
 

 

Software Architecture Principles and 

Practices Student Workbook 
Rick Kazman 

2020  

 

 

SEI Training 

RESTRICTED USE: This report was prepared for the exclusive use of registered students of SEI Software 

Architectures Principles and Practices eLearning and may not be publicly distributed.  

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

http://www.sei.cmu.edu 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  

 

Copyright 2018 Carnegie Mellon University 

This material is based upon work funded and supported by the Department of Defense under Contract No. 

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a 

federally funded research and development center. 

 

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) 

and do not necessarily reflect the views of the United States Department of Defense. 

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING 

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY 

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER 

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. 

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH 

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own indi-

vidual study. 

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in 

any other manner without requesting formal permission from the Software Engineering Institute at permis-

sion@sei.cmu.edu. 

Although the rights granted by contract do not require course attendance to use this material for U.S. Government 

purposes, the SEI recommends attendance to ensure proper understanding.   

Architecture Tradeoff Analysis Method®, ATAM ®, and Carnegie Mellon ® are registered in the U.S. Patent and 

Trademark Office by Carnegie Mellon University.  

DM18-0138 

 

mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    1 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Table of Contents 

Exercise 1:  Developing Concrete Scenarios 2 

Exercise 2:  Patterns and Quality Attributes 5 

Exercise 3:  Designing with Patterns 6 

Exercise 4:  Applying Tactics 22 

Exercise 5:  Documenting Software Architecture 23 

Exercise 6:  Evaluation and Architecture 24 

Appendix:  Expert Solutions and Commentary 26 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    2 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 1:  Developing Concrete Scenarios 

A Quality Attribute Scenario is a short description of how a system is required to respond 

to some stimulus.  In this exercise, you are asked to characterize a quality attribute re-

quirement by crafting a concrete scenario. 

STEP 1.  The System 

Select a system with which you have familiarity.  Perhaps a system you have developed, 

are currently working on, or have an interest.  Then choose a quality attribute to explore.   

The table below provides a quick guide to information about Quality Attributes in the text-

book. 

Quality Attribute Location in Text Table in Text 

Availability p. 86 Table 5.3 

Interoperability p. 108 Table 6.2 

Modifiability p. 120 Table 7.1 

Performance p. 134 Table 8.1 

Security p. 150 Table 9.1 

Testability p. 163 Table 10.1 

Usability p. 176 Table 11.1 

Table 1.  Quality attribute references in the textbook, Software Architecture in Prac-

tice, 3rd Edition 

 

 

 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    3 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

STEP 2.  The Scenario 

Develop a concrete scenario for the chosen system.  A Quality Attribute Scenario con-

sists of six parts.  Use the following table to craft your scenario, identifying its six parts.   

 

Scenario Part Definition Your Scenario 

Stimulus 

Source 

an entity that generates 

a stimulus 

 

Stimulus a condition that affects 

the system 

 

Artifact(s) the part of the system 

that was stimulated by 

the stimulus 

 

Environment the condition under 

which the stimulus oc-

curred 

 

Response the activity that results 

because of the stimulus 

 

Response  

Measure 

the measure by which 

the system’s response 

will be evaluated 

 

 

Compose a sentence that incorporates all parts of the scenario.   

______________________________________________________________________________

______________________________________________________________________________



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    4 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    5 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 2:  Patterns and Quality Attributes 

Think about the following quality attributes and how they are likely to be affected by the 

use of the Layers pattern in designing an architecture.   

In this exercise, indicate your responses in the following table. 

 

Quality Attribute +/-/0 Quality Attribute +/-/0 

Buildability  Usability  

Modifiability  Subsetability  

Reusability  Dependability  

Portability  Interoperability  

Reliability  Availability  

Security  Safety  

Testability  Performance  

Other? ________________  Other? ________________  

 

For each quality attribute indicate whether you think layering positively affects it (+), 

negatively affects it (-), or whether the effect is neutral or mixed (0). Provide your 

reasoning for each decision. 

Compare your responses to those of the instructor in the Appendix.  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    6 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 3:  Designing with Patterns 

In this exercise, your task is to propose a design for the Messaging Infrastructure layer of 

the new Brokerage Information System (BIS) for the BizCo company.  To accomplish 

this, you must select a pattern and instantiate it, modifying the architecture to meet the 

quality attribute requirements for the company.  

STEP 1.  Understand the problem.  

The Organization:  BizCo  

BizCo is a fictious, mid-sized company which provides brokering appraisal services for 

the commercial and residential real estate industry in the United States.  BizCo is 

headquartered in Pittsburgh, PA, and has branch offices throughout the United States.   

BizCo’s overarching organizational goal is to become the leader in the industry.  They 

have identified a number of supporting business goals. 

 

BizCo Business Goals 

To establish BizCo as the industry leader in brokering appraisal for commercial and 

residential properties.  We must:  

• Increase market share of brokerage services 

• Dramatically decrease response time to changing market conditions 

• Have direct, secure access to brokerage information 24/7 

• Have reporting that aggregates, collates, and communicates timely information 

clearly and as needed 

 

BizCo Business Processes 

A real estate appraisal is needed to secure a mortgage loan when purchasing a prop-

erty.   A real estate appraisal is performed by licensed appraisers who work as inde-

pendent contractors.  As a real estate appraisal broker, BizCo connects the lender 

with an independent appraiser.   

The typical workflow at a BizCo branch office begins with a Service Agreement be-

tween BizCo and lenders, and between Bizco and appraisers.  The Service Agree-

ment Management business process establishes and records the service agreements.   



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    7 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

The Appraisal Request Management business process records appraisal requests 

and routes residential and commercial requests differently pairing commercial and 

residential appraisals with commercial and residential appraisers and routes the re-

quests accordingly.  

Once the property has been appraised, the Appraisal Fulfilment process records the 

appraisal results, and notifies the Billing process to bill the lender and pay the ap-

praiser according to their service agreement.  

 

Figure 1 BizCo Business Process Model 

 

BizCo Information Systems 

Three standalone systems operate at each BizCo branch.  Please note that the systems 

are not integrated within the branch and do not integrate externally. 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    8 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Table 2 - BizCo Existing Information Systems per Branch 

BizCo Branch Systems Description 

Commercial Property  

System (CPS) 

Services requests for data about appraisal requests sub-

mitted, assigned, and fulfilled for commercial properties 

including request details, lender/appraiser assignments, 

and status. 

Residential Property  

System (RPS) 

Services requests for data about appraisal requests sub-

mitted, assigned, and fulfilled for residential properties in-

cluding request details, lender/appraiser assignments, 

and status. 

Brokerage Billing  

System (BBS) 

Services requests for data about branch office, lender, 

and appraiser business addresses and contacts, contract 

terms and conditions, and accounts receivable. 

 

Table 3. X indicates system support for a business process 

Business Process CPS RPS BBS 

Appraisal Request Management X X  

Commercial Appraisal Processing X   

Residential Appraisal Processing  X  

Appraisal Fulfillment X X  

Billing   X 

Service Agreement Management   X 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    9 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

BizCo Information Reporting 

CPS, RPS, and BBS at each branch generate reports independently 

• Summarize brokerage activities 

• Biweekly 

• Hard-copy 

• Sent to main office in Pittsburgh via courier 
 

BizCo Brokerage Information System (BIS) – the Proposed System  

BizCo needs to gather more extensive information from the branch offices’ existing 

systems in a timely manner.  To this end, your organization plans to develop the new  

Brokerage Information System (BIS).  

The BIS must allow the main office to display information on: 

• Branch office, lender, and appraiser business address and contacts 

• Contract terms and conditions for lenders and appraisers 

• Appraisal requests submitted, assigned, and fulfilled 

• Brokerage activities across and for individual branch offices 

• Brokerage activities across and for individual lenders, appraisers, and brokers 

• Account receivables aggregated among all offices 

 

BizCo BIS Software Architecture 

The BizCo systems architect has designed a Layered Architecture, consisting of four 

layers, as a module structure for the new system, encapsulating the three existing 

systems, CPS, RPS, and BBS.   

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    10 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

 

 

Figure 2 BIS Architecture 

Table 4 BIS Architecture Layers 

 Layer Description 

User Interface Allows users to select, customize, and display brokerage 

data and activity reports. 

Business Logic Interacts with remote services to collect data and collates 

the data into brokerage reports.  

Message Infrastructure 

Your design task. 

Provides access to remote services.   

Services A collection of services that provide brokerage data. CPS, 

RPS, and BBS will provide these services. 

 

Your task is to propose the design 

for the Messaging Infrastructure. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    11 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

STEP 2:  Identify the quality attribute requirements. 

Using the following table, write down what you think are the most important quality attrib-

utes for the Messaging Infrastructure layer and prioritize their relative importance on a 

scale from 1 to n, where 1 is most important quality attribute requirement for the messag-

ing infrastructure and n is the least important.      

Hint: Review the business goals! 

Relative  

Importance 
Quality Attribute 

  

  

  

  

  

  

Compare your prioritized list with those in the Appendix. 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    12 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

STEP 3:  Design the Messaging Infrastructure Layer 

Now you can begin designing the Messaging Infrastructure layer using one of three pat-

terns: Messaging, Publisher-Subscriber, or SOA.  In this step you must first consider the 

patterns, weighing the pros and cons of each, and the tradeoffs from a quality attribute 

perspective.   

Read about and consider the Messaging, Publisher-Subscriber, and SOA patterns. 

 

The Messaging Pattern 

The Messaging Pattern 

Context 

Some distributed systems are composed of services that were 

developed independently. To form a coherent system, however, 

these services must interact reliably, but without incurring overly 

tight dependencies on one another. 

Problem 

Integrating independently developed services, each having its 

own business logic and value, into a coherent application re-

quires reliable collaboration between services. However, since 

services are developed independently, they are generally una-

ware of each other’s specific functional interfaces. Furthermore, 

each service may participate in multiple integration contexts, so 

using them in a specific context should not preclude their use in 

other contexts. 

Solution 

Connect the services via a message bus that allows them to 

transfer data messages asynchronously. Encode the messages 

(request data and data types) so that senders and receivers can 

communicate reliably without having to know all the data type in-

formation statically. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    13 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

Figure 3 Messaging Pattern, Sequence Diagram of Services Interactions 

 

Messaging  

Pattern Benefits 

Messaging  

Pattern Liabilities 

Services can interact without having to 

deal with networking and service loca-

tion concerns. 

Lack of statically typed interfaces 

makes it hard to validate system be-

havior prior to runtime. 

Asynchronous messaging allows ser-

vices to handle multiple requests sim-

ultaneously without blocking. 

Service requests are encapsulated 

within self-describing messages that 

require extra time and space for mes-

sage processing. 

Allows services to participate in multi-

ple application integration and usage 

contexts. 

 

 

Behavior Trace 

Key: UML Diagram 

Messaging Pattern 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    14 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

The Publisher-Subscriber Pattern 

Publisher-Subscriber Pattern 

Context 

Components in some distributed applications are loosely coupled 

and operate largely independently. If such applications need to 

propagate information to some or all of their components, a notifi-

cation mechanism is needed to inform the components about state 

changes or events that affect or coordinate their own computation.  

Problem 

The notification mechanism should not couple application compo-

nents too tightly, or they will lose their independence. Components 

want to know only that another component is in a specific state, not 

which specific component is involved. Components that dissemi-

nate events often do not care which other components want to re-

ceive the information. Components should not depend on how 

other components can be reached or on their specific location in 

the system.  

Solution 

Define a change propagation infrastructure that allows publishers in 

a distributed application to disseminate events that may be of inter-

est to others. Notify subscribers interested in those events when-

ever such information is published.  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    15 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

Figure 4 Publisher-Subscriber Pattern, sequence diagram of services interactions 

 

Publisher-Subscriber  

Pattern Benefits 

Publisher-Subscriber  

Pattern Liabilities 

Publishers can asynchronously trans-

mit events to Subscribers without 

blocking. 

Publishing can cause unnecessary 

overhead if Subscribers are interested 

in only a specific type of event. 

Asynchronous communication decou-

ples Publishers from Subscribers, al-

lowing them to be active and available 

at different times. 

Filtering events to decrease event pub-

lishing and notification overhead can 

result in other costs (e.g., decrease in 

throughput, unnecessary notifications, 

breakdown of anonymous communica-

tion model). 

Publishers and Subscribers are una-

ware of each other’s location and iden-

tity.  

 

Behavior Trace 

Key: UML Diagram 

Publisher-Subscriber Pattern 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    16 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

Dynamic Routing Pattern 

Dynamic Routing Pattern 

Context 
It is often necessary to build complex business processes by wir-

ing together a set of relatively simple services in a dynamic way.  

Problem 

Routing messages through a distributed system based on filter-

ing rules is inefficient because messages are sent to every desti-

nation’s filter and router for inspection and rules resolution, 

whether or not the message could be processed. 

Solution 

Define a message router that includes both filtering rules and 

knowledge about the processing destination paths so that mes-

sages are delivered only to the processing endpoints that can act 

on them. Unlike filters, message routers do not modify the mes-

sage content and are concerned only with message destination. 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    17 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

 

Figure 5 Dynamic Routing Pattern, Sequence diagram for services interactions 

 
 
 

Dynamic Routing  

Pattern Benefits 

Dynamic Routing  

Pattern Liabilities 

Services do not need to deal with net-

working concerns or know each other’s 

locations since all requests are han-

dled through the message router. 

Performance overhead. 

Communications can be optimized as 

services dynamically become available 

or unavailable. 

Single point of failure. 

Efficient, predictive routing. Potentially complex, unintuitive behav-

ior when rules conflict. 

 

  

Behavior Trace 

Key: UML Diagram 

Dynamic Routing Pattern 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    18 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

STEP 4:  Select and instantiate a pattern. 

Select the pattern that you think will best meet the messaging infrastructure require-

ments.  Instantiate the pattern by describing the roles of its constituent participants, their 

responsibilities and relationships, and the ways in which they collaborate.  

Pattern 
__________________________________________________ 

Overview 

 

Elements 

 

Relations 

 

Constraints 

 

Weaknesses 

 

Other Assumptions 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    19 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

STEP: 5 Identify the tradeoffs using this pattern. 

Tradeoffs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    20 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

STEP 6: Sketch the proposed design for the Messaging Infrastructure. 

 

 

 

 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    21 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

STEP: 7 Document your assumptions. 

 

Assumptions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compare your results to a recommended solution, created by the course author, in the 

Appendix of this document.    

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    22 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 4: Applying Tactics 

Based on your design decision for the BIzCo BIS, what 

quality would you like to improve? 

 

_______________________________________________ 

 

What tactics would you choose to improve your design 

of the messaging infrastructure for the system? 

______________________________________________ 

______________________________________________ 

______________________________________________ 

______________________________________________ 

______________________________________________ 

 

Consider the tradeoffs.  What are the issues 

associated with the selection of those tactics? 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

Quality  

Attribute 

Text 

 Referencei 

Availability p. 87-95 

Interoperability  p. 110-112 

Modifiability p. 121-125 

Performance p. 135-141 

Security p. 150-154 

Testability p. 164-168 

Usability p. 177-181 

1 Software Architecture in Practice, 3rd Edi-

tion; Bass, L; Clements, P.; Kazman, R; Addi-

son-Wesley Professional, 2012. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    23 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 5:  Documenting Software Architecture  

Based on your architecture sketch(es) for the BizCo BIS from the previous 

exercise, use the principles of software architecture documentation to create 

multiple views of your architecture structure. 

STEP 1: For each view, define 

• Elements 

• Relations 

• Properties 

Be sure to augment each view with an explanation of the documentation organization 

and of the system as a whole. 

Remember to include a notation key for each diagram!  An informal notation is accepta-

ble provided that there is a notation key. 

 

STEP 2:  Select your most important scenario 

Choose your most important scenario.  Examine the document views that allow you to 

precisely reason about that scenario; and determine what information you would like to 

know if you were to create the system to satisfy that scenario. 

 

Selected Scenario:  

 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    24 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 6:  Evaluation and Architecture 
 

In this exercise your task is to analyze a scenario, as part of the Architecture 

Tradeoff Analysis Method (ATAM)© Phase 2.    

STEP 1:  Consider this scenario and complete the ATAM Scenario 
Analysis.  

A BizCo server at a branch location stops responding.  The failure is detected and the 

system is restored to normal operation within 90 seconds.   

Scenario Analysis Template, Part 1 

ATAM:  Scenario Analysis 

Scenario  

Business 

Goal(s) 

 

Attribute  

Attribute 

Concern 

 

Scenario 

Refinement 

Stimulus  

Stimulus 

Source 

 

Environ-

ment 

 

Artifact  

Response  

Response 

Measure 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    25 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

STEP 2: Examine the architectural decisions and reasoning, and expand 
the ATAM Scenario Analysis. 

Scenario Analysis Template, Part 2 

Architectural Decisions and Reasoning 

Risks 

Potentially problematic ar-

chitectural decisions. 

1.   

2. 

3.    

n... 

Sensitivities 

Architectural parameters 

that significantly affects 

achievement of quality at-

tributes. 

1.   

2. 

3.    

n... 

Tradeoffs 

A tradeoff is a sensitivity 

point that affects multiple 

responses and affects 

them in opposite direc-

tions.  

1.   

2. 

3.    

n... 

Non-Risks 

Good architectural deci-

sions that are frequently 

implicit in the architecture 

1.   

2. 

3.    

n... 

Other Issues 
1.   

2. 

3.    

n... 

 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    26 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Appendix:  Expert Solutions and Commentary  

Exercise 2:  Patterns and Quality Attributes 

 

Quality Attribute +/-/0 Quality Attribute +/-/0 

Buildability + Usability + 

Modifiability + Subsetability 0 

Reusability + Dependability 0 

Portability + Interoperability 0 

Reliability 0 Availability 0 

Security 0 Safety 0 

Testability + Performance - 

Other? ________________  Other? ________________  

 

Buildability is enhanced by layering, assuming that the layers are properly 

implemented, as you can define interfaces at a higher level of the layering that can be 

used right away, even if those interfaces have not been completely fleshed out. 

Usability may be enhanced by layering if the user interface is encapsulated into one 

layer (or a small number of layers). Thus, changes to the UI, which are often frequent, 

are isolated from the remainder of the system. 

Modifiability is the quality that is most often associated with layering. If the layers 

are properly designed and implemented, coupling should be low across layers and co-

hesion high within layers, and these properties support modifiability. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    27 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

While it may seem like Subsetability would be enhanced by layering, it is often the 

case that subsets of a system’s functionality cross layers, in which case the benefits of 

layering may be limited. 

Reusability is clearly supported by the layers pattern. The principles of low coupling 

and high cohesion that dominate proper layering provide exactly the right conditions 

for layers (or modules within layers) to be easily reused in different contexts.  

Dependability, reliability, and availability are all run-time attributes related to how 

long a piece of software can be expected to run fault- or failure-free, and how quickly 

it can be recovered in the event of a failure. Hence layering has no direct contribution 

to such concerns. It has, at best, an indirect relationship, in that properly layered soft-

ware is easier to modify and hence adding or changing the fault-detection and recov-

ery logic might be simpler. 

Portability is clearly supported by the effective use of layering. Lower layers can hide 

platform, operating system, or other implementation details from other layers. Upper 

layers should, in this case, only depend on the abstractions exposed by the lower lay-

ers and not on any knowledge of the specifics of their implementation. 

Interoperability is primarily about the amount of coupling—syntactic, semantic, tem-

poral, etc.—between distinct systems. While layering may affect the coupling within 

a system, the coupling between systems is not directly addressed in this pattern. 

Security, like usability, is not directly affected by layering, although it is indirectly af-

fected. If security controls are packaged within a layer, or are abstracted by a layer, 

then it makes it easy to modify them without affecting other parts of the system, and 

it makes it easy to use an external component (for example, a framework) for security 

functionality. 

Safety is primarily a run-time attribute, like dependability or availability. As such the 

use of layering has little direct consequence on the achievement of this system qual-

ity. 

Testability is enhanced by limiting the state space of a program. This property is, in 

turn, enhanced by lowering the coupling in a system because, all other things being 

equal, restricted coupling reduces the size of a system’s state space. Thus layering 

may improve testability as—properly implemented—it leads towards reduced cou-

pling among the system’s modules. 

Layering adds layers of indirection—interfaces—between a system’s modules and 

these interfaces come with a cost: they add a performance penalty. Thus it is generally 

accepted that there is a tradeoff between modifiability and performance imposed by 

the use of layering.  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    28 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

Exercise 3:  Designing with Patterns 

 

Quality Attributes Requirements  

Expert Advice:  This exercise illustrates the importance of learning what is important 

to your stakeholders to determine the one, true set of priorities of the qualities of the 

system.  

Relative  

Importance 
Quality Attribute 

1 Interoperability 

2 Availability 

3 Security 

4 Modifiability 

5 Testability 

6 Performance 

 

Here is an example list of quality attributes for the BizCo system, along with their pri-

orities. You may, however, have come up with a slightly different list. You might want 

to consider why this is the case. Why did we not arrive at exactly the same list?  

The answer is that we all interpret what we hear through the lens of our own assump-

tions and experience. This is exactly why it is important to include stakeholders in 

any such prioritization discussions—because you may be biased or not completely in-

formed and any architectural decisions that you make based on these erroneous as-

sumptions may have enormous downstream consequences. To ameliorate this risk, 

hold a Quality Attribute Workshop or do a Utility Tree exercise.  

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    29 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Selected Pattern and Instantiation, Tradeoffs and Assumptions  

 

 

Expert Advice:   

We chose the Messaging pattern as the basis for the Messaging Infrastructure layer.  

We felt that, while all of the patterns could be used, Messaging was the simplest and 

there was no requirement pushing us to a more complex pattern such as Publisher-

Subscriber or Dynamic Routing. The application requirements, as we understand 

them, are reasonably simple and, while they will doubtless grow as the system 

evolves, we have not heard any requirement for the kinds of flexibility that Publisher-

Subscriber or Dynamic Routing provide. While there is some performance overhead 

in the use of this pattern—a tradeoff with performance—this is well within the ac-

ceptable bounds of the system, since we have not heard any requirement for high per-

formance—the system is primarily producing reports or responding to relatively sim-

ple requests for information, and so the small performance penalty for messaging 

appears to be a reasonable tradeoff. 

 

In the sketches below, we provide two views of the architecture: a module view, 

showing how we instantiate the Messaging Infrastructure layer, and an allocation 

view, showing how we intend to instantiate and deploy the system. For the module 

view we have provided our own notation, describe in the accompanying key. For the 

allocation view we have used UML as our notation.  

 

In the module view we have added a “Message” class with methods that elements in 

the Business Logic and Services layers can call to send and receive messages. Note 

that we have added an “ack” parameter to the sendMessage class. When set to true 

(the default is false) the message bus will explicitly acknowledge receipt of the mes-

sage.  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    30 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

Figure 6 - Module View – how to instantiate the Messaging Infrastructure Layer 

 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    31 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

In the allocation view we have shown all of the services as peers. That is to say there 

is no difference in the software deployed for head office or for any branch office. The 

roles and responsibility of each peer will be determined by the authorizations of the 

user who is logged in. While there must be at least one MessageBus component, t is 

expected that there will be more, for fault tolerance. For this reason, a LoadBalancer 

component has also been added, to manage and balance the traffic on each Message-

Bus, and to monitor the liveness of each. The LoadBalancer will also ensure that the 

register messages go to all MessageBus instances so that they all share the same state, 

in terms of what peers exist in the system. It is expected that the LoadBalancer will 

periodically ping each of the MessageBuses to determine their liveness. It is assumed 

that the LoadBalancer and MessageBus can be purchased as off-the-shelf compo-

nents, requiring configuration but little or no coding. Finally, it is future work to de-

termine how to detect failures of clients. 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    32 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

 

Figure 7 Allocation View-instantiate and deploy the system 

 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    33 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 4:  Applying Tactics 

 

Currently there is no mention of security in the existing system services—RPS, BBS, 

and CPS. We would like to add a number of security tactics to the architecture since 

this system contains substantial amounts of private and business-critical information. 

Security was our third-most important quality attribute in the ranking that we made 

above. 

We will employ the Detect Message Delay and Verify Message Integrity tactics to de-

tect attacks. We will Identify Actors, Authenticate Actors, and Authorize Actors to re-

sist attacks. In addition, by keeping and encapsulating our legacy services and not 

keeping all of our information in a single repository, we are employing the Limit Ex-

posure tactic. Finally, we will employ the Maintain Audit Trail tactic, keeping audit 

trails both on individual BIS system and on the Message Bus, so that we can trace the 

actions of attackers, as a means of recovering from attacks. 

 

 

Exercise 5:  Documenting Software Architecture 

See sketches above. In any architectural documentation, it is advisable to document 

the rationale for any design decision. For more information on this, see the book: H. 

Cervantes, R. Kazman, Designing Software Architectures: A Practical Approach, Ad-

dison-Wesley, 2016. 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    34 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Exercise 6:  ATAM Scenario Analysis 

ATAM:  Scenario Analysis 

Scenario A BizCo server at a branch location stops responding.  The failure is de-

tected and the system is restored to normal operation within 90 seconds.   

Business 

Goal(s) 

24/7 Operation 

Attribute Availability 

Attribute 

Concern 

Mean time to repair 

Scenario 

Refinement 

Stimulus Lack of response 

Stimulus 

Source 

BizCo server at a branch location 

Environ-

ment 

Normal operations 

Artifact BizCo server 

Response The failure is detected and the system is restored to normal 

operation 

Response 

Measure 

90 seconds 

 

 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY    35 

[Distribution Statement A] This material has been approved for public release and unlimited distribution.  Please 

see Copyright notice for non-US Government use and distribution. 

Architectural Decisions and Reasoning 

Risks 

Potentially problematic ar-

chitectural decisions. 

1. Ping/echo protocol not specified 

2. Decisions about the number and “temperature” of spares have 

not been prototyped 

3.    

n... 

Sensitivities 

Architectural parameters 

that significantly affects 

achievement of quality at-

tributes. 

1.  Recovery time is sensitive to “temperature” and number of 

spares 

2. 

3.    

n... 

Tradeoffs 

A tradeoff is a sensitivity 

point that affects multiple 

responses and affects 

them in opposite direc-

tions.  

1.  Recovery time versus cost 

2.  Ping frequency versus performance for normal operations 

3.    

n... 

Non-Risks 

Good architectural deci-

sions that are frequently 

implicit in the architecture 

1.  Excellent prototyping and simulation of failure modes 

2.  Choice of off-the-shelf load balancers 

3.    

n... 

Other Issues 1.  Training material needs to be created for operations staff. 

2. 

3.    

n... 

 

 

 

                                                        

 


