu P (flu | fever)

eh
(hypothesis) (evidence)

Known is:

P (fever | flu) = 0.9
P (flu) = 0.05
P (fever) = 0.09

feverflu P (fever | flu)

P (flu) = 0.05 P (fever) = 0.09
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Bayes’ rule - Example

Bayes’ rule – reversal of chances:
P (e | h) P (fever | flu) = 0.9
P (h) P (flu) = 0.05
P (e) P (fever) = 0.09

P (flu | fever) =
P (fever | flu)P (flu)

P (fever)
= 0.9 · 0.05/0.09 = 0.5

Definition of Bayes’ rule (the ‘chance reverter’):

P (h | e) =
P (e | h)P (h)

P (e)
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Chain rule (derivation)

Definition of conditional probability:

P (X1 | X2, . . . , Xn) =
P (X1, X2, . . . , Xn)

P (X2, . . . , Xn)

⇒ P (X1, X2, . . . , Xn) = P (X1 | X2, . . . , Xn)P (X2, . . . , Xn)

Furthermore,

P (X2, . . . , Xn) = P (X2 | X3, . . . , Xn)P (X3, . . . , Xn)

...
...

...

P (Xn−1, Xn) = P (Xn−1 | Xn)P (Xn)

P (Xn) = P (Xn)
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Chain rule (definition)

P (X1, X2, . . . , Xn) = P (X1 | X2, . . . , Xn) ·

P (X2 | X3, . . . , Xn) ·

P (X3 | X4, . . . , Xn) ·

...
P (Xn−1 | Xn) ·

P (Xn)

=

n−1∏

i=1

P (Xi | Xi+1, . . . , Xn)P (Xn)
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Definition Bayesian network (BN)

A Bayesian network B is a pair B = (G,P ), where:

G = (V (G), A(G)) is an acyclic directed graph, with
V (G) = {v1, v2, . . . , vn}, a set of vertices (nodes)
A(G) ⊆ V (G)× V (G) a set of arcs

P : ℘(V (G)) → [0, 1] is a joint probability distribution,
such that

P (V (G)) =

n∏

i=1

P (vi | πG(vi))

where πG(vi) denotes the set of immediate ancestors
(parents) of vertex vi in G

Notational convenience: vi ≈ Xi
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Example of a Bayesian network

X1

y/n
X2

y/n

X3

y/n

Bayesian network B = (G,P ), where G = (V (G), A(G)), with

Set of vertices: V (G) = {X1, X2, X3}

Set of arcs: A(G) = {(X1, X2), (X1, X3)}

Joint probability distribution:

P (X1, X2, X3) = P (X1) · P (X2 | X1) · P (X3 | X1)
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Example (cont.)

P (X1, X2, X3) = P (X1) · P (X2 | X1) · P (X3 | X1)

with for example:

P (x1) = 0.7

P (¬x1) = 0.3 = 1− P (x1)

P (x2 | x1) = 0.6

P (¬x2 | x1) = 0.4

P (x2 | ¬x1) = 0.1

P (¬x2 | ¬x1) = 0.9

P (x3 | x1) = 0.1

P (¬x3 | x1) = 0.9

P (x3 | ¬x1) = 0.8

P (¬x3 | ¬x1) = 0.2
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Conditional independence relation

Let X,Y, Z be sets of variables, such that X,Y, Z ⊆ V (G),
then X is called conditionally independent of Y given Z,
denoted as

X ⊥⊥P Y | Z

if and only if
P (X | Y, Z) = P (X | Z)

Example: Representation of X2 ⊥⊥P X3 | X1 in a directed
graph

X1

y/n
X2

y/n

X3

y/n
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Chain rule - digraph

X1 X2

X3

(1)
X1 X2

X3

(2)

Factorisation (1):

P (X1, X2, X3) = P (X1 | X2, X3)P (X2 | X3)P (X3)

Other factorisation (2):

P (X1, X2, X3) = P (X2 | X1, X3)P (X1 | X3)P (X3)

⇒ different factorisations possible
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Does the chain rule help?

X1 X2

X3

P (X1, X2, X3) = P (X1 | X2, X3)P (X2 | X3)P (X3)

i.e. we need:
P (x1 | x2, x3) P (x1 | x2,¬x3)

P (¬x1 | x2, x3) P (¬x1 | x2,¬x3)

P (x1 | ¬x2, x3) P (x1 | ¬x2,¬x3)

P (¬x1 | ¬x2, x3) P (¬x1 | ¬x2,¬x3)
...

...
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Does the chain rule help?

...
...

P (x2 | x3) P (x3)

P (¬x2 | x3) P (¬x3)

P (x2 | ¬x3)

P (¬x2 | ¬x3)

So, 14 probabilities; however
P (x1 | X2, X3) = 1− P (¬x1 | X2, X3),
P (x2 | X3) = 1− P (¬x2 | X3), and P (x3) = 1− P (¬x3)

⇒ 7 probabilities required

How many did we have originally for P (X1, X2, X3)?
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Does the chain rule help?

P (x1, x2, x3) P (x1, x2,¬x3)

P (¬x1, x2, x3) P (¬x1, x2,¬x3)

P (x1,¬x2, x3) P (x1,¬x2,¬x3)

P (¬x1,¬x2, x3) P (¬x1,¬x2,¬x3)

8 required? No, because
∑

X1,X2,X3
P (X1, X2, X3) = 1

Hence, e.g.

P (x1, x2, x3) = 1−
∑

X2,X3

P (¬x1, X2, X3)

−
∑

X3

P (x1,¬x2, X3)− P (x1, x2,¬x3)
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Let’s use stochastic independence

X1 X2

X3

P (X1, X2, X3) = P (X2 | X1, X3)P (X3 | X1)P (X1)

Now assume that X2 and X3 are conditionally independent
given X1:

P (X2 | X1, X3) = P (X2 | X1)

and
P (X3 | X1, X2) = P (X3 | X1)
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Stochastic independence: does it help?

X1 X2

X3

P (X2 | X1, X3) = P (X2 | X1)

P (X1, X2, X3) = P (X2 | X1, X3)P (X3 | X1)P (X1)

= P (X2 | X1)P (X3 | X1)P (X1)

Only 5 = 2 + 2 + 1 probabilities required instead of 7
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Probabilistic inference

X3

y/n

X1

y/n
X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

Given:

Then: P (x4) = P (x4, x3) + P (x4,¬x3)

(marginalisation)
= P (x4 | x3)P (x3) + P (x4 | ¬x3)P (¬x3)

(conditioning)

=
∑

X3

P (x4 | X3)P (X3)
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Probabilistic inference

X3

y/n

X1

y/n
X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

P (X3) = ? ⇐⇒ Compute P (x3) and P (¬x3)
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Probabilistic inference

X3

y/n

X1

y/n
X2

y/n

X4

y/n

P (x4 | x3) = 0.4

P (x4 | ¬x3) = 0.1

P (x3 | x1, x2) = 0.3

P (x3 | ¬x1, x2) = 0.5

P (x3 | x1,¬x2) = 0.7

P (x3 | ¬x1,¬x2) = 0.9

P (x1) = 0.6

P (x2) = 0.2

P (x3) =
∑

X1,X2
P (x3, X1, X2)

=
∑

X1,X2
P (x3 | X1, X2)P (X1, X2)

=
∑

X1,X2
P (x3 | X1, X2)P (X1)P (X2) = 0.7

⇒ P (x4) =
∑

X3
P (x4 | X3)P (X3) = 0.4 · 0.7 + 0.1 · 0.3 = 0.31
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Back to the mobile application

Prediction of COPD (lung disease) exacerbations
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Popular applications of BNs

Medical diagnosis and therapy selection: BNs are now the most
popular paradigm for medical intelligent systems

Mobile healthcare applications by MBSD-Radboud University

– COPD monitoring (www.youtube.com/watch?v=zfqW8rX0OpM)
– Pregnancy monitoring (www.youtube.com/watch?v=Ize-ydS1UiU)

Software/Hardware troubleshooting: Microsoft, Boeing, HP

Biological modelling: gene expressions

Art: orchestral music accompaniment
xavier.informatics.indiana.edu/∼craphael/music_plus_one/

and more . . . see, e.g.,
“Bayesian Networks: A Practical Guide to Applications”

Olivier Pourret (Ed.), Patrick Naïm and Bruce Marcot, Wiley, March 2008
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Bayesian networks software

Some software companies in this area:

Hugin (Denmark): www.hugin.dk

Norsys (USA): www.norsys.com

Knowledge Industries (USA): www.kic.com

Bayesia (France): www.bayesia.com

Some public domain software:

JavaBayes: www.cs.cmu.edu/∼javabayes

BayesBuilder: www.snn.ru.nl/nijmegen

bnlearn package in R: www.bnlearn.com

SamIam: reasoning.cs.ucla.edu/samiam

Matlab BNT Toolbox: code.google.com/p/bnt

and many more at
www.cs.ubc.ca/∼murphyk/Software/bnsoft.html
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