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Abstract 
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This paper describes a geometric constraint engine for finding the configurations of 
a coUection of geometric entities that satisfy a set of geometric constraints. This task 
is traditionally performed by reformulating the geometry and constraints as algebraic 
equations which are then solved symbolically or numerically. Symbolic algebraic solu- 
tion is NP-complete. Numerical solution methods are characterized by slow runtimes, 
numerical instabilities, and difficulty in handling redundant constraints. Many geometric 
constraint problems can he solved by reasoning symbolically about the geometric entities 
themselves using a new technique called degrees of freedom analysis. In this approach, 
a plan of measurements and actions is devised to satisfy each constraint incrementally, 
thus monotonically decreasing the system's remaining degrees of freedom. This plan is 
used to solve, in a maximally decoupled form, the equations resulting from an algebraic 
representation of the problem. Degrees of freedom analysis results in a polynomial-time, 
numerically stable algorithm for geometric constraint satisfaction. Empirical comparison 
with a state-of-the-art numerical solver in the domain of kinematic simulation shows 
degrees of freedom analysis to be more robust and substantially more efficient. 

1. Introduction 

Geometric reasoning plays a fundamental role in our understanding of the 
physical world. An important task in geometric reasoning is the geometric 
constraint satisfaction problem (GCSP): Given a collection of geometric 
entities, or geoms, and constraints that describe how the geoms interact 
with each other, find their positions, orientations, and dimensions so as to 
satisfy all constraints simultaneously. Solving GCSPs is central to several re- 
lated domains: describing mechanical assemblies, constraint-based sketching 
and design, geometric modeling for computer-aided design, and kinematic 
analysis of robots and other mechanisms. 
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General-purpose constraint satisfaction techniques are not well suited to 
the solution of constraint problems involving complicated geometry, for 
reasons to be explained shortly. This paper describes a novel technique, 
called degrees of freedom analysis, for solving GCSPs. It avoids a number of 
drawbacks associated with traditional approaches to solving GCSPs. Degrees 
of freedom analysis borrows from techniques originally developed for the 
analysis and synthesis of mechanical devices [6]. These techniques have 
been formalized and generalized so that they apply to a wider class of 
geometric constraint satisfaction problems. 

Existing programs which solve GCSPs represent geoms and constraints 
as algebraic equations, whose real solutions yield the numerical values de- 
scribing the positions, orientations, and dimensions of the geoms. Such 
equation sets are highly nonlinear and highly coupled, and in the general 
case require iterative numerical solution techniques. Iterative numerical pro- 
grams are not particularly efficient, and can have problems with stability 
and robustness [18]. For many tasks (e.g., simulation and optimization of 
mechanical devices) the same equations are solved repeatedly, which makes 
a "hard-wired', or compiled, solution desirable. 

In theory, symbolic analysis of the equations can often yield a non- 
iterative, closed-form solution, or can help reduce the number of redundant 
generalized coordinates in an iterative problem. Once found and compiled, 
such a closed-form solution may be executed in time nearly linearly pro- 
portional to the size of the constraint problem. However, the computational 
intractability of symbolic algebraic solution of the equations renders this 
approach impractical [ 11 ]. 

Degrees of freedom analysis solves GCSPs by reasoning symbolically 
about geometry, rather than equations, leading to more efficient algorithms. 
Degrees of freedom analysis uses two models of a constraint problem: a 
symbolic geometric model and a detailed numerical model. The geometric 
model is used to reason symbolically about how to assemble the geoms so as 
to satisfy the constraints incrementally. The "assembly plan" thus developed 
is then used to guide the solution of the complex nonlinear equationsw 
derived from the numerical modelNin a highly decoupled, stylized manner. 
This approach allows finding non-iterative, closed-form solutions to GCSPs 
whenever possible, and allows formulating iterative problems with a minimal 
number of redundant generalized coordinates when closed-form solutions do 
not exist. 

Degrees of freedom analysis was developed for analyzing problems of rigid- 
body kinematics, and was tested with an implemented computer program 
called The Linkage Assistant (TEA) [9,10]. This paper describes extensions 
and alterations to degrees of freedom analysis to cover a broader range of ge- 
ometric entities and constraints. A program called the Geometric Constraint 
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Engine (GCE) has been developed to test these extensions. All examples in 
this paper have been solved by GCE. 

1. I. Domain 

Design and analysis of physical systems often require a representation of 
the geometry of the system. While some problems such as finite element 
analysis [5] and design using deformable surfaces [4] are inherently iterative 
in nature, other problems can, in principle, be treated either entirely or 
in large part using closed-form solution techniques. In practice, many such 
problems are still treated iteratively, either due to the complexity of deriving 
a direct formulation, or due to the use of more general solution techniques 
that also handle the (possibly small) portions of the problem which require 
iteration. 

Domains such as constraint-based sketching and mechanical part design 
fall into this latter category. They tend to rely on complex combinations 
of relatively simple geometric elements, such as points, lines, and circles, 
and a small collection of constraints such as coincidence, tangency, and 
parallelism. For example, profile design for mechanical devices involves 
defining a closed perimeter curve, usually comprised of line segments and 
arcs, with a set of features, such as holes and slots, in the interior. In three 
dimensions, collections of simple solids (e.g., spheres, cones, cylinders) are 
combined to yield a solid structure. While the positions of the geoms in such 
structures often may be computed in a closed-form, analytic manner, the 
sequence of transformational operations required to satisfy the constraints 
may be quite complex. In the past, the designer of the part had to provide 
the transformation sequences [19]. Degrees of freedom analysis generates 
such sequences of transformations automatically. 

Texts in fields such as mechanical engineering or computer-aided de- 
sign employ simple examples using algebraic techniques inspired by, and 
grounded in, the geometric nature of the problems being analyzed. Kine- 
matic analysis of rigid-body mechanisms is an example in which geometric 
construction techniques are used [6]. However, real-world codes for kine- 
matic analysis bear no resemblance to the human problem solving tech- 
niques outlined in such texts, and are quite unintuitive. Degrees of freedom 
analysis leads to a more understandable way of solving these problems by 
automatically generating the geometric constructions required for analysis. 

1.2. Terminology 

The objects of interest in solving GCSPs will be called geoms. Some 
examples of geoms are lines, line segments, circles, and rigid bodies. Geoms 
have degrees of freedom, which allow them to vary in location or size. 
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For example, in 3D space, a rigid body has three translational and three 
rotational degrees of freedom. A circle with a variable radius has three 
translational, two rotational, and one dimensional degree of freedom (a 
third rotational degree of freedom is not required because the circle is 
invariant under rotation about its axis). 

The configuration variables of a geometric object are defined as the min- 
imal number of real-valued parameters I required to specify the object in 
space unambiguously. The configuration variables parameterize an object s 
translational, rotational, and dimensional degrees of freedom (DOFs), with 
one variable required for each DOF. A configuration of a geom is a particu- 
lar assignment of the configuration variables, yielding a unique instantiation 
of the geom. 

Using this terminology, a GCSP is defined as follows: Given a set of geoms 
and constraints between them, find the configurations of the geoms such 
that all constraints are satisfied. The collection of entities and constraints is 
called the constraint system, or simply the system. 

2. Degrees of freedom analysis 

Degrees of freedom analysis shares much with a body of principles found 
in texts on the graphical analysis of mechanisms. In fact, the earliest analy- 
ses of mechanisms were entirely graphical (i.e., geometrical) in nature. As 
algebraic methods were developed, the graphical methods were abandoned 
due to the error inherent in such manual approaches. But the algebraic 
techniques are hardly intuitive; therefore, the graphical methods are still 
significant. They "maintain touch with physical reality to a much greater 
degree than do the algebraic methods" and "serve as useful guides in di- 
recting the course of equations" [6, p. 215]. Degrees of freedom analysis 
encapsulates this "intuition" in a formal method. 

One way to characterize degrees of freedom analysis is as a forward 
chaining system performing geometric constructions to ascertain the location 
of the various geoms. In geometry theorem proving, forward chaining is 
infeasible because the space of possible inference is infinite [13]. In degrees 
of freedom analysis, each geometric construction (comprised of a sequence 
of measurements and actions) satisfies some constraint, but also reduces the 
number of degrees of freedom in the composite system of geoms. Eventually, 
all degrees of freedom are consumed by actions, and the inference process 
terminates. Thus, forward chaining is feasible. 

l Also known as "general ized coordinates"  [ 15 ]. 
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Fig. 1. A rigid body with two embedded points. 

2.1. Resources, measurements, and actions 

Solving GCSPs using degrees of freedom analysis relies on a representa- 
tion shift from reasoning about the real-valued configuration variables to 
reasoning about the DOFs of the actual geometric entities. The equations 
that relate configuration variables to each other may be complicated, tightly 
coupled, and highly nonlinear; in addition, the domains of the configuration 
variables are continuous, yielding an infinite search space. In contrast, an 
object's degrees of freedom form a compact, discrete-valued description of 
the state of the object. 

Degrees of freedom form abstract equivalence classes describing the state 
of a geometric entity without specifying how the constraints that lead to that 
state are satisfied. DOFs may be considered resources which are consumed 
by "physically" moving geoms to satisfy constraints. Further actions are then 
confined to those that do not violate any previously-satisfied constraints. 
Therefore, every constraint, upon being satisfied, requires that certain quan- 
tities be treated as invariant in the satisfaction of subsequent constraints, 
thereby restricting some number of degrees of freedom. These geometric 
invariants are represented explicitly. 

Reasoning about DOFs is essential to decoupling the constraints. Consider 
the x y z  coordinate frame in Fig. l, with points O, at the origin, and P, 
in some arbitrary location, rigidly fixed in the coordinate frame. As a rigid 
body, the coordinate frame is parameterized by six configuration variables, 
three for the translational DOFs (x, y, z) and three for the rotational DOFs 
(0, t~, ~'). 2 Thus, the coordinate frame is free to translate and rotate in 
space. 

Fixing the position of either point O or P (through the satisfaction 
of some constraint) removes the three translational DOFs in the system; 
the coordinate frame may only rotate about the fixed point in order to 

2In this example, the rotational DOFs are represented using Euler angles. 
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satisfy subsequent constraints. But consider the constraints in terms of 
configuration variables. Fixing the position of point O uniquely determines 
the three translational coordinates: 

X -~ XO, 

Y = Yo, 

Z ~ ZO, 

where [xo, Yo, Zo] denotes the position of point 0 in the global reference 
frame. 

In contrast, fixing the position of P (instead of O) introduces nonlinear 
constraint equations into the system to relate the configuration variables to 
the distance OP: 

( X - -  Xp)  2 q- ( y - -  yp )2  "b ( Z - -  Zp) 2 = -O-P 2, 

tan0 = (y - y i , ) / ( x  - x~,), 

tan4~ = [(y - y l , ) / ( z  - zt,)] csc0. 

Solving constraint systems algebraically is difficult because of this type 
of coupling between configuration variables. The coupling is entirely an 
artifact of the way in which the system is modeled; for example, if the same 
rigid body is modeled with the coordinate frame centered at point P, then 
satisfying a constraint involving point O leads to coupled equations. 

Using incremental movement as a constraint satisfaction scheme, the 
constraint that point O of the body be at a specific point in space is 
satisfied by measuring the vector from O to that point, and translating the 
body by that vector. There is no need to use the local coordinate frame 
representation, as long as the global position of O can be found by some 
means. Thus, the identical solution strategy works for point P. 

Solving in DOF space is simpler because the actions can be specified 
independently of how the system is parameterized in terms of configuration 
variables. The action of translating a geom to bring a specific point (O 
or P) to a particular location is independent of the detailed mathematical 
representation of the geom. The operational semantics shields a constraint 
satisfaction algorithm from having to know anything about "arbitrary" in- 
ternal representations. 

2.2. The metaphor o f  incremental  assembly 

Degrees of freedom analysis employs the notion of incremental  assembly 

as a metaphor for solving geometric constraint systems. This use of assembly 
should not be confused with physical interpretations of assembly as in, for 
example, robotics applications. In a metaphorical assembly, no physical 
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meaning is ascribed to how the objects move from where they are to where 
they need to be, a factor which is quite important in a real assembly problem. 
In solving GCSPs, the values of the geoms' configuration variables constitute 
the desired answer, rather than the history of how they were calculated. 

In a metaphorical assembly, geoms are treated as "ghost objects" which 
can pass through each other. It is therefore possible to ignore the physical 
constraints imposed by the boundaries of physical bodies, and instead be 
concerned only with purely geometric relations. The constraints between 
"ghost" geoms may be satisfied incrementally; no part is ever moved in a 
way which violates previously satisfied constraints. 

In some real-world problems, like kinematic analysis or profile sketching 
in computer-aided design, the starting locations of the geoms and their 
movement toward a configuration which satisfies the constraints is of no 
concern. What is desired is the globally consistent locations of the geoms. 
In other domains, such as "real" assembly planning, the "ghost object" 
metaphor is clearly incorrect. However, real assembly planning can benefit 
from knowing the final locations of the assembled objects. Disassembling 
the collection of assembled objects is an easier problem than generating a 
physically-realizable assembly plan; the disassembly plan can then be run 
in reverse to create an assembly plan which takes into account the physical 
constraints [21 ]. 

2. 3. MAPs and equation solution 

A plan (a sequence of measurements and actions) for moving a set of 
"ghost" geoms from arbitrary configurations to ones satisfying the constraints 
is called a metaphorical assembly plan, or MAP. The generation of a MAP 
is a problem in symbolic geometry. The sequence of measurements and 
actions is determined without regard to the actual metric values of the 
parts. 3 The MAP describes the general form of a solution to a constraint 
problem. However, symbolic geometry alone is not sufficient to obtain the 
real values of the configuration variables describing each geom in a system. 

To obtain values for configuration variables, degrees of freedom analysis 
requires a detailed numerical model of each geom. Relating the numerical 
model to the symbolic model requires a set of operators for translating, rotat- 
ing, and scaling geoms, and a set of functions that can measure, relative to a 
global coordinate system, points and vectors embedded in any geom. These 
capabilities are provided by homogeneous coordinate transforms which most 
graphics and robotics systems use. The use of the operators allows the solu- 
tion to the constraint problem to be found in a manner that is independent 
of the way in which the system is modeled at the detailed numerical level. 

3As will be seen shortly, geometric degeneracies must be accommodatecl. 



334 

Table 1 
Constraints used in GCE. 

G.A. Kramer 

Constraint name Explanation 

dist:point-point (G1, G2, d ) 
dist:point-line ( Gpt, Ge, d ) 

dist:point-plane (Gpt, Gpl, d ) 

dist:line-eircle (G~, Go, d) 

angle:vec-vec (GI, G2, a ) 

Distance between point GI and point G2 is d. 

Distance between point Gpt and line Gt is d. 

Distance between point Gpt and plane Gpl is d. 

Distance between line Gt and circle Gc is d. a 

Angle between vector G1 and vector G2 is a. 

a In two dimensions, d = 0 represents a tangency constraint. 

3. Representation 

3.1. Geometric entities 

Geoms can be nested hierarchically in a part-whole relationship; the 
terms subgeom and parent geom are used to denote relative position in 
the hierarchy. Aggregate geoms are composed of  combinations of  primitive 
geoms--points, vectors, and dimensions. A set of measurement, or query, 
operators allows finding the positions and orientations of points and vectors 
in the global, or world, coordinate frame. 

3.2. Constraints 

With the exception of  dimensional constraints, all constraints considered 
here are binary constraints--they relate two geoms. These constraints may 
additionally involve real parameters. Some examples of  constraints used in 
this paper are shown in Table 1. Dimensional constraints are unary; they 
relate one geom to a real-valued dimension parameter. 

Constraints may apply to subgeoms of a given geom. For example, to 
constrain two lines to be parallel, one constrains the vectors of those lines 
to have an angle of  zero. 

3.3. Invariants 

In the TLA system, geometric invariants were stored as arguments to 
predicates indicating the translational DOFs (TDOFs) and rotational DOFs 
(RDOFs) of  the rigid-body geoms [10]. This scheme works well for the 
kinematics domain, but does not always work well for other rigid-body 
systems or for describing geoms with dimensional DOFs. 

A rigid-body geom cannot always be characterized by well-defined combi- 
nations of  TDOFs and RDOFs. In some situations the degrees of  freedom are 
coupled in ways which cannot be divided neatly into TDOFs and RDOFs. 
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Consider a rigid body B with two points, p 1 and p 2. Let p 1 be constrained 
to lie in a plane, using the dist:point-plane constraint. Let P2 be constrained 
to lie on a line by a dist:point-line constraint. Then B has three degrees of 
freedom. But B's degrees of freedom cannot be neatly divided into TDOFs 
and RDOFs, as is now shown. 

Let s be the tuple of TDOFs and RDOFs remaining for B after these 
two constraints have been applied. Now consider the case where p~ is fixed 
in the plane by satisfying yet another constraint. Then the new tuple of 
TDOFs and RDOFs, s', is (0 TDOF, 1 RDOF) (B may rotate about the 
line connecting p~ and P z). This would suggest that the original s was 
(2 TDOF, 1 RDOF), since only translational DOFs were removed by the 
new constraint. But consider instead the case where the translation of P2 
along the line is fixed by a new constraint. Then s' = (0 TDOF, 2 RDOF) 
(B may rotate so that p~ remains on a circle in the plane, and it may 
also rotate about the line connecting p~ and P z). This would suggest 
that the original s was (1 TDOF, 2 RDOF). Thus, depending on sub- 
sequent constraints, the degrees of freedom in s decompose into differ- 
ing numbers of TDOFs and RDOFs, making it an ambiguous representa- 
tion. 

A more general approach to representing the degrees of freedom of a 
geom is to create a data structure that explicitly represents the invariants 
without assigning them to particular categories (e.g., TDOF or RDOF).  In 
the expanded theory of degrees of freedom analysis, the invariants associated 
with each geom are stored in a structure called the invariants record, which 
contains several lists of points, vectors, or tuples. The invariants record 
representation has the advantage over the predicate-based representation of 
being easily extensible for new constraint types and for different geom types. 
This data structure is implemented in GCE. 

The structure of the invariants record is shown in Table 2. In the table, 
p represents a point, v a vector, £~ a one-dimensional locus (e.g., circle, 
line, parabola), £2 a two-dimensional locus (e.g., sphere, hyperboloid), 79 a 
dimension, va a real value, and G an aggregate geom. 

The "invariant points" slot of the invariants record is a list of  all points 
embedded in the geom whose positions are invariant. The "1D-constrained 
points" slot is a list of  (point, locus) tuples denoting those points embedded 
in the geom which are constrained to lie on one-dimensional loci (similarly 
for the "2D-constrained points" slot). Vectors, being two-dimensional, can 
be invariant, or can be constrained to one-dimensional loci (on a unit 
sphere). Invariant dimensions are those which have been constrained to 
fixed values. 

The last three entries in the invariants record are plaeeholders for re- 
lationships that will later constrain dimensions. Their use is illustrated in 
Section 4.2. 
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Table 2 
Structure of the invariants record. 

Slot Representation 

Invariant points p 

I D-constrained points (p, £ 1) 

2D-constrained points (p, E 2) 

Invariant vectors v 

1D-constrained vectors (v, E l) 

Invariant dimensions (79, va) 

Fixed-distance points (P, va) 

Fixed-distance lines (Ge, va) 

Fixed-distance planes ( Gpl, va) 

The cardinalities of the lists in the invariants record at any given 
stage of the solution process form an invariants signature. This sig- 
nature may be used, along with the type of an as-yet-unsolved con- 
straint, to determine the sequence of measurements and actions which 
will satisfy that constraint. The invariants signature is represented as a 
vector of integers, which when read left to right, correspond to the car- 
dinalities of the invariants record slots as described in Table 2. For 
example, IR[100_10_I_000] describes a geom that has one invariant 
point, one invariant vector, and one invariant dimension. The under- 
scores separate the signature into point invariants, vector invariants, 
dimension invariants, and fixed-distance invariants for ease of read- 
ing. 

The number of DOFs remaining on a partially-constrained geom is cal- 
culated by subtracting the number of degrees of freedom restricted by the 
invariants (an example of this type of calculation appears in Section 4.2.3). 
If the number of DOFs of a geom becomes zero, the geom is said to be 
grounded, or fixed. 

4. Action and locus analysis 

The two fundamental types of reasoning carried out by degrees of freedom 
analysis are called action analysis and locus analysis. They are described 
through the use of examples. Each example will illustrate the steps used 
to solve the problem by following the actions of GCE, which implements 
degrees of freedom analysis. 
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Fig. 2. Brick with three dist:l~int-l~int constraints. 

4.1. Example 1: the brick 

Consider a "brick" (a rigid-body geom) with three distinguished points 4 
b l ,  b2, and b3. Another three points, gl,  g2, and g3, are fixed in the global 
coordinate system. The problem is to find a configuration for the brick such 
that bl is coincident with g~, b2 with g2, and b3 with g3. The constraints 
to be satisfied are: 

dist:point-point (g l, b l, 0 ), 

dist:point-point (g 2, b 2, 0 ), 

dist:point-point (g 3, b 3, 0 ). 

These constraints are depicted graphically in Fig. 2. In this figure, the 
brick is in some arbitrary configuration, and it must be configured so that 
the three dist:point-point constraints (denoted by gray lines between the 
points) are all satisfied. 

4. I.I. Action analysis 
At each step in solving for a geom's configuration, degrees of freedom 

analysis searches for constraints in which one of the geoms is "fixed enough" 
so that the other geom can be moved to satisfied the constraint. For example, 
if one geom of a dist:point-point constraint has invariant position, it is fixed 
enough for the other geom to be moved to satisfy the constraint. If neither 
geom is fixed, then it makes sense to delay the satisfaction of the constraint, 
since both geoms might need to be moved subsequently. The process of 
finding and satisfying constraints using the above strategy is called action 
analysis. 

4The shape of this "brick" is not important to degrees of freedom analysis. The important 
information is that this rigid-body geom contains three distinguished points. 
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Fig. 3. Brick solution using a geometrxc approach. 

A geom need only be "fixed enough" to allow the constraint to be sat- 
isfied; it need not be grounded. For example, if a line segment L has a 
fixed orientation, and one endpoint is constrained to a line parallel to the 
orientation of L, then L is "fixed enough" to allow a point to be moved to 
satisfy a dist:point-line constraint. 5 

The information required for action analysis is stored in a set of  plan 
fragment tables, one for each type of geom. Conceptually, a plan fragment 
table is a dispatch table, indexed by the invariants signature of the geom 
and the type of constraint to be satisfied. Each plan fragment in the table 
specifies how to move the geom to satisfy the new constraint using only 
available degrees of freedom, and specifies what new invariants the geom 
will have after the action is performed. 

4.1.2. Geometric planning 
Geometric planning begins by selecting a constraint which can be satisfied, 

and performing the appropriate measurements and actions. While the brick 
is initially free to move, it does have an arbitrary configuration Co in the 
numerical model, as shown in Fig. 3. The particular values of the brick's 
configuration variables do not affect the symbolic model. 

A trace of GCE'S solution process serves to illustrate the geometric planning. 
GCE decides to satisfy dist:point-point (gl,  b t, 0) first; it could have chosen 
any of the constraints. To satisfy this constraint, GCE measures the vector 
from b l to g l. It then translates the brick by that vector, leaving the brick 
in configuration C1, shown in gray. If dist:point-point (g l, b l, 0) is to remain 
satisfied when future actions alter the brick's configuration, those future 

5The semantics of the dist:point-line constraint allows the point to be a specified distance 
from the infinite line which is the extension of the line segment. 
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actions must be restricted to rotations about g l (or equivalently, about b 1). 
GCE ensures this by marking point b l on the brick as being an invariant 
point. 

GCE generates this sequence of measurements and actions by looking 
up the appropriate template in the plan fragment table, and binding the 
template's variables appropriately. Initially the brick has no invariants (i.e., 
its invariants signature is IR[000_00_0_000]). The plan fragment that 
is invoked contains the following information (descriptions in this and 
subsequent figures have been syntactically "cleaned up" for ease of reading): 

Geom type: rigid-body 
Constraint: dist:point-point (?geom I, ?geom2, ?d) 
Invariants signature: IR [000_00_0_000 ] 

Measurements and actions: 
begin 
?fixed = fixed-geom( ?geoml, ?geom2); 
?free = free-geom ( ?geom l, ?geom2 ) ; 
?sphere = make-sphere (?fixed, ?d); 
?dest = projection ( ?free, ?sphere); 
?parent = top-level-parent (?free); 
translate ( ?parent, vee-diff (global-loc ( ?dest ) , 

global-lot (?free)) ); 
end; 

Bookkeeping:. 
i f ? d = =  0 

then add-invariant-point ( ?free, ?parent) 
else add-2D-constrained-point( ?free, ?sphere, ?parent); 

Explanation: 
Geom ?parent is free to translate. A dist:point-point constraint 
must be satisfied between point ?fixed, whose global position 
is known to be invariant, and point ?free on ?parent. There- 
fore ?parent is translated by the vector from the current global 
position of ?free to a point on the sphere of radius ?d around 
point ?fixed with known global position. This action removes one 
translational degree of freedom if ?d is non-zero, and removes 
all three translational degrees of freedom if ?d is zero. 

The plan fragment specifies how to move geom of type rigid-body, with 
an invariants signature of IR[000_00_0_000], to satisfy the constraint. The 
fixed and free geoms--both of which are pointsmare determined via func- 
tions called fixed-geom and free-geom, which check the invariant statuses of 
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?geoml and ?geom2. The effect is to assign a directionality to the constraint. 
In this example, gl is the fixed geom and bl is the free one. Since bl 
is embedded in a rigid-body, the rigid body plan fragment table is used, 
and all operations (e.g., translate) are applied to the parent rigid body. 
The function top-level-parent follows the parent relation transitively until it 
reaches a geom which has no parent. The function global-loc returns the 
location (position for a point, orientation for a vector) of  a primitive geom 
in the global coordinate system. The projection function is used to calculate 
the minimum alteration to the brick's current position that will satisfy the 
constraint. The textual explanation--with variable names replaced by their 
bindings--helps a user of  GCE to understand the solution process. 

After moving the brick, the plan fragment updates the invariants record 
of  the brick to show that it has one invariant point, since the distance 
parameter of the constraint was zero. Note that the bookkeeping section of 
the plan fragment is responsible for noticing that a point is a degenerate 
case of  a sphere (i.e., a sphere of  radius zero). The invariants record of  the 
brick now has a signature of  IR[100_00_0_000]. 

GCE next chooses to satisfy dist:point-point(ga,b3, 0); again, either of the 
remaining constraints could have been chosen. GCE measures the vector V l 
from gl to g3 (where /I 3 must be placed), and vector v2 from g l  to b3 
(shown in its new location as b~ in Fig. 3). These two vectors are shown 
as dashed lines in Fig. 3. Since the desired distance between the two points 
is zero, the problem can be solved only if the point g3 lies on a sphere 
centered at gl,  with radius Iv2l. 

In order to move the brick, GCE requires a line about which to rotate 
it. The point bl lies on this line, and if the rotation is to move b3 to 
coincide with g3, one acceptable line direction is the normal to the plane 
in which v l and v2 lie, i.e., v ~× v 2 The amount to rotate the brick is 
the angle between these vectors, measured from v~ to v ~ Therefore, GCE 
rotates the brick about b 1 around vector V l × v 2 by the angle between v 1 
and v2. This action brings the brick to configuration C2, which satisfies 
dist:point-point(g3, b3, 0) without violating dist:point-point(gl, b 1, 0). This 
action also removes two of the remaining rotational degrees of  freedom; 
in order to preserve the two already-satisfied constraints, all future actions 
must be rotations about line segment gig3. 

Once again, the sequence of  measurements and actions is obtained by 
direct lookup in the plan fragment table. The actual measurements and 
actions are more complicated than described above, in order to handle the 
general case of  a non-zero distance: 

Geom type: rigid-body 
Constraint: dist:point-point (?geom 1, ?geom2, d) 
Invariants signature: IR [ 100_00_0_000 ] 
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Measurements and actions: 
begin 
?fixed = fixed-geom (?geom 1, ?geom2 ) ; 
?free = free-geom ( ?geom l, ?geom2 ) ; 
?parent = top-level-parent (?free); 
?point = get-invariant(?parent, "Invariant points", 1 ); 
?v l = vec-diff (global-loe ( ?fixed) , global-loc ( ?point ) ); 
?v 2 = vec-diff (global-loc ( ?free ) , global-loc ( ?point ) ) ; 
?sphere1 = make-sphere (?fixed, ?d); 
?sphere2 = make-sphere (?point, mag (?v2)); 
?circle = intersect (?sphere1, ?sphere2); 
if ?circle = = null 

begin 
if (mag(?vl) + mag(?v2) < ?d) 

then ?error = ? d -  (mag(?vl) + mag(?v2) ) 
else ?error = abs(mag(?vl)  - mag(?v2) ) - ?d; 

error ("Dimensionally inconsistent", ?error) 
end 

?dest = projection( ?free, ?circle); 
?v 3 = vec-diff (global-loc ( ?dest ) , global-loe ( ?point ) ) ; 
?cp = cross-prod(?v2, ?v3) 
rotate( ?geom, global-ioc( ?point ), ?cp, vec-angle( ?v2, ?v3, ?cp) ); 
end; 

Bookkeeping:. 
i f?d  = =  0 

add-invariant-point ( ?free, ?parent) 
else add-lD-constrained-point (?free, ?circle, ?parent); 

Explanation: 
Geom ?parent has zero translational degrees of freedom, but may 
rotate about ?point. If the points ?fixed and ?free have distances 
from ?point which differ by no more than ?d, the problem is 
solved by rotation about ?point. Otherwise, the problem is di- 
mensionally inconsistent. If ?d is zero, geom ?parent is left with 
one degree of freedom; otherwise it has two degrees of freedom. 

A new feature of this plan fragment is the use of conditional statements 
to check the values of quantities. The two spheres ?sphere1 and ?sphere2 
will not intersect in the following situations: 

I?v l- I?v21 > ?d, 

I?v2[- I?vZl > ?d, 

[?vll+ I?v21 < ?d. 
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In these situations, ?circle will be null. An error value is calculated to 
indicate the severity of the problem. In all other cases, a solution is possible. 6 
Since, in the brick example, ?d is zero, another invariant point is added, 
and the invariants signature becomes IR[200_00_0_000]. 

To satisfy the final constraint, dist:point-point(g2,b2, 0), GCE constructs 
a perpendicular from b2 to gig3, and creates a circle with radius equal 
to the magnitude of the perpendicular, center equal to the base of the 
perpendicular, and axis equal to the direction of line segment g-S-~. If the 
circle is non-degenerate (i.e., has a non-zero radius), and it intersects point 
g2, a solution is obtained by rotation about line segment g--S-gS. This action 
brings the brick to configuration C3, which satisfies all three dist:point-point 
constraints. If the circle is degenerate (i.e., a point), no actions are taken, 
and no degrees of freedom are constrained. In the non-degenerate case, the 
action reduces the brick's remaining degrees of freedom to zero, by adding 
another invariant point. 

4.1.3. The canonical nature o f  action analysis 
Action analysis provides a simple way of decoupling the constraints per- 

taining to a single geom. It may be understood in the context of rewriting 
systems. A set of  rewrite rules is canonical when all the normal forms of 
each expression are identical [3]. In such cases, the order in which the 
rules are applied does not matter; the result is always the same. When a set 
of  rules is canonical, any applicable rule may be invoked, and "progress" 
will be made toward the solution. No ordering of the rules need be done, 
although it may be useful to guide the order of rule invocations to improve 
the efficiency of the process. Similarly, action analysis may be viewed as the 
process of repeatedly updating a geom's invariants record. Action analysis is 
canonical in the sense that, regardless of the order in which the constraints 
are satisfied, the invariants record of the geom at the end of the process is 
always the same. 

Action analysis is shown to be canonical in the domain of rigid-body 
kinematics in [10, pp. 80-81,247-249].  A proof has not yet been attempted 
in the expanded geometric domain of GCE, but it seems to be a natural 
extension of the existing proof. 

4.2. Example 2: constraints on a circle 

The brick problem illustrated how action analysis is used to generate a se- 
quence of measurements and actions to satisfy a set of  geometric constraints. 

61f the vectors stored in registers ?v2 and ?v3 are gratuitously coincident, the cross-product 
vector stored in ?cp will have a magnitude of zero. In this situation, the rotate operator performs 
no action. 
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Fig. 4. Constraining a circle--initial conditions. 

For each of these constraints, one geom must be invariant. This condition, 
however, is not always encountered in GCSPs. Often, geoms interact with 
each other in more complex ways that require the satisfaction of constraints 
between partially constrained geoms. This corresponds to the solution of 
nonlinear simultaneous equations in the algebraic domain. 

A problem involving constraints that can only be solved by considering 
their interactions is shown in Fig. 4. This problem is a planar problem, i.e., 
all geoms are constrained to lie in a particular plane. The problem involves 
the following geoms: 

• A circle C, of  fixed position, orientation, and radius (i.e., grounded). 
• An infinite line L, of  fixed position and orientation (i.e., grounded). 
• A grounded point P. 
• A line segment Ls, of  fixed length, free to translate and rotate within 

the same plane as C and L. The invariants of the line segment record 
that one endpoint is constrained to a two-dimensional locus (a plane), 
and the line segment's vector is constrained to a one-dimensional lo- 
cus (perpendicular to the plane's normal); the invariants signature is 
IR [001 _01 _ 1 _000 ]. 

• A circle G, free to translate in the same plane as C and L, as well as 
free to change radius; however, the axis of the circle is constrained to 
be the same as the normal to the plane: IR[001 _10_0_000]. G is shown 
as a dashed circle in Fig. 4. 

The additional constraints to be solved are: 

( I ) dist:point-point (end-I (Ls), P, 0), 
(2) dist:point-point (end-2 (L s), center (G), 0 ), 
(3) dist:line-circle (L, G, 0), 
(4) dist:circle-circle ( C, G, 0 ). 

These constraints will be referred to by number in the following discussion. 
Since the constraints can be satisfied in any order, they will "arbitrarily" be 
attempted in the order in which they appear above. 
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Fig. 5. Constraining a circle--solution. 

4.2.1. Geometric planning." action analysis 
Action analysis can be used to satisfy most of  these constraints. Constraint 

( 1 ) can be satisfied because point P is grounded. Therefore, line segment Ls 
is translated to bring end-1 (Ls) into coincidence with point P. Constraint 
(2) cannot yet be satisfied, because neither the center of circle G nor 
end-2(Ls) are grounded. 

Constraint (3) can be satisfied by action analysis because line L is fixed. 
No restrictions can be placed on the location of the center of  the G, nor 
on its radius. The invariant that is added to the invariants record is of  
the "fixed-distance lines" class. This invariant records the distance from the 
circle perimeter to the line (in this case zero). It serves to indicate that, 
were the radius of the circle fixed, the center would be restricted to a one- 
dimensional locus, or, were the center fixed, the radius would be known. 
This relationship restricts one degree of  freedom. 

Constraint (4) can be satisfied because circle C is fixed. The combination 
of constraint (4) and the fixed-distance line invariant is used to deduce that 
the center of G is in fact restricted to a one-dimensional locus; this is the 
parabolic locus Lp shown in Fig. 5. The center of G, which was previously 
constrained to a two-dimensional locus (the plane), is "promoted" to a 
one-dimensional locus. 

Still, constraint (2) cannot be satisfied, since neither center(G) nor 
end-2(Ls) have become grounded through the solution of other constraints. 
However, there is enough information to satisfy this constraint. 

4.2.2. Locus analysis 
Locus analysis determines where in global space certain classes of partially 

constrained geoms must lie. If a subgeom is embedded in a parent geom 
that is not yet grounded but which has some geometric invariants, that 
subgeom is restricted to lie in a subregion of space. The locus of possible 
locations for the subgeom is a function only of the subgeom's position 
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within its parent geom, and of the parent geom's degrees of freedom. When 
two partially constrained geoms are related by a constraint, the globally 
acceptable locations for those geoms often may be derived by intersection of 
their locally determined loci of  possible locations. Once the global location 
is known, action analysis is once again used to move the relevant geoms to 
satisfy the constraint. 

A collection of locus tables describes the loci of points, lines, and vectors 
embedded in a geom as a function of the invariants of that geom. A locus 
intersection table enables deduction of globally acceptable locations for pairs 
of geoms constrained by multiple loci. If the intersection yields a finite 
set of points, the locus intersection table also contains information about 
the maximum number of real roots the intersection equation may have; a 
branch variable is introduced into the solution to let a user of degrees of 
freedom analysis specify which branch of the solution should be used for 
the problem solution. 

Even though an intersection may have several branches (or solutions), 
the solutions are topologically equivalent in that all loci resulting from the 
intersection are of the same dimensionality. 7 Thus, a locus intersection is a 
single abstract solution which can be instantiated by choosing a branch vari- 
able value. In this manner, a class of instantiable solutions are represented 
by a vector of branch variables associated with a metaphorical assembly 
plan, and a specific solution by a vector of branch variable values. 

4.2.3. Geometric planning: locus analysis 
At the current stage of the solution, Ls has an invariant endpoint, a 

vector constrained to be normal to the plan of the problem, and a fixed 
dimension. Thus, Ls has one degree of freedom (a line segment has six DOFs 
in three space; an invariant point subtracts three DOFs, a 1D-constrained 
vector removes one, and an invariant dimension subtracts one, leaving one 
remaining DOF). Therefore, any points on the line segment must have no 
more than one DOF. The locus tables indicate that end-2(Ls) is restricted 
to a circle locus, shown as Lc in Fig. 5. 

The location of center (G) has already been restricted to the parabola locus 
Lp via the solution of constraints (3) and (4). This allows constraint (2) 
to be satisfied as follows: 

(1) Intersect loci Lp and Lc. Since multiple intersections are possible, a 
branch variable is assigned to the chosen solution so that the same 
intersection may be chosen in a subsequent solution of the constraint 
system. 

7For more general non-analytic or piecewise-analytic curves, such as splines, this may not be 
the case, thereby making locus analysis more complicated. 
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(2) Use action analysis to rotate Ls so that end-2 (Ls) is coincident with 
the intersection point. This action grounds Ls. 

(3) Use action analysis to translate circle G so center(G) is coincident 
with the intersection point. Using the information stored in the 
"fixed-distance lines" slot of the invariants record, set the circle's 
radius so the perimeter touches line L. These actions ground G. 

Locus intersection, followed by another round of action analysis thus 
grounds the remaining geoms and completes the solution of this constraint 
problem. 

4.3. Structure of the plan fragment tables 

The plan fragments are small programs that satisfy a constraint without 
violating any of the invariants already pertaining to a geom. When a new 
geom type or constraint type expands the ontology of the system, new plan 
fragments must be written, and the plan fragment tables expanded. Each 
geom type has its own plan fragment table; thus, the plan fragment table 
for a circle is different from that of a line segment. Since the plan fragment 
table is accessed by the invariants signature of a geom, the number of entries 
in the plan fragment table depends on the number of possible invariants 
signatures for that geom. 

The geom representations sometimes allow redundant descriptions of the 
same state. For example, a grounded line segment could be described 
by an invariant dimension, an invariant point, and an invariant vector 
(IR[001 _01 _1 _000] ). However, it could be described equally well by two 
invariant points (IR [002_00_0_000] ). Thus, for each geometrically distinct 
state, a set of invariants records may describe the geom, forming an equiv- 
alence class. To minimize the number of plan fragments in each table, one 
member of each equivalence class is (arbitrarily) designated the "canonical" 
invariants record. Then, each plan fragment is written so that only canonical 
invariants records can result from satisfying the constraints. At present, this 
task is performed manually; automating this process, or at least checking it 
for consistency, would greatly improve the knowledge engineering process. 

Many entries in the various plan fragment tables share a similar struc- 
ture. For instance, moving a line segment with no invariants to satisfy 
a dist:point-point constraint uses the same measurements and actions as 
moving an unconstrained circle or rigid body. To re-use generic strategies, 
the plan fragments are written in MATHCODE, a Mathematica-based system 
for translating high-level code descriptions into lower-level languages [8]. 
A single MATHCODE routine can then be used in several different plan 
fragments. 

Verification of the plan fragments is achieved by exhaustive unit testing 
which takes into account all possible geometric degeneracies. A "geometric 
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Fig. 6. A ten-bar linkage "recursively" composed of four-bar linkages. 

construction checker", analogous to a theorem checker, would improve the 
verification process. 

5. Loop and chain analysis 

The previous examples were relatively simple in that all constraints could 
be solved with action and locus analysis being repeatedly used to "grow" the 
set of grounded geoms, thus allowing more constraints to be satisfied. More 
complex problems require solving subnetworks (e.g., loops or chains) of 
the constraint network in isolation, then reformulating those substructures 
as rigid bodies which can then be moved to solve other portions of the 
constraint network. 

5.1. Example 3: hierarchical grouping of geoms 

An example of a constraint system requiring analysis of constraint loops 
and chains is the ten-bar mechanical linkage shown in Fig. 6. Its structure 
is that of a four-bar linkage, whose coupler bar is composed of another 
four-bar, whose coupler is composed of yet another four-bar. 

In Fig. 6, the geoms (called links in the mechanisms domain) have been 
labeled 1 through 10. All links are constrained to be in the plane. The joints 
connecting the links are modeled with dist:point-point constraints, all with 
zero distances. This system has three internal degrees of freedom, and hence 
requires additional constraints to fully constrain the system. The three joints 
in Fig. 6 which are solid black (connecting links 1 and 2, links 3 and 4, and 
links 7 and 10) are additionally constrained by angle:vec-vec constraints. In 
addition, link 1 is grounded (as indicated by the "foot" in the center of the 
link). 



348 G.A. Kramer 

) 

) 

) 
Fig. 7. Graph of the ten-bar linkage of Fig. 6, 

In order to search for rigid substructures, degrees of freedom analysis 
employs a graph representation of the constraint system. In the constraint 
graph, nodes represent geoms, and arcs represent collections of one or more 
constraints (in subsequent discussion, the terms geom and node will be 
used interchangeably). Figure 7 shows the graph of the constraint system of 
Fig. 6 before solving. The node numbers correspond to the link numbering 
in Fig. 6. The grounded geom in this and subsequent graphs is shaded for 
easy identification. 

In the absence of the constraints to be satisfied, each rigid-body geom in 
the system has three DOFs, since each body is constrained to the plane. 
The arcs in the graph of Fig. 7 which are marked with an asterisk restrict 
three DOFs, since they have dist:point-point constraints with zero distance, 
and angle constraints. Thus, satisfaction of the constraints on one of these 
arcs will cause the two geoms which they relate to be fixed rigidly with 
respect to each other. Acyclic collections of such geoms are called chains. 
Degrees of freedom analysis satisfies these constraints first, and reformulates 
each pair of geoms as a single rigid-body geom, also called a macro-geom. 
The resultant graph is shown in Fig. 8, where geoms 1 and 2 have been 
assembled to form geom l 1, 3 and 4 have formed geom 12, and 7 and 10 
have formed geom 13. 

In the new graph, all remaining arcs have a single dist:point-point constraint 
that, in the plane, restricts two DOFs. No rigid chains remain, so degrees of 
freedom analysis next looks for rigid loops in the constraint graph. Consider 
what would happen if the loop of nodes 1 l, 12, 6, and 5 were to be satisfied 
using action and locus analysis. Each of the three non-grounded geoms has 
three DOFs, for a total of nine DOFs. The three constraints restrict only 
six DOFs, leaving three remaining DOFs. In other words, that loop would 
not be rigidly fixed. In contrast, consider loop 8-9-13-8. Were one of the 
geoms grounded, this loop would have zero DOFs. Finding a loop's degrees 
of freedom is analogous to determining the mobility of a mechanism [6], 
and the algorithms are quite similar. 
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'3 (3 
Fig. 8. Graph of Fig. 7 after replacing pairs of geoms constrained by driving inputs with 

macro-geoms. 

,3 ( 
Fig. 9. Graph of Fig. 8 after assembling loop 8-9-13-8 and replacing it with the single node 14. 

Degrees of freedom analysis identifies the loop with the lowest number of 
degrees of freedom, in this case, loop 8-9-13-8.  It then temporarily grounds 
one of the geoms in this loop and uses action and locus analysis to solve for 
the constraints on the arcs connecting the three nodes. Next, it reformulates 
the composite geometry as a macro-geom, shown as node 14 in Fig. 9. This 
will in turn allow loop 12-14-5-12 to be reformulated as a macro-geom, 
which will enable the solution of the remaining constraints. 

5.2. Position analysis 

Position analysis is the term for the top-level strategy employed in degrees 
of freedom analysis. First, rigid chains are identified, solved, and reformu- 
lated as macro-geoms. Next, the loop with the fewest DOFs is identified, 
solved, and rewritten as a macro-geom. The process is repeated until the 
entire constraint graph is rewritten as a single node. Appendix A.3 describes 
the algorithm in detail. 

5.2.1. Underconstrained systems and iterative solutions 
Cases where no loop in the constraint system is rigid indicate one of two 

possible situations: 

(a) the system is underconstrained, or 
(b) the system has no closed-form solution. 
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In such cases, degrees of freedom analysis proceeds by identifying the loop 
with the fewest degrees of freedom, and adding as many redundant con- 
straints to the system as are required to make the loop rigid. These redundant 
constraints are called defaults. 

In case (a), the defaults serve to parameterize the remaining degrees of 
freedom in the system. In case (b), the constraints yield a near-minimal set 
of redundant generalized coordinates for use in an efficient iterative solution 
to the constraint system. Iterative solutions are formulated in the following 
manner: A set of parameter values are chosen for the defaults, and assembly 
of the geometry is attempted. If the geometry cannot be assembled, the error 
functions in the plan fragments accumulate an error proportional to the 
degree to which the assembly is incorrect. Traditional optimization schemes 
are then used to vary the default parameters until the error term vanishes. 

Once degrees of freedom analysis has committed to solving a particular 
loop, it will not backtrack. Therefore, if the loop is degenerate in some 
way, a redundant generalized coordinate may be introduced when in fact 
solving a different loop first would have obviated the need for a redundant 
generalized coordinate. While this does not affect the quality of the answer 
to the GCSP, it does affect the efficiency of the solution process. The group- 
theoretic approach to finding degrees of freedom proposed by Herv6 [7] 
may be useful in detecting degeneracies before loop solution, as evidenced 
by similar work by Popplestone et al. [I 7]. 

A complete discussion of loop and chain analysis would exceed the space 
limitations of this article. Extended discussion is found in [10]. 

5.2.2. Plan compilation issues 
The TLA system was employed as a simulation "compiler" by storing the 

sequence of measurements and actions in a re-executable plan structure [ 9 ]. 
This allowed typically linear behavior, with a worst-case O (n log n), in the 
simulation of mechanisms, where n is the number of links. In its expanded 
scope, degrees of freedom analysis still utilizes a plan representation; how- 
ever, rather than a linear array, a tree is used to store the plan. Each node in 
the plan tree has different exit points depending on the number of degrees 
of freedom absorbed by the constraint. Upon re-execution with different di- 
mensions or constraint parameters, a new geometric degeneracy may arise, 
causing a new branch of the plan tree to be generated and stored. This 
allows caching solutions from various degenerate geometries. Currently, the 
tree-style plan representation is in prototype form. 

6. Empirical and theoretical analysis 

Degrees of freedom analysis provides low-order polynomial-time algo- 
rithms for the solution of GCSPs. Problems are solved in O(cg) time, 
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where c is the number of constraints, and g is the number of geoms. Details 
of the complexity analysis are provided in Appendix A. 

6.1. Canonicality 

In degrees of freedom analysis, the constraint satisfaction process is canon- 
ical. At any stage of the solution process, a number of choices may exist 
as to which constraint to satisfy next. Any choice may be made, with no 
affect on the final answer. Proving that the position analysis algorithm is 
canonical is done by proving that chain and loop rewriting are confluent, 
and then showing that this implies that the algorithm is canonical. 

Borrowing the terminology used in [3 ], which applies to expression rewrit- 
ing, confluence is defined in this context as the property that whenever a 
subgraph S in the constraint graph can be rewritten in two different ways, 
say to I~ and 12, then I~ and 12 can both be rewritten to some common 
graph S'. A proof of the canonical nature of position analysis is found in 
[10, pp. 140-145]. 

6.2. Empirical comparisons 

Degrees of freedom analysis was empirically validated in the domain of 
kinematics with an implemented computer program called The Linkage As- 
sistant (TEA). This program has performed kinematic simulation of complex 
mechanisms in a more computationally efficient manner than other existing 
programs. Efficiency increases of two orders of magnitude were observed 
on medium-sized examples involving on the order of a hundred constraints, 
when compared with ADAMS, a mechanism simulator using a maximally 
redundant generalized coordinate representation and iterative numerical so- 
lution [ 1 ]. 

The graph of Fig. 10 shows the timing analyses of ADAMS and TLA as a 
function of the number of bodies in a mechanism. The dashed line shows 
the time per iteration for ADAMS; it is a polynomial curve proportional to 
n 2'17, where n is the number of links in the mechanism. This indicates 
the efficiency of the sparse matrix routines employed by ADAMS. Typically, 
between 2 and 12 iterations are required to solve a single step of the 
simulation, as indicated by the gray area. In contrast, the behavior of TLA 
(re-using its compiled plan) is linear, and is substantially more efficient. 

7. Conclusion 

While symbolic solution of the algebraic equations describing geometric 
constraints is NP-complete in general, degrees of freedom analysis allows 
generating closed-form solutions, or efficient iterative solutions, to GCSPs 
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Fig. 10. Comparison of runtimes of TLA and ADAMS. 

in polynomial time. This avoids the problem of computational intractabil- 
ity found in symbolic algebra systems. Typically, the resulting closed-form 
solutions may be executed in time linearly proportional to the size of the 
constraint system being analyzed, and are substantially more efficient than 
iterative numerical techniques. 

The power in degrees of freedom analysis comes from the use of a 
metaphor of incremental assembly. This allows for maximal decoupling of 
the constraints. Similar operational semantics can be found in the work 
of Arbab and Wang [2], Pabon et al. [14], and Wilk [20]. However, in 
these systems, methods must be provided to solve a new constraint in the 
context of  the object plus all the constraints currently satisfied. The number 
of constraint satisfaction methods can grow quickly with the types of objects 
and types of constraints--O (c n ), where c is the number of constraint types, 
and n is the number of DOFs in an unconstrainedgeom. By using DOFs 
as equivalence classes, degrees of freedom analysis coalesces many of these 
states, thereby creating a more manageable search space. 

The work of Arbab and Wang [2] and Pabon et al. [14] used iterative 
numerical techniques whenever a constraint loop was found. In contrast, 
locus analysis allows solving many such problems in closed form. Locus 
analysis can be considered a generalization of the "cycle finder" described 
by Popplestone in [ 16 ]. 
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There are a number of interesting topics for further extending degrees 
of freedom analysis. Currently, the plan tree is recomputed whenever the 
topology of the constraint problem changes. This can be inefficient if con- 
straints are only being added. However, re-use of the tree may result in the 
retention of previously-added redundant generalized coordinates which are 
no longer needed. 

Experiments have begun in mixing iterative and closed-form solutions 
within the plan fragments themselves. For example, if a point geom is 
confined to a one-dimensional locus described by a sixth-degree polynomial, 
and must be positioned a certain distance from another point, a locally 
iterative solution can be used to compute the intersection of the locus and 
a sphere. This is more efficient than employing a general iterative solver in 
an "outer loop" invoking the entire assembly plan. 

7. I. Relation to general constraint satisfaction 

Mackworth's description of constraint graphs, and the concepts of node, 
arc, and path consistency, were formulated for predicates with finite, 
discrete-valued variable domains [12]. In GCSPs, the variables are con- 
tinuous, with infinite domains. Node, arc, and path consistency are more 
difficult in such situations. 8 

In the context of the graph representation of general constraint systems, 
degrees of freedom analysis may be thought of as a layered solution to 
the GCSP. In the original formulation of the problem, the nodes in the 
constraint graph represent real values for the configuration variables of the 
geoms, and the arcs represent constraints. A "meta-system" may be devised 
in which the graph nodes represent the number of degrees of freedom of 
the system, and the arcs represent constraints. The meta-system maps the 
continuous variables into the discrete-valued DOF space. 

In the meta-system, node, arc, and path consistency are used to remove 
degrees of freedom from the nodes (since any degrees of freedom on the 
nodes are incompatible with constraints on adjacent arcs). Node consistency 
corresponds to grounding a geom, arc consistency corresponds to solving 
a chain, and path consistency corresponds to solving loops. Every time a 
constraint is removed in the meta-system, a set of measurements and actions 
is posted as a side-effect. These side-effects solve the GCSP as originally 
formulated. 

From this analogy, it is seen that there are some broad concepts that 
can be re-used in formulating constraint satisfaction problems for other 
domains. The notion of abstracting some continuous space (e.g., position, 

Slnterval arithmetic, while technically continuous, discretizes the domain by considering only 
a finite set of interval endpoints. 
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orientation, dimension) into a discrete space (e.g., degrees of freedom) may 
apply to other domains. Designing algorithms that make use of monotonic 
trends (such as the reduction of degrees of freedom of a geom) tend to 
lead to polynomial-time algorithms. Planning metaphors can help to guide 
search. Creative representation shifts will be required to use these principles 
in other domains, but if they can be found, the benefits may be substantial. 

Appendix A. Algorithms 

The section describes, at a high level, the algorithms for the major func- 
tional components of GCE. Algorithms for action analysis and locus analysis 
are not given; they are similar to those found in [10]. 

A. 1. Solving chains 

Satisfying the constraints on a rigid chain of arbitrary length proceeds re- 
cursively by satisfying the constraints between a pair of  geoms, and rewriting 
the pair of  geoms as a single macro-geom. The algorithm for identifying a 
pair of  geoms which can be rewritten as a macro-geom, and solving the 
appropriate constraints is: 

Algorithm SOLVE-RIGID-CHAINS. Algorithm for recognizing and rewriting 
topologically rigid chains in a constraint graph as macro-geoms. 

Input: Constraint graph G. 
Other variables: I for temporary storage of a geom's invariants record. 

procedure SOLVE-RIGID-CHAINS ( G ): 
begin 

1 for arc a in the constraint system do 
2 if a's constraints imply a rigid connection between the 

geoms (see [ 10 ] ) 
3 then 

begin 
4 gl ~- one node connected to a 
5 g2 ~ the other node connected to a 
6 if grounded (g2) 
7 then swap(gl, g2) 

Comment: At this point, the following encoding has been established: 
I f  one of the geoms is grounded, it is stored in gl. 

8 if not grounded (gl) 
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9 then 
begin 

10 I ~- copy-invariants-record(gl ); 
11 ground! (gl);  

end 
12 ACTION-ANALYSIS (constraints in a ); 
13 Replace g~, a, g2 with macro-geom m; 
14 set-invariants-record (m, I ); 

end 
end 

Using this algorithm, all rigid chains in a constraint system can be refor- 
mulated in 0 (a) time, where a is the number of arcs in the graph. 

A.2. Solving loops 

Depending on the geometric domain, there is a limit to the size of a loop 
which can be assembled into a rigid macro-geom. This limit is six geoms 
for general bodies in 3D space, and three geoms for bodies in 2D space. 9 

In the algorithm described below, loops are identified in stages. A stage is 
a list of  sequences of node numbers that describe a path through the graph. 
Sequences in stage s each contain s + 1 nodes. A sequence describes a loop 
if the first and last numbers in that sequence are equal. To avoid identifying 
the same loop multiple times (e.g., 8-9-13-8 and 13-8-9-13),  a canonical 
form is required in which the first node number in the loop is the smallest, 
and the second node number is less than the penultimate one: 

Algorithm IDENTIFY-LOOPS. Algorithm for identifying all loops of  size l or 
less in a constraint graph. 

Input: G, the constraint graph 
l, the maximum number of nodes in a loop. 

Other variables: Constraint graph connectivity array C, 
where C[i] contains the list of  nodes connected to node i. 

Stage array (stage[s] contains the sequences in stage s). 
Output: The loops found. 

procedure IDENTIFY LOOPS ( G, l ): 
begin 

C ~- make-connectivity-array (G); 

9Larger loops may be handled by degrees of freedom analysis; however, the absence of any 
rigid loops implies an iterative solution will be necessary. Defaults will be added to the system 
until one of the loops becomes rigid. In this process, rewriting the chains (formed using the 
defaults) as macro-geoms will reduce the loop size to the limitations specified here. 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

for i E node numbers do 
for j in C[i] do 

i f i < j  
then stage [ 1 ] ~ stage [ 1 ] + i, j 

for s ~ 2 until l do 
for xl, x2 , . . . ,  Xs in stage [s - 1 ] do 

for j in C [xs ] do 
if Xs ~ xl 

and xl ~< j 
andVk,  l < k  ~<s. x k # j  

then stage [s ] ~ stage [s ] + xl, x2 . . . . .  xs, j 
loops ~ 0; 
for s ~ 1 until l do 

for xl ,x2 . . . . .  Xs+l in stage[s] do 
if xl = Xs+~ andx2 <Xs 
then loops *-- loops +x l ,x2  . . . .  ,Xs+l 

return loops; 
end 

Lines 9 through 11 provide the preconditions for the next node to be a 
valid continuation of  the sequence: the first and last node numbers must 
not be equal (this would indicate a loop has already been found); the 
new node number must be greater than the first number; and, the new 
number must not already be a member of  the sequence, unless it matches 
the first node number, forming a loop. Line 16 checks if a sequence is a 
canonical description of a loop. In the case where the number of  arcs in the 
graph is comparable to the number of  nodes (typical of many GCSPs), the 
complexity of  this algorithm can be shown to be linear in the number of 
nodes [ 10 ]. 

The constraints in a loop are solved using the following approach: choose 
a ground node (if one does not exist), and then switch between action and 
locus analysis until constraints have been satisfied or no further inference 
is possible: 

Algorithm SOLVE-LOOP. Algorithm for solving the constraints pertaining to a 
loop. 

Input: Loop L. 
Other variables: M a temporary transform matrix. 
OUtput: RGC, a list of any redundant generalized coordinates used. 

procedure SOLVE-LOOP (L )  : 
begin 

1 RGC *-- O; 
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2 gl ~ grounded geom of L (or 0 if no geom is grounded); 

3 g2 *--0; 
4 if gl = 0 
5 then g2 ~- an acceptable ground geom 

(by the kinematic inversion decision procedure--see [10]) 
6 else if gl is an acceptable ground geom 
7 then g2 ~- gl 
8 else g2 ~ an acceptable ground geom 

Comment: At this point, the following encoding has been established: I f  
gl is null, then no geom on the original loop was grounded. Otherwise, 
gl is the original grounded geom, and g2 is the geom being used as 
ground for the loop solution. 

9 i f g l # 0 a n d g 2 #  gl 
10 then M ~- transform (gl) 
11 REPEAT:  ACTION-ANALYSIS(all constraints in L);  
12 LOCUS-ANALYSIS (all constraints in L ) 
13 if all constraints are satisfied 
14 then 

begin 
15 rewrite all geoms as macro-geom G; 
16 if gi # 0 and g2 #- gl 
17 then move G by inverse (transform (g2) ) .M; 
18 return RGC; 

end 
19 else if any constraints were satisfied in lines 11 or 12 
20 then goto REPEAT 
21 else 

begin 
22 add a redundant constraint restricting one DOF; 
23 add corresponding generalized coordinate 

(the real argument of the redundant constraint) to RGC; 
24 goto REPEAT; 

end 
end 

A.3. Top-level algorithm 

The top-level algorithm finds the positions, orientations, and dimensions 
of  all the geoms so that all constraints are satisfied. First, any unary con- 
straints are trivially satisfied; in GCE, these are constraints on the dimension 
of  one geom, so the dimension is adjusted and the dimensional DOF is 
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fixed. Then, chains and loops are solved and rewritten, until the constraint 
graph has been reduced to a single node. 

Algorithm POSITION-ANALYSIS. Algorithm for finding a closed-form solution 
to a given GCSP, if  one exists. Otherwise, the algorithm finds a solution with 
a minimal number of redundant generalized coordinates, which can then be 
used by an iterative numerical solver. 

Input: G, the constraint graph, 
l, the maximum loop size. 

Other variables: loop, a loop that is to be solved. 
Output: RGC, a list of any redundant generalized coordinates used. 

procedure POSITION-ANALYSIS (G, C, l): 
begin 

1 RGC ~-- 0; 
2 Solve all dimensional (i.e., unary) constraints; 
3 R E P E A T :  SOLVE-RIGID-CHAINS ( G ); 

4 if G is a single node 
5 then return RGC; 

6 L ~ IDENTIFY-LOOPS (G, l ); 
7 i f L  = 
8 then 

begin 
9 add a redundant constraint restricting one DOF; 

10 add corresponding generalized coordinate 
(the real argument of the redundant constraint) to RGC; 

11 goto REPEAT; 
end 

12 for l E L do 
13 CLASSIFY-LOOP (l); 
14 lOOp ~ PICK-LOOP(L); 
15 RGC 4-- RGC + SOLVE-LOOP ( loop);  

16 goto REPEAT; 
end 

The PICK-LOOP algorithm is responsible for choosing the best loop to solve, 
given the choices available. Assuming that SOLVE-RIGID-CHAINS is linear in 
the number of arcs, a, the complexity of POSITION-ANALYSIS is O (na), where 
n is the number of nodes in the constraint graph. This results from the fact 
that, each time the loop in lines 3 through 16 is executed, the size of the 
constraint graph is decreased by at least one node. 
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