Day 2 / Session 7 / Space A

Session Title: OpenlD4VP and OpendID4VP over Browser API

Session Convener: Joseph Heenan, Kristina and Torsten
Session Notes Taker(s): Jin Wen; Albert Wu (screen shots)

Tags / links to resources / technology discussed, related to this session:

e Digital Credentials APl explainer

e Digital Credentials (This document specifies an API to enable user agents to mediate access to,
and presentation of, digital credentials such as a driver's license, government-issued
identification card, and/or other types of digital credential. The API builds on Credential
Management Level 1 as a means by which to request a digital credential from a user agent or
underlying platform.)

e Digital Credentials APl Web Platform and App Platform Layering / Interactions

Slides: OID4VC_20240410_OSW.pptx-2.pdf

PR to review in OIDF DCP WG: https://github.com/openid/OpenID4VP/pull/155

work in W3C:
://github.com/WICG/digital-identities/blob/main/resources/DigitalCredentialsAPl-Layering-v202

OpenlD for Verifiable Presentations (Highlights)

Same Device

Discussion notes, key understandings, outstanding questions, observations, and, if
appropriate to this discussion: action items, next steps:

https://github.com/WICG/digital-identities/blob/main/explainer.md
https://wicg.github.io/digital-identities/
https://infra.spec.whatwg.org/#user-agent
https://wicg.github.io/digital-identities/#dfn-credential-type-examples
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://drive.google.com/file/d/1xoxd3cbJeesgPqGGUz-qAzeTa29vTdPp/view?usp=sharing
https://github.com/openid/OpenID4VP/pull/155
https://github.com/WICG/digital-identities/blob/main/resources/DigitalCredentialsAPI-Layering-v20240301.pdf
https://github.com/WICG/digital-identities/blob/main/resources/DigitalCredentialsAPI-Layering-v20240301.pdf

OpenlD for Verifiable Presentations (Highlights)

o O O O

penID for Verifiable Presentations (Highlights)

- Presentation of multiple Credentials supported

On a path to start Third Implementer's draft
Designed for highest degree of privacy
Easy of use for developers
Supports various Security levels (e.g. mutual authentication among the parties)
Different user-experiences can be achieved (same-device and cross-device)
Presentation of multiple Credentials supported
Various Wallet deployment models supported
o Alllocal to a native app
o Native app with cloud backend
o Web wallet
New Ability for the Wallet to negotiate its capabilities and request Verifier to include wallet
provided nonce in signed request object
New OpenlD4VP over Browser API in the works

Open Optimization or the Replacement of the query language

On a path to start Third Implementer’s draft
Designed for highest degree of privacy
Easy of use for developers

Supports various Security levels (e.g. mutual authentication among the parties)
Different user-experiences can be achieved (same-device and cross-device)

Various Wallet deployment models supported
- All'local to a native app
- Native app with cloud backend
- Web wallet Vi 4
New Ability for the Wallet to negotiate its capabilities and request Verifier |
provided nonce in signed request object
New OpenlD4VP over Browser API in the works
Open Optimization or the Replacement of the query language

Same Device Presentation

Same Device Presentation
m m Cmwe] |

share an Thanks for
E=as] Identity registering!
= ?
| @ Credential
| Visit Verifier > e, mj\‘ et L.
|)
| Register with !',/%///}

S e

Cross Device Presentation

there’s confirmation dialog
Q: instead of PIN

Cross Device Presentation

3 f Desktop Smartphone Desktop

1‘ hitpsz/iverifier.com |

| i [(nttpsAiverifier.com U Wallet XYZ m m (httpsiverifier.com
[|

E=

| =t Do you want to

|] Enter PIN share Thanks for
& Identity registering!

} = Credential?
o 5

Visit Verifler DS : o - A
|
Wallet

= oo 23

Same Device Flow

Sequence diagram for Same Device

e

Cross-Device Flow

'Cross-Device Flow (VP Token sent via HTTP POST)

‘ User ; lVeriﬁer ‘ ‘ Verfier Response Endpoint \ ‘VWaIIet Frontend

| 1 use
| | Lu >

2 create transaction_id & state
3 render QR code with signed presentation request

4 scan/OR code SEIESAIRIVE S IS

5 authenticate and authorize Verifier

user authentication and credential selection/confirmation 1

b
6 create presentation (credential) &
o
=

presentation response
(vp_token, presentation_submission, state)

8 get presentation response (transaction_id)

o Presentation response
! (vp_token, presentation_submission) !

10 validate presentation (including nonce)

11 use presented credential

Verfier Response Endpoint l‘ i Wallet Frontend |

New request_uri method POST

purpose: allow the wallet to provide to the Verifier details about its technical capabilities. This
enables the Verifier to generate a request that matches the technical capabilities of that wallet
allow encryption

New request uri method POST

- A new mechanism that allows the Wallet to provide to the Verifier details
about its technical capabilities. This enables the Verifier to generate a
request that matches the technical capabilities of that Wallet.

- New request_uri_method Authorization Request parameter is introduced.
When the value of request_uri_method is "post’, the Wallet can make an
HTTP POST request to the Verifier's request_uri endpoint with information
about its capabilities

- When request_uri_method is absent or has the value of ‘get’, or the Wallet
does not support new POST method, the Wallet continues with JWT-Secured
Authorization Request (JAR) [RFC9101].

Same Device

OpenIDVP over Browser API

Why
e getting rid of custom schemes in favour of a flexible and privacy preserving model for Wallet
selection based on the request data
® Secure cross device, and even cross-platform, presentation of credentials
e UX: guarantee that the user will end up on the same browser, where it started
e The web platform provides the calling origin (or the app package if calling from an active app)
that can be as additional data point by the Wallet

Why?

- Getting rid of custom schemes in favor of a flexible and privacy
preserving model for Wallet selection based on request data.

- Secure cross device, and even cross-platform, presentation of
credentials.

- UX: guarantee that the user will end up on the same browser, where it
started.

- The web platform provides the calling origin (or the app package if
calling from an native app) that can be used as additional data point by
the Wallet

Unsigned request OpenlD4VP over Browser API proposal:

Source: Digital Credentials APl explainer.md

const credential = await navigator.identity.get ({
digital: {
providers: [{

protocol: "urn:openid. net: oid4vp", //this is an OID4VP request
//Standard OID4VP Request within the request block
request: JSON. stringify ({

“client_id": "client.example.org",

n,on

"client_id _scheme": "web-origin" //new client id scheme
"response_type": "vp_token",
"nonce": "n-0S6_WzA2M;j",
“client _metadata": (...),
"presentation _definition": (...)
// Presentation Exchange request, omitted for brevity
})
H//providers block
}//digital block

1) ; //credential block

first the request unsigned version

OpenlD4VP over Browser API proposal: unsigned request

const credential = await navigator.identity.get ({

digital: { =
- this is an OID4VP
providers: [{ request 'J

protocol: "urn:openid.net:oid4vp",

request: JSON.stringify ({
//’ "client id": vclient.example.org", new client id scheme

"client id scheme": "web-origin"7

"response type'": "vp_token"
Standard OID4VP Request—. i =R
"nonce": "n-0S86 WzA2Mj",

"client metadata": {...]},

"presentation definition": (...)

note: presentation_definition is pointing to various credentials formats: mdoc, anoncred, etc.

https://github.com/WICG/digital-identities/blob/main/explainer.md

The Wallet receives

e The value of the “protocol” parameter above.

e The value of the “request” parameter

e - "Additionally the API provides the calling origin (or the app package if
calling from an native app) to the wallet in a way that can't be spoofed by
the verifier" (thank you Lee)

The Wallet receives

_ The value of the “protocol” parameter above.

- The value of the “request” parameter above.

- “Additionally the API provides the calling origin (or the app package if
calling from an native app) to the wallet in a way that can't be spoofed by

the verifier" (thank you Lee)

Signed Request: When external trust establishment mechanism is needed

® Request is signed
o wallet validate the signature
o wallet needs to be able to establish trust in the verifier
e How replay is prevented:
o verifier sign over its origin. Browser provides origin available to it to the wallet. Wallet
compares the two.
e (if verifier does not know the capabilities of the wallet(s), it can send multiple requests)

There are robust discussions here between John B, Thorsen, Dirk, Tobias, Sam Goto and others.

When external trust establishment mechanism is
needed

Request is signed, using external trust establishment mechanisms
o Wallet validates the signature

o Wallet needs to be able to establish trust in the verifier (e.g. know the root cert, etc.)
How replay is prevented:
- \Verifiers signs over its origin. Browser provides origin available to it to the wallet, Wallet
compares the two.
(if verifier does not know the capabilities of the wallet(s), it can send
multiple requests.)

i

.

Response

- The wallet
e validates the request / verifier's trust framework
® prepares the vp_token and presentation_submission
e MAY/MUST encrypt the response

- The response is sent back through the Browser API

const (data) = response;
const response = new URLSearchParams (data) ;

- The Verifier performs standard OID4VP processing.

e e

Response

- The wallet

O validates the request / verifier's trust framework

O prepares the vp_token and presentation_submission
o MAY/MUST encrypt the response

- The response is sent back through the Browser API

const { data } = response;

const response = new URLSearchParams (data);

- The Verifier performs standard OID4VP processing.

~ Same Device (VP Token sent via HTTP POST + redirect)

‘rlr.lszr Ag:nlr fv:-!ﬁe;\ | Verifier Backend | Wallet

1use

2 create transaction_id & state
3 authorization request
e (client_id, nonce, response_uri, presentation_definition, state)

authorization request
(client_id, nonce, response_uri, presentation_definition, state) | ! - S

s authenticate and
authorize Verifier

user authentication and credential selection/confirmation

create verifiable
presentation (credential)

: post response
(vp_token, presentation_submission, state) : redirect_uri

B response (response_code)

9 response (response_code)

10 get presentation response
(transaction_id)

11 presentation respanse

13 use presented credential

User Agﬂj Eliﬁ!r Backeﬂ Wallet |

OpenlID4VP over Browser API

Browser AP| Overview

1. Verifier site loaded in browser, request initiated

2. Web platform API request initiated
3. Browser processes request and routes to the app platiorm &

4.App platiorm processes request and routes to wallet &

5. Wallet responds to request &
6.App platform sends response back (o the browser &
7. Browser resolves the promise &

8. Verifier sends the respance to its backend

SCENARIO
same-device
web-based verifier
native app wallet

Verifier Backend

App Platform APIs

App Platform (OS Platform Services)

LOCAL DEVICE
standardized AP (W3C) platform-specific function APl protocol-specific
d AP (Other) platform-specific web translation AP
Browser APl Overview

SCENARIO

same-device . 1. Verifier site loaded in browser, request initiated

web-based verifier 2.Web platform API request initiated &

native app wallet 3. Browser processes request and routes to the app platform
4. App platform processes request and routes to wallet
5. Wallet responds to request

6. App platform sends response back to the browser ¢
7.Browser resolves the promise ¢

8. Verifier sends the responce to its backend

Verifier Backend

4

Wallet
Native App

(App Platform)

App Platform APIs

App Platform (OS Platform Services)

LOCAL DEVICE

platform-specific function API
protocol-specific

standardized API (W3C)

standardized API (Other) platform-specific web translation API

source:

://github.com/WICG/digital-identities/blob/main/resources/DigitalCredentialsAPI-Layerin
40301.pdf

https://github.com/WICG/digital-identities/blob/main/resources/DigitalCredentialsAPI-Layering-v20240301.pdf
https://github.com/WICG/digital-identities/blob/main/resources/DigitalCredentialsAPI-Layering-v20240301.pdf

