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Abstract

In this study, a CPU-based object matching system using C_CPD and K_CPD was evaluated in terms of

execution time and accuracy. C_CPD demonstrated higher accuracy (64%) but longer execution time,

while K_CPD exhibited shorter execution time but relatively lower accuracy (36%). The higher accuracy

of C_CPD can be attributed to the shape representation capability of Convex Hull, whereas the faster

execution speed of K_CPD is due to the characteristics of the ORB keypoint extraction method.

Considering the trade-off between execution time and accuracy, C_CPD prioritizes accuracy, while

K_CPD prioritizes execution speed.
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Problem to solve
Object matching using deep learning requires

training, which incurs significant costs in terms of

time, data, and GPU resources. These requirements

pose challenges for researchers and practitioners,

limiting the accessibility and scalability of object

matching systems. To address this problem, our

research focuses on developing a CPU-only

non-training object matching system.

By creating a CPU-only solution, we aim to

overcome the limitations imposed by deep learning

training. Our system eliminates the need for

specialized hardware and extensive datasets,

reducing costs and increasing accessibility. It

provides an efficient and cost-effective alternative

for object matching without compromising accuracy

or performance.

Idea
Our proposed idea involves using either ORB

keypoints combined with K means clustering or

Convex Hull combined with K means clustering for

feature extraction. These features are then utilized in

the Coherent Point Drift (CPD) algorithm for object

matching. ORB keypoints offer efficiency and

robustness, while Convex Hull provides

shape-based features. Our aim is to develop a

CPU-only object matching system without the need

for deep learning training.

Background

Interest Points - ORB
ORB features, such as Oriented FAST and Rotated

BRIEF, are popular in computer vision for their

computational efficiency and robustness in detecting

and describing keypoints. They offer real-time

performance and are particularly effective in



detecting corner-like structures. However, the

binary nature of the descriptors may limit their

discriminative power, and they may struggle with

changes in illumination. Nonetheless, ORB features

strike a balance between efficiency and robustness,

making them widely used for object matching in

real-time applications.

Convex Hull
Convex Hull is a powerful geometric feature that

efficiently captures an object's shape characteristics.

It defines the smallest convex polygon enclosing the

object, offering insights into its boundaries,

orientation, and structure. Convex Hull is robust

against outliers and has proven effective in various

computer vision applications. Its simplicity,

efficiency, and discriminative power make it a

valuable addition to object matching algorithms,

particularly in shape-based matching tasks.

Coherent Point Drift
CPD (Coherent Point Drift) aligns two sets of points

by treating them as a Gaussian Mixture Model

(GMM) and updating the GMM centers iteratively

to maximize likelihood. It infers the rigid

transformation between the sets and utilizes a

closed-form solution derived from EM algorithm.

: Number of points in the target.𝑁

: Elements of the target.,𝑥
𝑖
 (𝑖 = 1,  2,  …,  𝑁)

𝑥
𝑖

∈ 𝑅2×1

: target (data points),𝑋 = (𝑥
1
,  ...  , 𝑥

𝑁
)𝑇 𝑋 ∈ 𝑅𝑁×2 

: As the optimization progresses (with increasing𝑡

time steps), the source points move according to the

rigid body transformation.

: scaling factor, s𝑠(𝑡) (𝑡)∈𝑅

: rotation matrix,𝑅(𝑡) 𝑅(𝑡)∈𝑅2×2 

: translation matrix,𝑝(𝑡) 𝑝(𝑡)∈𝑅2×1 

: isotropic covariances,σ2(𝑡) σ2(𝑡)∈𝑅

: Number of points in the source.𝑀

: Elements of the source.,𝑦
𝑖
(𝑡) (𝑖 = 1,  2,  …,  𝑀)

, satisfies the following equation:𝑦
𝑖
(𝑡) ∈ 𝑅2×1 𝑦

𝑖
(𝑡)

𝑦
𝑖
(𝑡 + 1) = 𝑠(𝑡)𝑅(𝑡)𝑦

𝑖
(𝑡) +  𝑝(𝑡)

: source (GMM𝑌(𝑡) = (𝑦
1
(𝑡),  ...  , 𝑦

𝑀
(𝑡))𝑇

centroids), 𝑌(𝑡)∈𝑅𝑀×2 

The basic structure of the problem is as described

above. The key objective is to find the optimal

values of using the EM algorithm.𝑠*, 𝑅*,  𝑝*,  σ*

Lemma 1 is utilized during the process of optimizing

the objective function with the EM algorithm.

Example of CPD Algorithm for Rigid Point Set

Registration

Let represent an unknown𝑙𝑒𝑚𝑚𝑎 1 𝑅(∈ 𝑅2×2)

rotation transformation, and A denote a(∈ 𝑅2×2)

given matrix. Suppose A = , where is a𝐴 = 𝑈∑𝑉𝑇 ∑

diagonal matrix in descending order, resulting from

the singular value decomposition. In this case, the

rotation that maximizes is , where𝑅 𝑡𝑟(𝐴𝑇𝑅) 𝑈𝐶𝑉𝑇

.𝐶 = 𝑑𝑖𝑎𝑔(1,  1,...,  1,  𝑑𝑒𝑡(𝑈𝑉𝑇))
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The points in the source represent the centroids of𝑀

a Gaussian Mixture Model (GMM). Each point,

, in the source is generated from an𝑦
𝑚

(𝑡)

independent Gaussian distribution.

𝑝𝑡(𝑥|𝑚) =  1

2πσ2(𝑡)
𝑒𝑥𝑝(−

|𝑥−𝑦
𝑚

(𝑡)|2

2σ2(𝑡)
)

The probability of generating a point, x, from the

source can be expressed as a linear combination of

the priors of each Gaussian distribution and the

Gaussian distributions themselves. In addition to the

M Gaussian distributions generated by the source, a

uniform distribution noise is added to form the

following equation.

𝑝𝑡 𝑥( ) =
𝑚=1

𝑀+1

∑ 𝑝 𝑚( )𝑝𝑡 𝑚( )

For in the range , the Gaussian distribution𝑚 [1,  𝑀]

generated for each m has a prior of ,𝑝 𝑚( ) = 1 − 𝑤
𝑀

and the probability density function is given𝑝𝑡(𝑥|𝑚)

by . When , the1

2πσ2(𝑡)
𝑒𝑥𝑝(−

|𝑥−𝑦
𝑚

(𝑡)|2

2σ2(𝑡)
) 𝑚 = 𝑀 + 1

prior is , and the pdf is𝑝(𝑀 + 1) = 𝑤 𝑝𝑡(𝑥|𝑀 + 1)

a constant distribution.1
𝑁

By introducing the EM algorithm, we can use the

expected value of the complete negative

log-likelihood as the objective function Q and solve

it as a minimization problem. The E-step and

M-step are then designed to minimize Q, allowing

us to derive the CPD algorithm.

𝑄(𝑡 + 1) =−
𝑛=1

𝑁

∑
𝑚=1

𝑀+1

∑ 𝑝𝑡 𝑚|𝑥
𝑛( )𝑙𝑜𝑔(𝑝𝑡+1 𝑚( )𝑝𝑡+1 𝑚( ))

The soft membership can be derived using𝑝𝑡 𝑚|𝑥
𝑛( )

Bayes' theorem. is a function that includes𝑝𝑡 𝑚|𝑥
𝑛( )

the already optimized parameters at time step ,𝑡

viewed from the perspective of . Therefore,𝑄(𝑡 + 1)

at time step , can be treated as a𝑡 + 1 𝑝𝑡 𝑚|𝑥
𝑛( )

constant. Considering the rigid body transformation

of the source points , we can obtain the following𝑦
𝑚

result in the E-step:

𝑓𝑜𝑟 𝑚 = 1,... 𝑀

𝑝𝑡 𝑚|𝑥
𝑛( ) =  

𝑝𝑡 𝑚( )𝑝𝑡 𝑥
𝑛
|𝑚( )

𝑝𝑡 𝑥
𝑛( ) =

𝑝𝑡 𝑚( )𝑝𝑡 𝑥
𝑛
|𝑚( )

𝑘=1

𝑀+1

∑ 𝑝𝑡 𝑘( )𝑝𝑡 𝑘( )

=
1 − 𝑤

𝑀  1

2πσ2(𝑡)
𝑒𝑥𝑝(−

|𝑥
𝑛
−(𝑠(𝑡)𝑅(𝑡)𝑦

𝑚
(𝑡)+𝑝(𝑡))|2

2σ2(𝑡)
)

𝑤
𝑁 +

𝑘=1

𝑀

∑ 1 − 𝑤
𝑀  1

2πσ2(𝑡)
𝑒𝑥𝑝(−

|𝑥
𝑛
−(𝑠(𝑡)𝑅(𝑡)𝑦

𝑘
(𝑡)+𝑝(𝑡))|2

2σ2(𝑡)
)

=
𝑒𝑥𝑝(−

|𝑥
𝑛
−(𝑠(𝑡)𝑅(𝑡)𝑦

𝑚
(𝑡)+𝑝(𝑡))|2

2σ2(𝑡)
)

2πσ2(𝑡) 𝑤
1 − 𝑤

𝑁
𝑀  +

𝑘=1

𝑀

∑ 𝑒𝑥𝑝(−
|𝑥

𝑛
−(𝑠(𝑡)𝑅(𝑡)𝑦

𝑘
(𝑡)+𝑝(𝑡))|2

2σ2(𝑡)
)

 

𝑓𝑜𝑟 𝑚 = 𝑀 + 1

𝑝𝑡 𝑚|𝑥
𝑛( ) =

2πσ2(𝑡) 𝑤
1 − 𝑤

𝑁
𝑀

2πσ2(𝑡) 𝑤
1 − 𝑤

𝑁
𝑀  +

𝑘=1

𝑀

∑ 𝑒𝑥𝑝(−
|𝑥

𝑛
−(𝑠(𝑡)𝑅(𝑡)𝑦

𝑘
(𝑡)+𝑝(𝑡))|2

2σ2(𝑡)
)

If we eliminate all terms unrelated to

and from𝑠(𝑡 + 1),  𝑅(𝑡 + 1),  𝑝(𝑡 + 1) σ(𝑡 + 1)

, the resulting expression is as follows:𝑄(𝑡 + 1)

𝑄 𝑡 + 1( ) = 1

2σ2(𝑡+1) 𝑛=1

𝑁

∑
𝑚=1

𝑀

∑ 𝑝𝑡 𝑚|𝑥
𝑛( )

(𝑥
𝑛

− [𝑠(𝑡 + 1)𝑅(𝑡 + 1)𝑦
𝑚

(𝑡 + 1) +  𝑝(𝑡 + 1)])2

+ 𝑁
𝑝
(𝑡)𝑙𝑜𝑔(σ2(𝑡 + 1)),   𝑁

𝑝
(𝑡) ≡

𝑛=1

𝑁

∑
𝑚=1

𝑀

∑ 𝑝𝑡 𝑚|𝑥
𝑛( )

In order to obtain the results of the M-step, we

need to solve the following optimization problem:

Minimize 𝑄 𝑡;  𝑠,  𝑅,  𝑝,  σ( )

subject to
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𝑅(𝑡)𝑅(𝑡)𝑇 = 𝑅(𝑡)𝑇𝑅(𝑡) = 𝐼,  

𝑑𝑒𝑡(𝑅(𝑡)) =  1

If we differentiate Q with respect to and set it𝑝 𝑡( )

to zero, we can find the optimal solution for pt

satisfying the first-order necessary condition

(FONC). Let be an M×N matrix defined as𝑃(𝑡)

, where is an element of the𝑃(𝑡)
𝑚𝑛

= 𝑝𝑡 𝑚|𝑥
𝑛( ) 𝑝 𝑡( )

matrix. By utilizing the column vector

with the appropriate dimensions in1
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑟𝑜𝑤𝑠

the computations, we can express the optimal

solution for pt as follows:

𝑝* 𝑡( ) = µ
𝑥
(𝑡) − 𝑠(𝑡)𝑅(𝑡)µ

𝑦
(𝑡)

µ
𝑥

𝑡( ) ≡ 1
𝑁

𝑝
(𝑡−1) 𝑋𝑇𝑃𝑇(𝑡 − 1)1

𝑀
,  µ

𝑥
𝑡( ) ∈ 𝑅2×1 

µ
𝑦

𝑡( ) ≡ 1
𝑁

𝑝
(𝑡−1) 𝑌𝑇(𝑡)𝑃(𝑡 − 1)1

𝑁
,  µ

𝑥
𝑡( ) ∈ 𝑅2×1 

By substituting into , we can simplify the𝑝* 𝑡( ) 𝑄 𝑡( )

expressions for and .µ
𝑥

𝑡( ) µ
𝑦

𝑡( )

𝑄 𝑡( ) = 1

2σ2(𝑡)
[𝑡𝑟(𝑋

^𝑇
(𝑡) 𝑑𝑖𝑎𝑔(𝑃𝑇(𝑡 − 1)1

𝑀
) 𝑋

^
(𝑡))

− 2𝑠(𝑡)𝑡𝑟(𝑋
^𝑇

(𝑡) 𝑃𝑇(𝑡 − 1) 𝑌
^
(𝑡)𝑅𝑇(𝑡))

+ 𝑠2(𝑡)𝑡𝑟(𝑌
^𝑇

(𝑡) 𝑑𝑖𝑎𝑔(𝑃(𝑡 − 1)1
𝑁

) 𝑌
^
(𝑡))]

+ 𝑁
𝑝
(𝑡 − 1)𝑙𝑜𝑔(σ2(𝑡))

𝑋
^

𝑡( ) ≡ 𝑋 − 1
𝑁

µ
𝑥

𝑇 𝑡( ),  𝑌
^

𝑡( ) ≡ 𝑌 𝑡( ) − 1
𝑀

µ
𝑦

𝑇 𝑡( )

To obtain the optimal , we only need to observe𝑅(𝑡)

the terms related to in𝑡𝑟(𝑋
^𝑇

(𝑡) 𝑃𝑇(𝑡 − 1) 𝑌
^
(𝑡)𝑅𝑇(𝑡))

. Additionally, by utilizing properties such as the𝑄 𝑡( )

transpose of the trace and the invariance of cyclic

matrix permutations, we can simplify

𝑡𝑟(𝑋
^𝑇

(𝑡) 𝑃𝑇(𝑡 − 1) 𝑌
^
(𝑡)𝑅𝑇(𝑡))

to .𝑡𝑟((𝑋
^𝑇

(𝑡) 𝑃𝑇(𝑡 − 1) 𝑌
^
(𝑡))

𝑇

𝑅(𝑡))

Maximize 𝑡𝑟(𝐴𝑇𝑅(𝑡)),  𝐴 ≡ 𝑋
^𝑇

(𝑡) 𝑃𝑇(𝑡 − 1) 𝑌
^
(𝑡) 

subject to

𝑅(𝑡)𝑅(𝑡)𝑇 = 𝑅(𝑡)𝑇𝑅(𝑡) = 𝐼,  

𝑑𝑒𝑡(𝑅(𝑡)) =  1

𝑅* 𝑡( ) = 𝑈𝐶𝑉𝑇

𝑈∑𝑉𝑇 ≡ 𝑠𝑣𝑑(𝑋
^𝑇

(𝑡) 𝑃𝑇(𝑡 − 1) 𝑌
^
(𝑡)),

 𝐶 ≡  𝑑𝑖𝑎𝑔(1,  ..,  1,  𝑑𝑒𝑡(𝑈𝑉𝑇))

Based on the provided information, we can

reconstruct and find the optimal solution for𝑄(𝑡)

and that satisfies the FONC (first-order𝑠(𝑡) σ(𝑡)

necessary condition). Here is the expression:

𝑠* 𝑡( ) = 𝑡𝑟(𝐴𝑇𝑅(𝑡))

𝑡𝑟(𝑌
^𝑇

(𝑡) 𝑑𝑖𝑎𝑔(𝑃(𝑡−1)1
𝑁

) 𝑌
^
(𝑡))

(σ*)
2

𝑡( ) = 1
2𝑁

𝑝
(𝑡−1) (𝑋

^𝑇
(𝑡) 𝑑𝑖𝑎𝑔(𝑃𝑇(𝑡 − 1)1

𝑀
) 𝑋

^
(𝑡)

− 𝑠 𝑡( )𝑡𝑟(𝐴𝑇𝑅(𝑡)))

Here is the combined formulation of the E-step and

M-step in algorithmic form, with M-step

performed in the order of and :𝑅*,  𝑠*, 𝑝* σ*

Algorithm 1 Coherent Point Drift for Rigid Point

Set Registration

// initialization

𝑅 ← 𝐼

𝑝 ← 0

𝑠 ← 0

σ2 ← 1
2𝑁𝑀

𝑛=1

𝑁

∑
𝑚=1

𝑀

∑ (𝑥
𝑛

− 𝑦
𝑚

)2

𝑤 ∈ 0,  1[ ]

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑄
𝑏𝑒𝑓𝑜𝑟𝑒

𝑤ℎ𝑖𝑙𝑒 𝑇𝑟𝑢𝑒
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// move GMM centroids

𝑓𝑜𝑟 𝑚∈ 1, 𝑀[ ]

𝑦
𝑚

← 𝑠𝑅𝑦
𝑚

+  𝑝

// E-step

𝑓𝑜𝑟 𝑚 ∈ 1, 𝑀[ ],   𝑛 ∈ 1, 𝑁[ ]

𝑃
𝑚𝑛

←
𝑒𝑥𝑝(−

|𝑥
𝑛
−𝑦

𝑚
|2

2σ2 )

2πσ2 𝑤
1 − 𝑤

𝑁
𝑀  +

𝑘=1

𝑀

∑ 𝑒𝑥𝑝(−
|𝑥

𝑛
−𝑦

𝑘
|2

2σ2 )

// M-step

𝑁
𝑝

←  1
𝑀

𝑇𝑃1
𝑁

µ
𝑥

← 1
𝑁

𝑝
𝑋𝑇𝑃𝑇1

𝑀

µ
𝑦

← 1
𝑁

𝑝
𝑌𝑇𝑃1

𝑁

𝑋
^

← 𝑋 − 1
𝑁

µ
𝑥

𝑇

𝑌
^

← 𝑌 − 1
𝑀

µ
𝑦

𝑇

𝐴 ← 𝑋
^𝑇

 𝑃𝑇 𝑌
^

𝑈,   ∑,   𝑉 ← 𝑠𝑣𝑑(𝐴)

𝐶 ← 𝑑𝑖𝑎𝑔(1,  ..,  1,  𝑑𝑒𝑡(𝑈𝑉𝑇))

𝑅 ← 𝑈𝐶𝑉𝑇

𝑠← 𝑡𝑟(𝐴𝑇𝑅)

𝑡𝑟(𝑌
^𝑇

 𝑑𝑖𝑎𝑔(𝑃1
𝑁

) 𝑌
^
)

𝑝 ← µ
𝑥

− 𝑠𝑅µ
𝑦

σ2 ← 1
2𝑁

𝑝
𝑋
^𝑇

𝑑𝑖𝑎𝑔 𝑃𝑇1
𝑀( )𝑋

^
− 𝑠 𝑡𝑟 𝐴𝑇𝑅( )( )

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑄
𝑎𝑓𝑡𝑒𝑟

// Converge condition

𝐼𝑓 |𝑄
𝑎𝑓𝑡𝑒𝑟

− 𝑄
𝑏𝑒𝑓𝑜𝑟𝑒

| <  ϵ

Break

𝑄
𝑏𝑒𝑓𝑜𝑟𝑒

← 𝑄
𝑎𝑓𝑡𝑒𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝑅,  𝑠,  𝑝

Implementation
We divided our development process into frontend

and backend. The frontend involves extracting

keypoints using ORB and convex hull extraction

using the Graham scan algorithm. In the backend,

we consistently employed the CPD algorithm,

adapting to different input types, regardless of the

frontend method used.

(1) convex hull + CPD

To obtain a point cloud of the objects in the

workspace when given the goal and observation

images in image format, you can follow these steps:

A. Perform K-means clustering: Apply

K-means clustering to the goal and

observation images to generate a point

cloud with a number of clusters equal to the

number of objects. This process groups

similar pixels together, resulting in distinct

clusters representing different objects.

B. Preserve cluster information: Maintain the

cluster information obtained from K-means

clustering for each pixel in the images. This

information will be used to differentiate

between clusters and associate keypoints

with specific objects.

C. Apply the Graham scan algorithm: Utilize

the Graham scan algorithm for each

cluster/object to extract keypoints. The

Graham scan algorithm identifies the
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convex hull of the points within each

cluster, capturing the outer boundary of the

object.

D. Extract keypoints: Extract keypoints from

each convex hull using a desired feature

extraction method, such as ORB. These

keypoints represent distinctive points on

each object.

E. Preserve object identification: Maintain the

association between keypoints and their

corresponding objects by utilizing the

cluster information obtained from K-means

clustering. This information helps

distinguish keypoints belonging to different

objects.

[convex hull extraction process using the Graham

scan algorithm]

When given a set of clusters in the form of convex

hulls as input, the following steps can be taken to

find the best match among all possible pairwise

combinations of objects in the goal and observation:

A. Generate all pairwise combinations:

Generate all possible pairwise combinations

of objects between the goal and observation

images. This will result in a set of pairs

representing potential matches.

B. Apply CPD algorithm on object-level: Pass

each pair of objects through the CPD

algorithm, treating them as individual point

clouds. The CPD algorithm estimates the

transformation parameters and computes

the quality measure Q for each pair.

C. Calculate Q sum: Calculate the sum of the

Q values obtained from the CPD algorithm

for each pair of objects. This represents the

overall quality of the match between the

objects.

D. Find the minimum Q sum: Identify the pair

of objects that yields the minimum Q sum.

This corresponds to the best matching pair

of objects.

By following these steps, you can generate all

possible pairwise combinations of objects, apply the

CPD algorithm to estimate transformations and

compute Q values, and ultimately find the pair of

objects that results in the smallest Q sum. This

approach allows for the identification of the best

match among all possible matches between objects

in the goal and observation images.

[optimal match using the Coherent Point Drift

(CPD) algorithm based on the convex hull]

(2) ORB + CPD

Both the ORB + CPD and convex hull + CPD

methods share a similar approach with the main

difference being the use of ORB for feature
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extraction in the former. In both methods, keypoints

are extracted in the frontend, and the CPD

algorithm is employed in the backend for object

matching. The overall process remains the same,

focusing on keypoint extraction and utilizing CPD

for matching.

[keypoints extraction using ORB]

[optimal match using the Coherent Point Drift

(CPD) algorithm based on the keypoints]

Evaluation Result
The experiment results showed that Convex Hull +

CPD (C_CPD) and Keypoints + CPD (K_CPD) were

evaluated in terms of execution time and object

matching accuracy. The experiment was conducted

on three objects, and if any object failed to match

the ground truth, it was considered a "fail." The

execution time for C_CPD was measured to be 4.6

seconds, while K_CPD took 1.8 seconds, indicating

that K_CPD was faster. However, in terms of

accuracy, C_CPD achieved 64%, outperforming

K_CPD, which achieved 36%.

The longer execution time of C_CPD compared to

K_CPD can be attributed to the additional

computations required by the Convex Hull-based

algorithm. Convex Hull involves complex

calculations to accurately capture the object's outer

boundaries, necessitating more computational

resources and time. However, the higher accuracy of

C_CPD can be attributed to the ability of Convex

Hull to effectively represent the overall shape of the

object. Convex Hull provides a simple and concise

representation of the object's outer boundaries and

exhibits robustness against noise and outliers.

Therefore, C_CPD, utilizing Convex Hull as a

feature, can better capture the shape and contours

of the object, resulting in more accurate matching.

The faster speed of K_CPD can be attributed to the

characteristics of the ORB keypoint extraction

method. ORB is known for its computational

efficiency and robustness in keypoint detection and
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description. By utilizing ORB as the basis, K_CPD

reduces the execution time. However, the binary

nature of ORB descriptors may result in relatively

lower discriminative power compared to other

descriptors, and it may have limitations in handling

changes in lighting conditions. Consequently,

K_CPD may exhibit relatively lower accuracy

compared to C_CPD.

Considering the trade-off between execution time

and accuracy, C_CPD provides higher accuracy at

the cost of longer execution time, while K_CPD

offers faster execution but lower accuracy.

Contributions
In this paper, we propose a novel approach to object

matching using Q (EM objective) Simulation

Optimization of Coherent Point Drift (CPD). Our

approach involves the utilization of various feature

extractors, namely Convex Hull and ORB, as part

of the frontend for feature extraction.

To evaluate the performance of our approach, we

created a test dataset by capturing images of three

different objects. The dataset was carefully designed

by shooting and randomly placing the objects to

ensure diversity and complexity in the matching

scenarios.

We conducted a comprehensive measurement and

comparison of the object matcher's performance,

focusing on accuracy and execution time. By

analyzing the results, we assessed the effectiveness

and efficiency of our proposed approach in

achieving accurate object matching.

The findings of our study provide valuable insights

into the capabilities and limitations of the Q (EM

objective) Simulation Optimization of CPD

approach for object matching. The performance

evaluation sheds light on the strengths and

weaknesses of the different feature extractors,

Convex Hull and ORB, and their impact on the

overall matching accuracy and execution time.

Overall, this research contributes to the

advancement of object matching techniques by

introducing a new approach and providing

empirical evidence of its performance. The results

serve as a benchmark for future developments and

optimizations in the field of object matching using Q

(EM objective) Simulation Optimization of CPD.

Discussion
The study suggests several avenues for future

research in object matching. Alternative keypoint

extractors, such as SIFT or SURF, should be

explored to potentially improve matching

performance. Incorporating 3D position information

and leveraging richer data inputs, like RGB-D or

multi-channel information, could enhance the CPD

algorithm's understanding of object spatial

characteristics. Developing a more sophisticated

CPD algorithm by incorporating color or

texture-based models would improve matching

capabilities in diverse object appearances and

challenging visual conditions. These advancements

have the potential to expand the applicability and

enhance the performance of object matching systems

in computer vision.
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