
Bernhard Bettig
Department of Mechanical Engineering,

West Virginia University,

Institute of Technology

Montgomery, WV 25136

e-mail: Bernhard.Bettig@mail.wvu.edu

Christoph M. Hoffmann
Department of Computer Science,

Purdue University,

West Lafayette, IN 47907

e-mail: cmh@cs.purdue.edu

Geometric Constraint Solving in
Parametric Computer-Aided
Design
With parametric computer-aided design (CAD) software, designers can create geometric
models that are easily updated (within limits) by modifying the values of controlling pa-
rameters. These numeric and non-numeric parameters control the geometry in two ways:
parametric operations and geometric constraint solving. This paper examines the advan-
ces over the last decade in the representation of parametric operations and of solving
geometric constraint problems. An extensive literature has grown up surrounding geo-
metric constraint solving and there has been substantial progress in the types of objects
and constraints that can be handled robustly. Yet parametric operations have remained
largely within the same conceptualization and begin to limit the flexibility of CAD sys-
tems, since they still do not align well with a systematic design process.
[DOI: 10.1115/1.3593408]

Keywords: computer-aided design, parametric CAD, geometric constraints, geometric
constraint solving, variational solvers, declarative constraints

1 Introduction

Parametric computer-aided design (CAD) software is used per-
vasively in the design and manufacture of modern-day mechanical
products. In parametric CAD, designers define the size, shape, and
positions of geometric features and assembly components in terms
of numerical and non-numerical parameters. By changing parame-
ter values, a design can be easily modified, within limits.

Two computational mechanisms, intertwined in current para-
metric CAD software, are used to control the geometry from input
parameters:

• parametric operations, such as extrude and unite, which con-
struct geometric objects that satisfy implied constraints
imposed when the user selects the operation and its inputs,
and

• geometric constraint solving, which repositions and scales
geometric objects in sketches and assemblies so that they sat-
isfy constraints that are explicitly imposed on them by the
user.

This paper surveys the state of the art in parametric operations
and geometric constraint solving technology. It describes the state
of the art a decade ago, as well as advances that have occurred
since then.

The paper first addresses, in Sec. 2, the technical challenges
and advances related to parametric operations in CAD and
explains how geometric constraint solving fits with parametric
CAD. Then, the bulk of the paper addresses advances in geomet-
ric constraint solving techniques, which are discussed in two
major sections:

• In Sec. 3, a broad range of approaches to constraint solving is
discussed. Over the years, many different approaches have
been reported in the literature, and this section sketches them
briefly.

• To date, the dominant approach to constraint solving is based
on a constraint graph analysis that formulates a solution plan,

followed by a solver that, usually recursively, elaborates the
plan and computes a solution. This material is developed in
Sec. 4.

Section 5 provides a summarizing discussion with some
conclusions.

The scope of the paper is limited to the computation of the
size, shape, and placement of geometric objects including points,
curves (e.g., straight lines, arcs, conics, and freeform), and surfa-
ces (e.g., planar, cylindrical, conical, spherical, and freeform) as
controlled through implicitly or explicitly imposed geometric
constraints. The constraints can be dimensional, relating CAD
parameters to radius, distance, and angle, and they can be geo-
metric, positing perpendicularity, concentricity, tangency, and so
on. The problems can be posed in 2D or 3D space. The paper
does not address the less centrally related subjects of geometric
topology, feature semantics, knowledge-based engineering, or
optimization.

2 Parametric Operations in CAD

Parametric operations are created when a designer uses solid
modeling operations such as extrude, unite, and blend. The para-
metric operations are recorded as a sequence (or tree) of construc-
tion steps in a construction history that can be controlled by the
user. Parameters, such as the radius for a blend operation, occur as
inputs to the operations. If the value of a parameter is changed, the
construction history is re-executed and the updated geometry is
constructed, e.g., Ref. [1]. As shown by the examples in Table 1,
parametric operations may include:

(1) user equations—controlling parameters from other
parameters;

(2) parameter controlled geometry—controlling geometry from
parameters and other geometry; and

(3) measured geometry—controlling parameters from geomet-
ric computations.

Variations of these operations may involve other types of param-
eters (e.g., logical, enumerated, and text string) and other geometric
objects (e.g., complete sketches, data, and solids); however, the sa-
lient point is that there is a fixed directional dependency between

Contributed by the CAD/Solid Modeling Committee of ASME for publication in
the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received September 27, 2010; final manuscript received March 10, 2011; published
online June 14, 2011. Assoc. Editor: J. Shah.

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021001-1
Copyright VC 2011 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021

https://crossmark.crossref.org/dialog/?doi=10.1115/1.3593408&domain=pdf&date_stamp=2011-06-14


the input entities on the right-hand-side of the assignment opera-
tions and the output entities on the left-hand-side. Therefore, while
the parametric operation conceptualization lends itself to the provi-
sion of computations with diverse kinds of geometric objects and
(implied) constraints, the fixed directional dependency makes it
necessary for users to plan ahead how the features of the model
should be controlled and may require manually uncoupling relation-
ships that would otherwise give rise to cyclic dependencies. This
conceptualization contrasts with the constraint solving conceptuali-
zation in which there are no such fixed directional dependencies.
Users introduce parameters and geometric objects first and then
annotate them with constraints, which are then satisfied through
constraint solving computations. Advances in parametric operations
technology relate to improvements in the types and robustness of
parametric operations themselves and to improvements in dealing
with the inflexibility of the fixed directional dependencies.

2.1 Developments Until 2000. The earliest parametric CAD
system dates from the 1970s [2]. It used a dual representation,
describing solids both in constructive solid geometry (CSG) and in
boundary-representation (B-Rep). In this dual representation, the
solid model is represented as a binary tree in which the leaves are
primitive shapes such as blocks and cylinders, and the branches
are Boolean operations such as unite, intersect, and subtract. Each
primitive can be thought of as a parametric operation with input
parameters defining size and position. The output is then the shape
of the primitive as a B-Rep. Boolean operations take selected B-
Rep shapes as input and output the resulting B-Rep shape. The
CSG tree provided a very basic construction history.

The first parametric CAD system, in the sense as it is understood
today, is Pro-Engineer, released by Parametric Technology Corpo-
ration in the late 1980s [3]. In this CAD system, the sizes and posi-
tions of geometric objects could be directly related to each other
[4]. Thus, if the user changed the value of a dimension between
geometric objects, or moved a geometric object, this could initiate
other geometric objects to be moved automatically. Dimensions
and geometric constraints appeared in parametric operations in
two ways. In the first way, dimensions appeared as inputs to para-
metric operations and specific constraints were implied. For exam-
ple, in an extrude operation, an input dimension controlled the
length of the extrusion and perpendicularity between the side faces
and the extruded face was implied. In the second way, dimensions
and geometric constraints could be annotated to curves on a 2D
sketch that defined the cross-section profile for a sweep operation
such as extrude or revolve. In a flurry of activity in the early
1990s, e.g., [5–7], it became standard for geometric constraint
solving to be used for sketches.

In an effort to expand the benefits of constraint solving beyond
the isolation of sketches in sweep operations, one commercial sys-
tem (I-DEAS) implemented numeric equation solving capabilities
with inequalities [5]. Some commercial systems (e.g., I-DEAS and
CoCreate [3]) also implemented constraint solving for three-
dimensional solid geometry. As well, some feature modeling
research systems used constraint solving for computing feature
sizes and locations in 3D [8]. One such system tries to maintain
consistency between B-Rep, construction history, and feature
model representations with constraint solving occurring independ-
ently within operations of the construction history [9]. Another
system integrates a feature model with a cellular geometric model
and performs all constraint solving prior to combining features in
the cellular model [10]. However, none of these technologies have
become wide-spread in CAD, likely due to the complexity of the
interactions that are possible between the constraint solving and
the parametric operations. On the other hand, 3D constraint solving
is now commonplace in assembly modeling where component
positioning constraints are satisfied only after the solid shapes have
been generated from the parametric modeling operations.

Improvements in parametric operations themselves have primar-
ily been in their robustness and variety, for example, edge blend
operations that used to fail when the radius of the blend was
greater than the width of the tangent face now automatically forgo
the tangency requirement in order to obtain a solution (as shown in
Fig. 1), see also Ref. [11]. However, the overall framework of
parametric operations has stayed the same. Some applications have
made interesting use of this framework, for example for parametric
design optimization in which the dimensional parameters are
manipulated by an optimization algorithm in order to satisfy a geo-
metric goal (e.g., desired volume) or structural goal (e.g., desired
stress from imposed loads [12]).

2.2 Developments Since 2000. The emphasis of the last dec-
ade has been on mitigating the rigidity inherent in parametric
CAD owing to the parametric operations [13,14]. For example, it
should be possible to simply grab a face and drag it to where it
should be. Instead, the designer must find the controlling opera-
tion in the construction history and within that operation find the
controlling parameter. This could be, for example, a dimension in
a sketch or the length of an extrusion. Changing the value of the
parameter may then have unintended side-effects in other opera-
tions, e.g., [1]. To overcome this inflexibility, a variety of hybrid
modeling systems have been developed by vendors and research-
ers that combine parametric and direct-manipulation interfaces
[15–17]. In these systems, it is possible to reposition faces, scale
the sizes of features or even twist features. Unfortunately, these
systems implement the direct modeling interactions as transforma-
tion operations that are simply added to the construction history as
additional parametric operations. For example, using the Move
Face operation in Siemens PLM NX 7.5 Synchronous Technology
[18], the user can select a side face on a parametrically defined
solid and translate it interactively in the graphics display to make
the shape 2 mm wider. The magnitude and direction of the transla-
tion is recorded in a new parametric operation and the previous

Table 1 Examples of parametric operations versus constraint
solving problems

Situation Parametric operations Constraint solving

User
equations

1. ri :¼ 5 Parameters ro, ri

2. ro :¼ riþ 5 ro – ri¼ 5
ro¼ 2ri

Parameter
controlled
geometry

1. Parameter ro:¼5 Parameter ro

2. Line L1 :¼ Line (1,0,0) Lines L1, L2

3. Line L2 :¼ Line (0,1,0) Circle C1

4. Circle C1 :¼ Circle with ro¼ 10
radius tangent to two Fixed (L1)
lines (ro, L1, L2) Fixed (L2)

Tangent (L1, C1)
Tangent (L2, C1)

Radius (C1, ro)
Measured
geometry

1. Point P1 :¼ Point (0,0,0) Points P1, P2

2. Point P2 :¼ Point (10,0,0) Parameter d
3. Parameter d :¼ Distance Fixed (P1)
Measure (P1, P2) Fixed (P2)

Distance (P1, P2, d)

Fig. 1 Blended edge (a) small radius (b) error condition (c) tan-
gency removed

021001-2 / Vol. 11, JUNE 2011 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021



operations in the construction history are maintained exactly as
before. If the dimension for the original width is changed, the con-
struction history is replayed, including the Move Face operation,
which keeps the width 2 mm wider than specified. Thus, meaning-
ful parametric control is lost. Another approach to resolve the
inflexibility problem has been to treat some parameters as soft pa-
rameters and assign intervals [19] or set membership [20].

The limitations inherent with using parametric operations as a
basis for design software are discussed by Bettig et al. [13]. They
find that the search for design solutions when following a system-
atic design process is impeded by parametric operations because:

• Designs from parametric operations are implicitly fully con-
strained. In general, it is not clear which input parameters are
controlled by requirements and which parameters can be
tweaked. As well, some of the constraints implied by an oper-
ation may be superfluous with respect to the design intent or
design requirements.

• Parametric operations are designed to output a unique solu-
tion. Often there are multiple mathematical solutions that
should be explored.

• Parametric operations inherently bundle all implied constraints
controlling an object into a single operation. Thus it is impos-
sible to impose constraints from multiple sources onto a single
object without manually combining them into one operation. It
is also impossible to add further controls on an object once the
object has been defined through a parametric operation. As
well, coupled constraints must be manually uncoupled.

• The constraints or design intent implicit in a parametric opera-
tion can be violated by the parametric operations that follow it.

Future design software is proposed that does not rely on para-
metric operations; however, it is clear that parametric operations
will continue to be used for the near future.

3 Major Approaches to Geometric Constraint Solving

The literature on geometric constraint solving often abstracts
the problem as follows:

Given a set of geometric objects, such as points, lines, and
circles, geometric and dimensional constraints, such as distance,
tangency, perpendicularity etc., and an ambient space, usually the
Euclidean plane assign coordinates to the geometric objects such
that the constraints are satisfied or report that no such assignment
has been found.

The competence of the solver is related to the report that no solu-
tion has been found: If no solution exists in that case, the solver is
fully competent. On theoretical grounds, constraint solving is dou-
bly exponential, so that in practice we settle for partial competence
as long as the solver finds a solution for most of the problems aris-
ing in an application area, in acceptable time and space.

The main approaches to solving constraint problems are graph-
based, logic-based, algebraic, and theorem prover-based. See also
Ref. [21] that informs some of the material in this section.

3.1 Developments Until 2000

3.1.1 Graph-Based Approaches. In the graph-based approach,
the constraint problem is translated into a labeled graph, the con-
straint graph with vertices representing the geometric objects that
are constrained, and edges representing the constraints them-
selves. We distinguish three main strands: the constructive
approach, the degree of freedom techniques, and propagation
methods.

3.1.2 Constructive Approaches. In this approach, the con-
straint graph is decomposed and recombined to extract basic con-
struction steps that must be solved. A second phase elaborates
these steps, employing algebraic and/or numerical methods. This
approach has become dominant and will be discussed in depth in
Sec. 3.1.4.

3.1.3 Degrees of Freedom Analysis. The graph vertices are
labeled with the number of degrees of freedom of the represented
geometric object. In 2D, a point would have two degrees of free-
dom, a circle 3. Each graph edge is labeled by the degrees of free-
dom canceled by the represented constraints. If the incident verti-
ces are points in 2D, for instance, an incidence constraint cancels
two degree of freedom, a distance constraint cancels one degree
of freedom. This graph is analyzed for a solution strategy.

Kramer [22,23] uses this approach to analyze and solve certain
mechanisms. A symbolic solution method is derived using rules
that have a geometric meaning. In Ref. [23], Kramer proves cor-
rectness of his method by establishing that the algorithm can be
understood as a canonical rewrite system. Hsu and Brüderlin [24]
solve the constraint problem in two phases, generating first a sym-
bolic rules representation, followed by elaborating those rules by
solving them. If geometric reasoning fails, a numerical solution is
attempted.

Latham and Middleditch, [25], decompose the graph into mini-
mal connected components they call balanced sets. If a balanced
set is in a predefined set of patterns, then the subproblem is solved
by a geometric construction, otherwise a numeric solution is
attempted. This method also deals with symbolic constraints and
identifies under- and overconstrained problems. Overconstrained
problems are approached by prioritizing the given constraints.

3.1.4 Propagation Approaches. These methods encode the
constraint problem by a graph in which the vertices represent vari-
ables and equations and edges are labeled with occurrences of var-
iables in equations. Propagation seeks to orient the graph edges
such that all incident edges to an equation vertex are incoming
edges except for one. If this succeeds, then the equation system
has been triangularized. Orientation algorithms include degree-of-
freedom propagation and propagation of known values, e.g.,
Refs. [26,27]. The method fails when the orientation creates
loops, so the algorithms include techniques to break loops [27]
and may resort to numerical solvers. In Ref. [28], Borning et al.
describe a local propagation algorithm that can deal with
inequalities.

3.1.5 Logic-Based Approaches. In this approach, the con-
straint problem is translated into a set of geometric assertions and
axioms. Applying geometric reasoning, this representation is trans-
formed such that specific solution steps are made explicit. A set of
construction steps is available to the solver and is solved by assign-
ing appropriate coordinate values to the geometric entities.

Aldefeld [29], Brüderlin [30–32], Sohrt and Brüderlin [33], and
Yamaguchi and Kimura [34] use first order logic to derive geomet-
ric information applying a set of axioms from Hilbert’s geometry.
Essentially, these methods yield geometric loci at which the ele-
ments must be. Sunde [35] and Verroust et al. [36] consider two
different types of constraints: sets of points placed with respect to
a local coordinate frame and sets of straight line segments whose
directions are fixed. The reasoning is basically performed by
means of a rewriting system on the sets of constraints. The prob-
lem is solved when all the geometric elements belong to a unique
set. Joan-Arinyo and Soto-Riera, [37,38], extended these sets of
constraints with a third type consisting of sets containing one point
and one straight line such that the perpendicular point-line distance
is fixed.

3.1.6 Algebraic Approaches. In this approach, the problem
is translated into a system of equations whose variables are the
coordinates of the geometric elements and the equations express
the constraints upon them. The equations are in general nonlinear.
The main advantage of this approach is its completeness and
dimension independence. A major difficulty of the approach is
that the equation system is difficult to decompose into subpro-
blems and that a general, complete solution of algebraic equations
is inefficient. Note, however, that small algebraic systems arise
in many of the other solution approaches and are routinely
solved.

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021001-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021



3.1.7 Symbolic Methods. General equation solvers employ
symbolic techniques such as Gröbner bases [39] or the Wu-Ritt
method [40,41] to triangularize the equation system. Buchanan and
de Pennington [42] describe a solver built on top of the Buchberger’s
algorithm. Kondo reports a symbolic algebraic method in Ref. [43].

3.1.8 Numerical Methods. Numerical methods are among the
oldest approaches to constraint solving. Numerical methods solve
large systems of equations iteratively. Methods such as Newton
iteration do well if a good approximation of the intended solution
can be supplied and the system is not ill-conditioned. So, if the
starting point is taken from the user’s sketch, then the sketch should
be close to the intended solution. Nonlinear systems have multiple
solutions, but the numerical methods may find only one and may
not offer control over the solution in which the user is interested.

Borning, [44], Hillyard and Braid, [45], and Sutherland, [46],
use a relaxation method. This method perturbs the values assigned
to the variables and minimizes some measure of the global error.
In general, convergence to a solution is slow.

The method most widely used is the Newton-Raphson iteration. It
is used in the solvers described in Refs. [47–49]. Newton-Raphson
is a local method and converges much faster than relaxation. The
method does not apply to consistently over-constrained systems of
equations unless special steps are taken, such as solving a least-
squares problem.

Homotopy continuation, [50], is a family of methods that are
global and guarantee convergence. They are exhaustive and allow
to determine all solutions of a constraint problem. Their efficiency
is worse than that of Newton-Raphson. Lamure and Michelucci,
[51], and Durand, [52], apply this method to geometric constraint
solving.

3.1.9 Theorem Proving. Solving a geometric constraint prob-
lem can be considered a subproblem of proving geometric theo-
rems. However, geometric theorem proving requires more general
techniques and, therefore, methods which are much more complex
than those required by geometric constraint solving.

Wu Wen Tsün’s Wu-Ritt method, an algebraic-based geometric
constraint solving method can be used to solve geometry theorems
[41,53]. The method automatically finds necessary conditions to
obtain nondegenerated solutions. In Ref. [40], Chou applies Wu’s
method to prove novel geometric theorems and [54,55] reports on
automatic geometric theorem proving which allows to interpret,
from a geometric point of view, the proof generated by
computation.

3.2 Developments Since 2000. Most of the key advances are
described in Sec. 4. Here, we restrict to advances that interface
with other areas or cannot be readily integrated into graph-con-
structive solvers.

3.2.1 Deformations. Deformation problems can be under-
stood as constraint solving when there are restrictions placed on
the type of deformation. For example, Moll and Kavraki [56] con-
sider deformations that minimize bending energy, as does Ahn et
al. [57] and others [58,59]. Surface deformation under area con-
straints, e.g., [60], also belongs in this category. These techniques
and insights are rarely integrated with other geometric constraints
such as distance from reference points, angle of intersection, per-
pendicularity, etc.

3.2.2 Dynamic Geometry. Given an underconstrained system,
we can add constraints to make the problem well-constrained.
These additional constraints can be understood as parameters
when they are dimensional, and varying the parameter values, dif-
ferent solutions arise which can be collectively understood as a
dynamic geometric configuration. A simple example would be a
piston-crank assembly. Systems such as Cinderella [61] are
designed to deal with such problems. A number of papers have
investigated these problems from a constraint solving perspective,
including Ref. [62].

3.2.3 Evolutionary Methods. In this approach, the problem is
re-interpreted as an optimization problem that is attacked using
genetic, particle-swarm or other evolutionary methods, e.g., [63–65].

4 Graph-Constructive Solvers

Graph-constructive solvers have become the dominant class of
geometric constraint solvers.1 This class of constraint solvers
builds first a graph representing the constraint problem for the pur-
pose of isolating specific, small subsets of geometric objects and
constraints among them that can be solved separately. In a second
phase, the solvers then recursively solve the actual constraints,
guided by the graph decomposition, and determine coordinate
assignments that solve the constraint problem. Each phase can end
in failure, either because the constraints are not satisfiable or else
because the solver does not succeed in breaking down the problem
into subproblems that fit into the repertoire of subproblems the
solver understands. In the following, we refer to the graph con-
struction and analysis as phase 1 of the solver and for the subse-
quent computations determining coordinates as phase 2. We can
think of phase 1 as formulating a plan for solving the constraint
problem and phase 2 as solving it according to this plan.

The graph that is analyzed in phase 1 has vertices representing
the geometric objects to be instantiated and edges that represent
constraints between them. Both vertices v and edges e are labeled
with positive integral weights. The weight w(v) of vertex v repre-
sents the degrees of freedom when placing the corresponding geo-
metric object. For example, points and lines in the plane have two
degrees of freedom. Put differently, the weight is equal to the
number of independent coordinates of the geometric object. For
edges e¼ (v1, v2), the weight w(e) is the number of coordinates of
the adjacent vertices that can be determined from the equation
expressing the constraint. For instance, if two points, represented
by v1 and v2, are to be at a given distance, then w((v1, v2))¼ 1, but
if they are to be coincident, then w((v1, v2))¼ 2.

The graph-constructive approach to constraint solving further
divides into three families on account of whether the primary
graph analysis is top-down, bottom-up, or hybrid. Additional dis-
tinctions can be drawn by the catalogue of graph patterns recog-
nized by the graph analysis.

4.1 Developments Until 2000. The top-down approach for
2D constraint problems was pioneered by Owen [6] in 1991.
Owen recursively decomposes the constraint graph into tricon-
nected components, in phase 1, searching for three vertices that
split the graph into three subgraphs. In the recursive process, split-
ting the graph by an articulation node into two subgraphs corre-
sponds to finding an under-constrained configuration in the con-
straint problem. The triangles found in this decomposition
correspond to equation systems that involve solving univariate
quadratic equations, thus are simple to solve.

The bottom-up approach was first proposed by Bouma et al. in
1993 and reported in Ref. [7]. Here, triangles are located in the
graph and correspond to solvable subsystems, leading to the same
repertoire of equation systems in phase 2 as in the top-down
approach. Bottom-up solvers are good at determining over-con-
strained subproblems, both consistent and inconsistent. Both
Owen’s top-down and Bouma’s bottom-up methods are of O(n2)
complexity in phase 1 [66].

Research leading up to 2000 focused mainly on extending the
repertoire of subgraphs that the bottom-up approach can handle
and seeking good algorithms for solving the associated equation
systems in phase 2. It also includes work that shores up the under-
lying theory of triangle solvers. In particular, we know that if
there is a bottom-up decomposition, then any sequence of decom-
position steps in phase 1 will succeed [67]. Moreover, the (variant
of a) solution found in phase 2 does not depend on the order in

1We use this term in the broadest sense.

021001-4 / Vol. 11, JUNE 2011 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021



which phase 1 decomposed the graph: the same set of triples is
interrogated, albeit in a different order [67].

Geometric constraint problems correspond to systems of non-
linear equations. Thus, a constraint problem can have multiple
solutions. Which solution is intended is a difficult user-interface
problem that was first broached in Ref. [7]. For the basic triangle
decomposition solvers, the problem manifests in how to place
three related geometric elements with respect to each other. So,
Ref. [7] picks solutions in which such triples are placed as they
were in the input sketch. This works well in many, but not in all,
cases. Later work by Sitharam engages the user in a visual dia-
logue to obtain guidance from the user.

Extensions to the bottom-up solvers include variable-radius
circles [6], certain cubic Bézier curves [68], conics [69], and sub-
graphs that involve solving algebraic equations that are higher
than quadratic [7]. Owen’s treatment of variable-radius circles is
largely numerical. The equations that arise in general have high
degree in some of the cases as discussed later.

Prior to 2000 there are also attempts at combining different
approaches. Fudos and Hoffmann succeeded in combining top-
down and bottom-up analysis in Ref. [70], so creating a hybrid
solver. This allows dealing with under- and over-constrained
problems uniformly. Moreover, Hoffmann and Joan-Arinyo [71]
make a first cut at combining graph-constructive solvers with
equation solvers opening the door to more general constraint prob-
lems that can use symbolic dimensional constraints and equations
relating them by equations supplementing the geometric con-
straint specifications.

Graph-constructive solvers for spatial constraints are a natural
next step and have been considered early-on. For spatial constraint
solving using this approach, the main problem is to solve the aris-
ing subsystems of equations which are considerably more com-
plex than in the planar case, even for very simple subgraph pat-
terns. There are also many subgraph patterns needed for simple
configurations if lines are allowed, a further barrier. Early work
therefore restricts to points and planes in 3D.

In Ref. [72], Hoffmann and Vermeer begin exploring the basic
subgraph patterns for spatial constraint solvers using points and
planes only. The work explores both basic sequential as well as
basic simultaneous configurations. The simplest nontrivial sub-
graph, for simultaneous problems, is the octahedron. In Ref. [73],
this subgraph is considered and some of the cases are solved using
geometric reasoning. Durand and Hoffmann [74,75] solves the
equations of the octahedron using homotopy continuation. This
allows a uniform approach to all arising cases but requires nontri-
vial numeric computation.

When allowing lines as part of the constraint problem, even se-
quential constructions can be complicated. For example, we can
define a line in 3-space by its distance to four fixed points in
space, asking effectively to find a common tangent to four given
spheres. The associated equation system has degree 24, but with
only 12 distinct solutions possible [76]. It can be shown that some
problem instances have exactly 12 distinct solutions, thus estab-
lishing a tight bound on the number of common tangents.

Most of the work up to that point seeks to either extend the geo-
metric vocabulary or identifying tractable and practically relevant
subgraph patterns. But the possible subgraph patterns are infinite
in number, so work begins before 2000 that asks whether there is
a graph decomposition that does not restrict to a fixed set of sub-
graph patterns. Lomonosov and Sitharam begin this work together
with Hoffmann and report a decomposition algorithm that identi-
fies any solvable subgraph using a flow-based approach [77,78].
Sitharam perfects this algorithm later, as discussed below.

4.2 Developments Since 2000

4.2.1 Graph Decomposition. In a series of papers, Sitharam
and collaborators complete the graph decomposition [79,80].
While earlier work concentrates on finding a subset of graph

patterns that correspond to small, solvable subsets and are, at the
same time, sufficiently general to have practical significance,
Sitharam’s frontier algorithm finds all subsets that correspond to
subproblems solvable in isolation, thus generalizes the graph
decomposition once and for all. Note that the frontier algorithm
works for both 2D and 3D constraint problems, as well as for
higher-dimensional spaces.

Contemporary work and later papers in this space work out var-
iants of the algorithm or of the earlier decomposition algorithms
that are easy to implement and improve specific details. For
instance, Ref. [81] addresses the coupled decomposition when
parametric constraints are present, Ref. [82] considers the domain
of triangle decomposition, and Refs. [83,84] simplify the solver
architecture. See also Ref. [85].

In 3D constraint solving, the number of simple patterns that can
arise when allowing lines is very high, as discovered by Gao and
his collaborators [86]. This means that graph constructive solvers
must synthesize subgraph pattern as part of the graph decomposi-
tion. Thus, one aspect of the importance of Sitharam’s algorithm
is that the frontier algorithm does exactly that. But it also means
that in phase 2, the algebraic equation systems will, in many
cases, require generic techniques for solving, and that root selec-
tion also must be based on general principles. Gao’s locus inter-
section method is one such approach [87].

Some of the problems associated with the 3D analysis con-
straint graphs involve characterizing rigidity. This problem has
been addressed in papers by Sitharam and collaborators [88,89].
Mathis and Thierry [90] posit that the rigidity analysis of the
decomposition/recombination approach captures problem invari-
ance under rigid motion. He then extends the approach by consid-
ering other groups of geometric transformations, so deriving a
more general view of decomposition and recombination.

4.2.2 Under- and Overconstrained Problems. Undercons-
trained and overconstrained problems may be amenable to special
treatment. In the underconstrained case, Owen’s top-down decom-
position and Sitharam’s frontier algorithm can pinpoint the sub-
graph that is incompletely constrained. More is possible when
differentiating by constraint type. For instance, van der Meiden
[91] identifies a type of subgraph where groups of angle con-
straints are recognized that lead to a finer decomposition and so
allows better strategies for how to interact with the user to com-
plete the constraints. In Ref. [92], he proposes nonrigid cluster
rewriting configurations and techniques for root selection and for
certain point configurations in 3D.

Overconstrained problems should be consistently overcon-
strained, for example, if a triangle is specified by three side lengths
and one angle, then the angle value stipulated should be consistent
with the required side lengths. Bottom-up solvers are well suited.
General work on these problems includes the algorithm in Ref.
[93] that addresses how to isolate overconstrained subgraphs.

Joan-Arinyo et al. [94] describe strategies to complete undercon-
strained problems. This also allows constraints to have priorities and
originate from multiple views. This is an example of approaching
overconstrained problems by grading the constraints, positing that
some are more important than others. This approach is popular in
applications. Jermann and Hosobe [95], so, approach overcon-
strained problems, allowing constraints to be arranged in hierarchies.

4.2.3 Variable-Radius Circles. For 2D constraint solvers, the
triangle decompositions based on Refs. [6] and [7] provide a practi-
cal and useful subset of solvable problems. Extending this subset
by variable-radius circles, that is, with circles whose radii are deter-
mined by the constraint configurations and are not explicitly given,
are a logical extension that expands the solver competence signifi-
cantly. For the graph analysis, two patterns must be added, one that
determines center and radius from three constraints sequentially,
the other in which the circle links with four constraints linking two
clusters that can move relative to each other with one degree of
freedom. While the sequential case is elementary, the second,

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021001-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021



simultaneous case yields algebraic equation systems that can be
quite complex. The cases that arise have been investigated by
Chiang and Hoffmann [96,97] and Chiang and Joan-Arinyo [98].
Owen already knew that one of the cases that arise in the sequential
setting is the Apollonius problem. This case can be treated algebrai-
cally by transformation to a 3D configuration space in which the
(up to eight) solutions are determined from univariate quadratic
polynomials. The harder cases entail equation systems that must be
solved numerically. Most recently, Chiang et al. revisit this prob-
lem and give a solution to the equation systems that exploits the
parallelism of the graphics processing units (GPUs), so providing a
fast and practical solution strategy; [99–101].

4.2.4 Valid Parameter Ranges. Given a constraint problem
with dimensional constraints, we may ask what ranges of distance
and angle constraints lead to solvable problems. This very difficult
question has been considered in a number of papers [81,102,103].
In general, the problem requires restricting to individual parameters
since the solution space is multidimensional and not necessarily
connected, thus is difficult to explore. Joan-Arinyo and Mata [104]
allow specifying intervals on dimensional parameters, and Mekhna-
cha et al. [105] allow applying probability distributions. Note that
an exploration of valid parameter ranges in geometric constraint
solving provides tools for tolerance and kinematic motion analyses.

4.2.5 Root Selection. There are two difficulties selecting, from
the multiple solutions, one that corresponds to the application and
user intent. The first difficulty is technical: what is a criterion for
root selection that is invariant under translation and rotation. For
triangle solvers one such criterion, used early-on, is a coordinate-
free interpretation of the relative orientation of three geometric ele-
ments. The significance of Ref. [67] is that it shows the invariance
of this criterion under alternative graph decompositions in phase 1.
The second difficulty is that user guidance, for instance in CAD
applications, is difficult to obtain because the solver is a deeply em-
bedded component in CAD systems and the user is not likely to
understand how the constraint problem has been formulated and
how the solver works internally, thus posing questions to the user
must be back-translated into terms that are visual and relate to the
user’s vocabulary. Sitharam et al. [106] guides user choice in her
implementation by presenting the different root choices as graphi-
cal configurations of the shape elements.

Bettig and Shah [107] propose a set of inequality-based con-
straints such as in front of/behind, on indicated side of, same ori-
entation, concave/convex, and sharp/smooth to allow users to
specify the intended solution. Kale et al. [108] propose an addition
to the frontier algorithm that inserts steps into the solution plan
for checking the inequality conditions: if they are not met, back-
track through previous steps to obtain the next possible solution.
The scheme has been found to be efficient as long as the inequal-
ity checking steps follow very closely behind the equation solving
steps to which they apply.

4.2.6 Other Geometric Primitives in 2D. Gao et al. [109] dis-
cusses solving constraints with conics and linkages. There is some
overlap between the constraint solving community and the CAGD
community. Some work has attempted to fuse the two geometric
vocabularies, to date with little practical impact. Examples of this
work include [110]. Here, again, one key problem is that phase 2
has to work with equation systems of potentially high-degree.
These difficulties can be overcome, in part, with GPU implemen-
tations [111].

Commercial solvers have been more conservative. They allow
the traditional constraints on parametric curves such as prescribed
end tangents, but they also allow constraints on curve length and
maximum curvature [112].

4.2.7 3D Constraints. The early work was heavily influenced
by graph pattern analysis. In contrast to 2D solvers, however,
there seems to be no small subset that is both simple algebraically
and practical in applications. In part, this is because 3D is inher-

ently harder than 2D, but the difficulties may also be impacted by
the paucity of 3D user interfaces and practical constraint patterns.

Restricting to points and planes, Michelucci [113] uses the Cay-
ley-Menger determinant to devise an elegant algebraic solution to
the octahedron pattern. Sitharam et al. [114] analyze coupled 2D
and 3D systems as might arise in assemblies of variational parts.
Gao et al. [86] show that the number of basic configurations num-
bers in the hundreds when lines are allowed as primitive geomet-
ric elements.

Geometry theorems constitute implicit constraints that may not
be known to the solver. One method to expose hidden constraints
is the witness method in which random configurations are investi-
gated for unrecognized incidences and concurrencies, e.g., [61].
Michelucci and Foufou use the witness method to solve particular
constraint problems, including 3D [115–117].

4.2.8 Numerical Methods. With the advent of arbitrarily
complex subproblems, numerical solution methods need to be
more competent. There is relatively little work on this aspect. Shi
and Chen [118] consider the question and propose explicit techni-
ques to isolate subproblems for subsequent numerical solutions.
Gao et al. [86] propose to cut some of the constraints and mapping
the problem to a dynamic geometry problem that is numerically
approached. The resulting curves corresponding to the values of
the cut constraints can then be intersected with the required val-
ues, so achieving a solution numerically.

4.3 Open Problems. Geometric constraint solving has bene-
fited from many theoretical and practical advances. Nonetheless,
many open problems remain, both with respect to understanding
the theoretical foundations as well as with respect to providing
applications with better capabilities. We give a sampling of prob-
lems now.

It should be remembered that the graph analysis does not
account for implicit relationships of the numerical parameters.
Thus, even though a constraint graph may be analyzed as overcon-
strained, the parameter valuation may contain redundancies and
the problem may well have a solution. Moreover, in 3D, a com-
plete characterization of when a graph is well-constrained is not
fully understood, e.g., [88–90].

Rigid subgraphs, identified by the graph analysis, can have arbi-
trary complexity, and therefore lead to algebraic equation systems
of high degree. This degree barrier has been attacked with a vari-
ety of techniques, including most recently with GPU-based com-
putations, e.g., [99–101]. These methods often rely on rendering
the equations as manifolds and using graphics operations in the
GPU to find potential solutions. When the dimensionality of those
manifolds is high, straightforward GPU computations do not suf-
fice and more abstract conceptualizations are necessary.

Given a well-constrained problem, finding valid parameter
ranges is of great practical interest. Here, the difficulty is that the
solution space is a complex, high-dimensional manifold that
would be very costly to represent and map out fully. So, existing
techniques consider small sets of parameters to keep the dimen-
sionality low, e.g., [81,102–105]. Effective factorization theorems
are needed to allow searching such restricted parameter sets in a
way that yields information about the nature of the global solution
range, from these local ones.

Equally of great practical interest is to find an effective strategy
for root identification, i.e., to identify which of the different solu-
tion should be selected, e.g., [67,106–108]. As for the case of
valid parameter ranges, the space of possible solutions is large
and complex, so that mapping it completely is out of the question.
Moreover, as parameters are varied, different paths through the
solution tree may be necessary, depending on the user’s applica-
tion. In such a situation a semiautomated method should be con-
sidered, adding the difficulty of how best to communicate the con-
sequence of choices in the interaction with the user.

Both in 2D and in 3D, it is desirable to seek incorporating addi-
tional shape primitives, and parametric curves and surfaces are an

021001-6 / Vol. 11, JUNE 2011 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021



obvious choice, e.g., [110–112]. Here, we have a clash of concep-
tualizations: classical geometric constraint solvers ultimately
solve algebraic equations, whereas in CAGD many of the degrees
of freedom are determined by control points or knots. A unifica-
tion of the two bodies of work may well require a radically differ-
ent approach. Similarly, specifying constraints of minimum length
or bending energy is of practical interest, yet little is known about
incorporating such constraints on curves and surfaces into geo-
metric constraint problems [57].

5 Conclusions

Over the last decade, the fundamental representations underly-
ing parametric control of geometry in CAD systems has changed
little. Most of the advances have been to expand the types of
objects and constraints that are recognized and can be handled
robustly. However it has also been recognized that the one-way
dependencies inherent in parametric operations severely limit the
flexibility of parametric CAD for designers and cause it to map
poorly to recognized systematic design processes. This observed
inflexibility offers opportunities for future break-throughs.

Geometric constraint solving methods have been developed over
the last decade to expand significantly the scope of solvers, both in
regards to the constraint graph structure analysis (phase 1 of Sec. 4),
as well as the types of geometric primitives allowed. The expanded
vocabulary is in part the result of new insights into geometric proper-
ties, and in part reflects advances in solver software. In particular,
GPU-based equation solvers have been shown to make formerly dif-
ficult subproblems easy through sampling and parallelization.
Graphics coprocessors will have continued impact going forward,
but their use should include more abstracted techniques as explained.

To-date, graph-based constraint solving continues to dominate.
The beginning part of the decade saw the achievement of a gen-
eral understanding of graph-based solving that allowed it to be
broadly applied. Advances in graph-based solving have also been
key with respect to specific subchallenges, including dealing with
under- and over-constrained problems, variable radius circles,
identifying valid parameter ranges, root selection techniques, and
3D constraints. Nevertheless, there are open problems despite
these achievements.

Some new approaches have also been developed, for example
using evolutionary algorithms. The use of techniques from
dynamic geometry and the consideration of deformable geometric
objects are more examples of attempts to broaden the scope of
geometric constraint solving. These advances testify to a vigorous
research field with many applications outside CAD as well.

Acknowledgment

This work was supported in part by the National Science Foun-
dation by Grants 0722210 and 0938999 and by a gift from the
Intel Corporation.

References

[1] Hoffmann, C. M., and Joan-Arinyo, R., 2002, “Parametric modeling,” Hand-
book of CAGD, G. Farin, J. Hoschek, and M.-S. Kim, Eds., Elsevier, New
York, pp. 519–541.

[2] Requicha, A. A. G., 1980, “Representations for Rigid Solids: Theory, Meth-
ods, and Systems,” ACM Comput. Surv., 12, pp. 437–464.

[3] Parametric Technology Corp. Cocreate, 2010, www.ptc.com/products/
cocreate

[4] Hoffmann, C. M., 2005, “Constraint-Based Computer-Aided Design,” ASME
J. Comput. Inf. Sci. Eng., 5, pp. 182–187.

[5] Chung, J., and Schussel, M., 1990, “Technical Evaluation of Variational and
Parametric Design,” Comput. Eng., 1, pp. 289–298.

[6] Owen, J. C., 1991, “Algebraic Solution for Geometry from Dimensional Con-
straints,” ACM Symposium Foundations of Solid Modeling, pp. 397–407.

[7] Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J., and Paige, R., 1995, “A Geo-
metric Constraint Solver,” Comput.-Aided Des., 27, pp. 487–501.

[8] Shah, J., and Mantyla, M., 1995, Parametric and Feature-Based CAD/CAM,
Wiley, New York, NY.

[9] Venkatamaran, S., 2000, “Integration of Design by Features and Feature Rec-
ognition,” Master’s thesis, Arizona State University.

[10] Bidarra, R., 1999, “Validity Maintenance in Semantic Feature Modeling,”
PhD thesis, Technische Universiteit Delft.

[11] Braid. I., 1996, “Non-Local Blending of Boundary Models,” Comput.-Aided
Des., 29, pp. 89–100.

[12] Hardee, E., Chang, K.-H., Tu, J., Choi, K. K., Grindeanu, I., and Yu, X., 1999,
“A CAD-Based Design Parameterization for Shape Optimization of Elastic
Solids,” Adv. Eng. Software, 30, pp. 185–199.

[13] Bettig, B., Bapat, V., and Bharadwaj, B., 2005, “Limitations of Parametric
Operators for Supporting Systematic Design,” in Proceedings of ASME Design
Engineering Technical Conferences and Computers in Engineering Confer-
ence, DETC2005.

[14] Ilies, H. T., 2006, “Parametric Solid Modeling,” in Proceedings of the ASME
Design Engineering Technical Conferences and Computers in Engineering
Conference, DETC2006.

[15] Clarke, C., 2009, “Super Models,” Engineer, 294, pp. 36–38.
[16] Samuel, S., 2006, “CAD Package Pumps up the Parametrics,” Mach. Des., 78,

pp. 82–84.
[17] Wu, N., and Ilies, H., 2007, “Motion-Based Shape Morphing of Solid Mod-

els,” in Proceedings of the ASME Design Engineering Technical Conferences
and Computers in Engineering Conference, IDETC2007.

[18] Siemens PLM Software. Synchronous Technology, 2011.
[19] Wang, Y., 2007, “Solving Interval Constraints by Linearization in Computer-

Aided Design,” Reliab. Comput., 13, pp. 211–244.
[20] Nahm, Y.-E., and Ishikawa, H., 2006, “A New 3D-CAD System for Set-Based

Parametric Design,” Int. J. Adv. Manuf. Technol., 29, pp. 137–150.
[21] Hoffmann, C. M., and Joan-Arinyo, R., 2005, “A Brief on Constraint Sol-

ving,” Comput.-Aided Des., 2, pp. 655–663.
[22] Kramer, G. A., 1991, “Using Degree of Freedom Analysis to Solve Geometric

Constraint Systems,” Symposium on Solid Modeling Foundations and CAD/
CAM Applications, J. Rossignac and J. Turner, eds., pp. 371–378.

[23] Kramer, G. A., 1992, Solving Geometric Constraint Systems, MIT,
Cambridge.

[24] Hsu, C.-Y., and Brüderlin, B., 1997, “A Hybrid Constraint Solver Using Exact
and Iterative Geometric Constructions,” CAD Systems Development: Tools
and Methods, D. Roller and P. Brunet, eds., Springer-Verlag, Berlin, 1997,
pp. 266–298.

[25] Latham, R., and Middleditch, A., 1996, “Connectivity Analysis: A Tool for
Processing Geometric Constraints,” Comput.-Aided Des., 28, pp. 917–928.

[26] Freeman-Benson, B., Maloney, J., and Borning, A., 1990, “An Incremental
Constraint Solver,” Commun. ACM, 33, pp. 54–63.

[27] Veltkamp, R., and Arbab, F., 1992, “Geometric Constraint Propagation With
Quantum Labels,” in Eurographics Workshop on Computer Graphics and
Mathematics, pp. 211–228.

[28] Borning, A., Anderson, R., and Freeman-Benson, B., 1996, “Indigo: A Local
Propagation Algorithm for Inequality Constraints, in ACM UIST ’96,
pp. 129–136.

[29] Aldefeld, B., 1998, “Variation of Geometric Based on a Geometric-Reasoning
Method,” Comput.-Aided Des., 20, pp. 117–126.

[30] Brüderlin, B. D., 1988, “Rule-Based Geometric Modelling,” PhD thesis, Insti-
tut für Informatik der ETH Zürich.

[31] Brüderlin, B. D., 1990, “Symbolic Computer Geometry for Computer
Aided Geometric Design,” Advances in Design and Manufacturing Systems
pp. 177–181.

[32] Brüderlin, B. D., 1993, Using Geometric Rewrite Rules for Solving Geometric
Problems Symbolically,” Theoretical Computer Science 116, pp. 291–303.

[33] Sohrt, W., and Brüderlin, B. D., 1991, Interaction with Constraints in 3D Mod-
eling. Int. J. Comput. Geom. Appl., 1, pp. 405–425.

[34] Yamaguchi, Y., and Kimura, F., 1990, “A Constraint Modeling System
for Variational Geometry,” Geometric Modeling for Product Engineering,
J. U. Turner, M. J. Wozny, and K. Preiss, eds., Elsevier, North Holland,
pp. 221–233.

[35] Sunde, G., 1987, “A CAD System With Declarative Specification of Shape,”
Eurographics Workshop on Intelligent CAD Systems, pp. 90–105.

[36] Verroust, A., Schonek, F., and Roller, D., 1992, “Rule-Oriented Method for
Parameterized Computer-Aided Design,” Comput.-Aided Des., 24, pp. 531–
540.

[37] Joan-Arinyo, R., and Soto, A., 1997, “A Correct Rule-Based Geometric Con-
straint Solver,” Comput. Graphics, 21, pp. 599–609.

[38] Joan-Arinyo, R., and Soto, A., 1997, “A Ruler-and-Compass Geometric Con-
straint Solver,” Product Modeling for Computer Integrated Design and Manu-
facture, M. J. Pratt, R. D. Sriram, and M. J. Wozny, eds., pp. 384 – 393.

[39] Buchberger, B., 1985, “Gröbner Bases: An Algorithmic Method in Polynomial
Ideal Theory,” Multidimensional Systems Theory, D. Reidel Publishing,
pp. 184–232.

[40] Chou, S.-C., 1988, “An Introduction to Wu’s Method for Mechanical Theorem
Proving in Geometry,” J. Automated Reasoning, 4, pp. 237–267.

[41] Wu, W.-T., 1994, “Mechanical Theorem Proving in Geometries,” Texts and
Monographs in Symbolic Computations, B. Buchberger and G. E. Collins,
eds., Springer-Verlag, Berlin.

[42] Buchanan, S. A., and de Pennington, A., 1993, “Constraint Definition System:
A Computer-Algebra Based Approach to Solving Geometric-Constraint Prob-
lems,” Comput.-Aided Des., 25, pp. 741–750.

[43] Kondo, K., 1992, “Algebraic Method for Manipulation of Dimensional Rela-
tionships in Geometric Models,” Comput.-Aided Des., 24, pp. 141–147.

[44] Borning, A., 1981, “The Programming Language Aspects of ThingLab, a Con-
strained Oriented Simulation Laboratory,” ACM Trans. Program. Lang. Syst.,
3, pp. 353–387.

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021001-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021

http://dx.doi.org/10.1145/356827.356833
www.ptc.com/products/cocreate
www.ptc.com/products/cocreate
http://dx.doi.org/10.1115/1.1979508
http://dx.doi.org/10.1115/1.1979508
http://dx.doi.org/10.1016/0010-4485(94)00013-4
http://dx.doi.org/10.1016/S0010-4485(96)00038-3
http://dx.doi.org/10.1016/S0010-4485(96)00038-3
http://dx.doi.org/10.1016/S0965-9978(98)00065-9
http://dx.doi.org/10.1007/s11155-006-9023-4
http://dx.doi.org/10.1007/s00170-004-2213-5
http://dx.doi.org/10.1016/0010-4485(96)00023-1
http://dx.doi.org/10.1145/76372.77531
http://dx.doi.org/10.1016/0010-4485(88)90019-X
http://dx.doi.org/10.1016/0304-3975(93)90324-M
http://dx.doi.org/10.1142/S021819599100027X
http://dx.doi.org/10.1016/0010-4485(92)90040-H
http://dx.doi.org/10.1016/S0097-8493(97)00038-1
http://dx.doi.org/10.1007/BF00244942
http://dx.doi.org/10.1016/0010-4485(93)90101-S
http://dx.doi.org/10.1016/0010-4485(92)90033-7
http://dx.doi.org/10.1145/357146.357147


[45] Hillyard, R., and Braid, I., 1978, “Characterizing Non-Ideal Shapes in Terms
of Dimensions and Tolerances,” Proceedings of ACM Computer Graphics,
pp. 234–238.

[46] Sutherland, I., 1963, “Sketchpad, a Man-Machine Graphical Communication
System,” in Proceedings of the Spring Joint Computing Conference, IFIPS,
pp. 329–345.

[47] Light, R., and Gossard, D., 1982, “Modification of Geometric Models Through
Variational Geometry, Comput.-Aided Des., 14, pp. 209–214.

[48] Lin, V. C., Gossard, D. C., and Light, R. A., 1981, “Variational Geometry in
Computer-Aided Design,” ACM Comput. Graphics, 15, pp. 171–177.

[49] Nelson, G., 1985, “Juno, a Constraint-Based Graphics System. SIGGRAPH,
pp. 235–243.

[50] Allgower, E., and Georg, K., 1993, “Continuation and Path Following,” Acta
Numerica, 7, pp. 1–64.

[51] Lamure, H., and Michelucci, D., 1995, “Solving Geometric Constraints by
Homotopy,” Third Symposium on Solid Modeling and Applications, C. M.
Hoffmann and J. Rossignac, eds., pp. 263–269.

[52] Durand, C., 1998, “Symbolic and Numerical Techniques for Constraint Sol-
ving,” PhD thesis, Computer Science, Purdue University.

[53] Wu, W.-T., 1986, “Basic Principles of Mechanical Theorem Proving in Geo-
metries,” J. Syst. Sci. Math. Sci., 4, pp. 207–235.

[54] Chou, S.-C., Gao, X.-S., and Zhang, J.-Z., 1996, “Automated Generation of
Readable Proofs With Geometric Invariants: Multiple and Shortest Proof Gen-
eration,” J. Automat. Reason. 7, pp. 325–347.

[55] Chou, S.-C., Gao, X.-S., and Zhang, J.-Z., 1996, “Automated Generation of
Readable Proofs With Geometric Invariants: Theorem Proving With Full
Angles,” J. Automat. Reason., 7, pp. 349–370.

[56] Moll, M., and Kavraki, L., 2006, “Path Planning for Deformable Linear
Objects,” IEEE J. Rob., 22, pp. 625–636.

[57] Ahn, Y. J., Hoffmann, C. M., and Rosen, P., 2011, “Length and Energy of
Quadratic Bézier Curves and Applications” (submitted).

[58] Bao, F., Sun, Q., Pan, J., and Duan, Q., 2010, “A Blending Interpolator With
Value Control and Minimal Strain Energy,” Comput. Graphics, 34, pp. 119–124.

[59] Ginkel, I., and Umlauf, G., 2008, “Local Energy-Optimizing Subdivision
Algorithms,” Comput. Aided Geom. Des., 25, pp. 137–147.

[60] Xu, Y., Joneja, A., and Tang, K., 2009, “Surface Deformation Under Area
Constraints,” Comput. Aided Geom. Des., 6, pp. 711–719.

[61] Kortenkamp, U., and Richter-Gebert, J., 2010, The Interactive Geometry Soft-
ware Cinderella.2, Springer-Verlag, Berlin.

[62] Freixas, M., Joan-Arinyo, R., and Soto-Riera, A., 2008, “A Constraint-Based
Dynamic Geometry System,” ACM Solid and Physical Modeling, pp. 37–46.

[63] Cao, C., Zhang, B., Wang, L., and Li, W., 2006, “The Parametric Design
Based on Organizational Evolutionary Algorithm,” in PRICAI 2006 – 9th Pa-
cific Rim International Conference on Artificial Intelligence, pp. 940–944,
Springer Lect. Notes in AI 4099.

[64] Yuan, H., Li, W., Yi, R., and Zhao, K., 2006, “The TPSO Algorithm to Solve
Geometric Constraint Problems,” Comput. Inform. Syst., 2, pp. 1311–1316.

[65] Gao, X.-Y., Sun, L.-Q., and Sun, D.-S., 2009, “Artificial Immune-Chaos
Hybrid Algorithm for Geometric Constraint Solving,” Inf. Technol. J.,
pp. 360–365.

[66] Fudos, I., 1995, “Constraint Solving for Computer Aided Design,” PhD thesis,
Purdue University, Department of Computer Sciences.

[67] Fudos, I., and Hoffmann, C. M., 1996, “Correctness Proof of a Geometric
Constraint Solver,” Int. J. Comput. Geom. Appl., 6, pp. 405–420.

[68] Hoffmann, C. M., and Peters, J., 1995, “Geometric Constraints for CAGD,”
Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and L.
Schumaker, eds., Vanderbilt University Press, 1995, pp. 237–254.

[69] Fudos, I., and Hoffmann, C. M., 1996, “Constraint-Based Parametric Conics
for CAD,” Comput.-Aided Des., 28 91–100.

[70] Fudos, I., and Hoffmann, C. M., 1997, “A Graph-Constructive Approach to
Solving Systems of Geometric Constraints,” ACM Trans. Graphics, 16,
pp. 179–215.

[71] Hoffmann, C. M., and Joan-Arinyo, R., 1997, “Symbolic Constraints in Con-
structive Geometric Constraint Solving,” J. Symb. Comput., 23, pp. 287–300.

[72] Hoffmann, C. M., and Vermeer, P. J., 1994, “Geometric Constraint Solving in
R2 and R3,” Computing in Euclidean Geometry, 2nd ed., D. Z. Du and
F. Hwang, eds., World Scientific Publishing, Singapore, pp. 266–298.

[73] Hoffmann, C. M., and Vermeer, P. J., 1995, “A Spatial Constraint Problem,”
Computational Kinematics, J.-P. Merlet and B. Ravani, eds., Kluwer Acad.
Publ., pp. 83–92.

[74] Durand, C., and Hoffmann, C. M., 1999, “Variational Constraints in 3D,” in
Proceedings of International Conference on Shape Modeling and Applica-
tions, pp. 90–97.

[75] Durand, C., and Hoffmann, C. M., 2000, “A Systematic Framework for Solv-
ing Geometric Constraints Analytically,” J. Symb. Comput., 30, pp. 493–520.

[76] Hoffmann, C. M., and Yuan, B., 2000, “On Spatial Constraint Solving
Approaches,” Proceedings of ADG 2000, ETH Zurich, in press.

[77] Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 1997, “Finding Solvable
Subsets of Constraint Graphs,” Principles and Practice of Constraint Pro-
gramming – CP97, Springer LNCS 1330, NY, pp. 463–477.

[78] Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 1998, “Geometric Con-
straint Decomposition,” Geometric Constraint Solving and Applications,
B. Bruderlin and D. Roller, eds., pp. 170–195.

[79] Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 2001, “Decomposition
Plans for Geometric Constraint Problems, Part I: Performance Measures for
CAD,” J. Symb. Comput., 31, pp. 367–408.

[80] Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 2001, “Decomposition
Plans for Geometric Constraint Problems, Part II: New Algorithms,” J. Symb.
Comput., 31, pp. 409–428.

[81] Joan-Arinyo, R., and Soto-Riera, A., 1999, “Combining Constructive and
Equational Geometric Constraint Solving Techniques,” ACM Trans. Graphics,
18, pp. 35–55.

[82] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J., 2001, “On
the Domain of Constructive Geometric Constraint Solving Techniques,” IEEE
Spring Conference on Computer Graphics, R. Duricovic and S. Czanner, eds.,
Budmerice, Slovakia, pp. 49–54.

[83] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J., 2002,
“Declarative Characterization of a General Architecture for Constructive Geo-
metric Constraint Solvers,” The Fifth International Conference on Computer
Graphics and Artificial Intelligence, D. Plemenos, ed., Limoges, France,
pp. 63–76.

[84] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J., 2004,
“Revisiting Decomposition Analysis of Geometric Constraint Graphs,” Com-
put.-Aided Des., 36, pp. 123–140.

[85] Jermann, C., Trombettoni, G., Neveu, B., and Mathis, P., 2006,
“Decomposition of Geometric Constraints Systems: A Survey,” Int. J. Com-
put. Geom. Appl., 23, pp. 1–35.

[86] Gao, X.-S., Hoffmann, C. M., and Yang, W., 2002, “Solving Spatial Basic
Geometric Constraint Configurations With Locus Intersection. Solid Modeling
’02, pp. 95–104.

[87] Gao, X.-S., Hoffmann, C. M., and Yang, W., 2004, “Solving Spatial Basic
Geometric Constraint Configurations With Locus Intersection,” Comput.-
Aided Des., 36, pp. 111–122.

[88] Sitharam, M., and Zhou, Y., 2004, “A Tractable, Approximate Characteriza-
tion of Combinatorial Rigidity in 3D,” in 5th Automated Deduction in
Geometry.

[89] Gao, H., and Sitharam, M., 2008, “Characterizing 1-dof Henneberg Graphs
With Efficient Configuration Spaces,” arXiv:0810.1997v2.

[90] Mathis, P., and Thierry, S., 2010, “A Formalization of Geometric Constraint
Systems and Their Decomposition,” Formal Aspects of Computing, 22,
pp. 129–151.

[91] van der Meiden, H., 2008, “Semantics of Families of Objects,” PhD thesis,
Delft University of Technology, Netherlands.

[92] van der Meiden, H., and Bronsvoort, W., 2010, “A Non-Rigid Cluster Rewrit-
ing Approach to Solve Systems of 3D Geometric Constraints,” Comput.-Aided
Des., 42, pp. 36–49.

[93] Hoffmann, C. M., Sitharam, M., and Yuan, B., 2004, “Making Constraint
Solvers Useable: Overconstraints, Comput.-Aided Des., 36, pp. 377–399.

[94] Joan-Arinyo, R., Soto-Riera, A., and Vilaplana-Pastó, M., 2003,
“Transforming an Underconstrained Geometric Constraint Problem into a
Well-Constrained One,” Symposium on Solid Modeling and appl., pp. 33–44.

[95] Jermann, C., and Hosobe, H., 2008, “A Constraint Hierarchies Approach to
Geometric Constraint Sketches,” 23rd SAC ’08, pp. 1843–1844.

[96] Chiang, C.-S., and Hoffmann, C. M., 2001, “Variable-Radius Circles in Cluster
Merging, Part I: Translational Clusters,” Comput.-Aided Des., 34, pp. 787–797.

[97] Chiang, C.-S., and Hoffmann, C. M., 2001, “Variable-Radius Circles in Cluster
Merging, Part II: Rotational Clusters,” Comput.-Aided Des., 34, pp. 799–805.

[98] Chiang, C.-S., and Joan-Arinyo, R., 2004, “Revisiting Variable-Radius Circles
in Constructive Geometric Constraint Solving,” CAGD, 221, pp. 371–399.

[99] Hoffmann, C. M., Chiang, C.-S., and Rosen. P., 2010, “Hardware Assist for
Constrained Circle Constructions I,” Comput.-Aided Des. Appl, 7, pp. 17–33.

[100] Hoffmann, C. M., Chiang, C.-S., and Rosen, P., 2010, “Hardware Assist for
Constrained Circle Constructions II,” Comput.-Aided Des. Appl, 7, pp. 33–44.

[101] Chiang, C.-S., Hoffmann, C. M., and Rosen. P., “A Generalized Malfatti Prob-
lem. Computational Geometry Theory and Applications (in press).

[102] Hoffmann, C. M., and Kim, K.-J., 2001, “Towards Valid Parametric CAD
models,” Comput.-Aided Des., 33, pp. 81–90.

[103] van der Meiden, H., and Bronsvoort, W., 2006, “A Constructive Approach to
Calculate Parameter Ranges for Systems of Geometric Constraints,” Comput.-
Aided Des., 38, pp. 275–283.

[104] Joan-Arinyo, R., and Mata, N., 2001, “Applying Constructive Geometric Con-
straint Solvers to Geometric Problems With Interval Parameters,” Nonlinear
Anal. Theory, Methods Appl., 47, pp. 213–224.

[105] Mekhnacha, K., Mazer, E., and Bessiere, P., 2001, “The Design and Imple-
mentation of a Bayesian CAD Modeler for Robotic Applications,” Adv. Rob.,
15, pp. 45–69.

[106] Sitharam, M., Arbree, A., Zhou, Y., and Kohareswaran, N., 2006, “Solution
Management and Navigation for 3d Geometric Constraint Systems,” ACM
TOG, 25, pp. 194–213.

[107] Bettig, B., and Shah, J., 2003, “Solution Selectors: A User-Oriented Answer to
the Multiple Solution Problem in Constraint Solving,” ASME J. Mech. Des.,
125, pp. 443–451.

[108] Kale, V., Bettig, B., and Bapat, V., 2008, “Geometric Constraint Solving With So-
lution Selectors,” In Proceedings of the ASME Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference, DETC2008.

[109] Gao, X.-S., Jiang, K., and Zhu. C.-C., 2002, “Geometric Constraint Solving
With Conics and Linkages,” Comput.-Aided Des., 34, pp. 421–433.

[110] Cheteut, V., Daniel, M., Hahmann, S., LaGreca, R., Lon, J., Maculet, R., and
Sauvage, B., 2007, “Constraint Modeling for Curves and Surfaces in CAGD,”
Intl. J. Shape Model., 13, pp. 159–199.

[111] Ahn, Y.-J., and Hoffmann, C. M., 2010, “Constraint-Based ln-Curves,” SAC,
pp. 1242–1246.

021001-8 / Vol. 11, JUNE 2011 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021

http://dx.doi.org/10.1145/965139.807396
http://dx.doi.org/10.1016/0010-4485(82)90292-5
http://dx.doi.org/10.1145/965161.806803
http://dx.doi.org/10.1145/325165.325241
http://dx.doi.org/10.1017/S0962492900002336
http://dx.doi.org/10.1017/S0962492900002336
http://dx.doi.org/10.1007/BF00283133
http://dx.doi.org/10.1007/BF00283134
http://dx.doi.org/10.1109/TRO.2006.878933
http://dx.doi.org/10.1016/j.cag.2010.01.002
http://dx.doi.org/10.1016/j.cagd.2007.08.003
http://dx.doi.org/10.3923/itj.2009.360.365
http://dx.doi.org/10.1142/S0218195996000253
http://dx.doi.org/10.1016/0010-4485(95)00037-2
http://dx.doi.org/10.1145/248210.248223
http://dx.doi.org/10.1006/jsco.1996.0089
http://dx.doi.org/10.1006/jsco.2000.0392
http://dx.doi.org/10.1006/jsco.2000.0402
http://dx.doi.org/10.1006/jsco.2000.0403
http://dx.doi.org/10.1006/jsco.2000.0403
http://dx.doi.org/10.1145/300776.300780
http://dx.doi.org/10.1016/S0010-4485(03)00057-5
http://dx.doi.org/10.1016/S0010-4485(03)00057-5
http://dx.doi.org/10.1016/S0010-4485(03)00056-3
http://dx.doi.org/10.1016/S0010-4485(03)00056-3
http://dx.doi.org/10.1007/s00165-009-0117-8
http://dx.doi.org/10.1016/j.cad.2009.03.003
http://dx.doi.org/10.1016/j.cad.2009.03.003
http://dx.doi.org/10.1016/S0010-4485(03)00099-X
http://dx.doi.org/10.3722/cadaps.2010.17-32
http://dx.doi.org/10.3722/cadaps.2010.33-44
http://dx.doi.org/10.1016/S0010-4485(00)00073-7
http://dx.doi.org/10.1016/j.cad.2006.01.006
http://dx.doi.org/10.1016/j.cad.2006.01.006
http://dx.doi.org/10.1016/S0362-546X(01)00170-5
http://dx.doi.org/10.1016/S0362-546X(01)00170-5
http://dx.doi.org/10.1163/156855301750095578
http://dx.doi.org/10.1115/1.1587749
http://dx.doi.org/10.1016/S0010-4485(01)00114-2
http://dx.doi.org/10.1142/S0218654307000993


[112] Hanniel, I., and Haller, K., 2009, “Solving Global Geometric Constraints on Free-
Form Curves,” In ACM Symposium Solid and Physics Modeling, pp. 307–312.

[113] Michelucci, D., 2004, “Using Cayley Menger determinants,” In Proceedings
of the 2004 ACM Symposium on Solid Modeling, pp. 285–290.

[114] Sitharam, M., Oung, J., Arbree, A., and Zhou, Y., 2006, “Mixing Features and
Variational Constraints in 3d,” Comput.-Aided Des., 38.

[115] Foufou, S., Michelucci, D., and Jurzak, J.-P., 2005, “Numerical Decomposi-
tion of Geometric Constraints,” Symposium of Solid Modeling and Applica-
tions, pp. 143–151.

[116] Michelucci D. and Foufou, S., 2006, Geometric Constraint Solving:
The Witness Configuration Method, Comput.-Aided Des., 38, pp. 284–
299.

[117] Michelucci, D., and Foufou, S., 2009, “Interrogating Witnesses for Geometric
Constraint Solving,” SIAM/ACM Joint Conference Geometry Physics Model-
ing, pp. 343–348.

[118] Shi, Z., and Chen L., 2006, “Simplified Iterative Algorithm to Solve Geomet-
ric Constraints,” J. Comput.-Aid. Design Comput. Graphics, 18, pp. 787–792
(in Chinese).

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021001-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/11/2/021001/5565111/021001_1.pdf by U
niversity of Edinburgh user on 17 June 2021

http://dx.doi.org/10.1016/j.cad.2006.01.005

	s1
	s2
	l
	s2A
	s2B
	T1
	F1
	s3
	s3A
	s3A1
	s3A2
	s3A3
	s3A4
	s3A5
	s3A6
	s3A7
	s3A8
	s3A9
	s3C
	s3C1
	s3C2
	s3C3
	s4
	s4A
	fn1
	s4B
	s4B1
	s4B2
	s4B3
	s4B4
	s4B5
	s4B6
	s4B7
	s4B8
	s4C
	s5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64
	B65
	B66
	B67
	B68
	B69
	B70
	B71
	B72
	B73
	B74
	B75
	B76
	B77
	B78
	B79
	B80
	B81
	B82
	B83
	B84
	B85
	B86
	B87
	B88
	B89
	B90
	B91
	B92
	B93
	B94
	B95
	B96
	B97
	B98
	B99
	B100
	B101
	B102
	B103
	B104
	B105
	B106
	B107
	B108
	B109
	B110
	B111
	B112
	B113
	B114
	B115
	B116
	B117
	B118

