
Using Degrees of Freedom Analysis

To Solve Geometric Constraint Systems

Glenn A. Kramert

Schlumberger Laboratory for Computer Science

8311. North RR 620

Austin, Texas 78720-0015

email: gak@slcs.slb.com

Abstract

This paper address the problem of finding the po-

sitions and orientations of a set of rigid bodies that

satisfy a set of geometric constraints. Solving ge-

ometric constraint systems occurs in such tasks as

simulating the behavior of a collection of” mechan-

ical parts, shape optimization, tolerance analysis,

and assembly planning. Such problems are tracii-

tionally solved by reformulating the geometry and

constraints as algebraic equations which are then

solved symbolically or numerically. But many such

problems can be solved by reasoning symbolically

about the geometric bodies themselves using a new

technique called degrees of freedom analysis. In this

approach, a sequence of actions is devised to satisfy

each constraint incrementally, resulting in a mono-

tonic decrease of the system’s available degrees of

freedom. This sequence of actions solves, in a maxi-

mally decoupled form, the equations resulting from

an algebraic representation of the problem. Degrees

of freedom analysis has significant computational

advantages over conventional algebraic approaches.

While symbolic algebraic solution of the constraints

takes exponential time, degrees of freedom analy-

sis takes polynomial time. The numerical solution

of the equations using explicit geometric reasoning

is significantly faster than by using standard iter-

ative techniques. The utility of the technique is

demonstrated with a program that assembles and

cinematically simulates mechanical linkages.

Introduction

Solving geometric constraint systems is an important

problem with applications in many domains, for exam-

ple: describing mechanical assemblies, constraint-based

sketching and design, geometric modeling for CAD, and

Permission to copy without fee all or part of this matertial is granted pro.

vialed that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its dam appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee andlor specific permission.

kinematic analysis of robots and other mechanisms. An

important class of such problems involves finding the po-

sitions, orientations, and dimensions of a set of geomet-

ric entities that satisfy a set of geometric constraints.

This paper first examines traditional means of solv-

ing geometric constraint satisfaction problems (G CSP ‘s).

Then, it introduces a fundamentally different philoso-

phy of constraint satisfaction, based on symbolic geo-

metric reasoning and an operational semantics for con-

st raint sat isfact ion.

The notion of providing & operational semantics for

geometric constraint satisfaction is relatively new, and

is not widely used. Previous attempts at solving large

constraint systems using this notion have either relied

on the user of the system to specify the sequence of op-

erations [Rossignac, 1986], or have used ‘weak’ methods

such aa message passing [Wang, in preparation]. The

methods described in this paper are almost anthropo-

morphic, and can be computed automatically with no

human intervention.

The approach described in this paper is applicable to

a broad class of geometric constraints. The approach is

illustrated in the context of the kinematic simulation of

mechanical linkages. The geometric constraints encoun-

tered in kinematics are applicable to other tasks such as

tolerance analysis, assembly planning, and constraint-

based design.

Kinematic analysis presents interesting challenges due

to the intimate role that complex 3D geometry plays in

the behavior of mechanisms. While algebraic methods

are dominant in mechanism analysis, purely geomet-

ric methods are also used because they ‘maintain touch

with physical reality to a much greater degree than do

the algebraic methods’ and ‘serve as useful guides in

directing the course of equations’ [Hartenberg and De-

navit, 1964]. Capturing this intuition and putting it

in algorithmic form leads to increased efficiency in the

manipulation of the algebraic equations.

This paper describes how to use geometric reasoning
to guide the solution of the sets of complicated nonlin-

t Part of this research was conducted at the School of Cog-
niti ve and Computing Sciences at the University of Sussex,

Brighton, East Sussex, England BN1 9QH.

@ 1991 ACM 089791427-9/91/0006/0371 $1.50

371

ear equations that arise in mechanism simulation. A

program called TLA embodies this methodology. It sim-

ulates a mechanism by first reasoning at the geometric

level about how to assemble it. TLA then uses this az-

sembly plan as a metaphor to solve the equations in

a stylized, highly decoupled manner. Efficient solution

is important because these equations are solved repeat-

edly in tasks such as simulation and optimization. The

approach described in this paper greatly reduces the

computational complexity of solving such systems.

Terminology

The objects of interest in solving GCSP’S are called geo-

metric entities, or geometric objects; some examples are

lines, circles, and rigid bodies. Entities have degrees of

freedom, which allow them to vary in location or size.

For example, in 3D space, a general rigid body has three

translational and three rotational degrees of freedom. A

circle with a variable radius has three translational, two

rot at ional, and one dimensional degree of freedom (a

third rotational degree of freedom is not required be-

cause the circle is invariant under the rotation about its

axis).

The configuration variables of a geometric object are

defined as the minimal number of real-valued parame-

ters required to completely specify the object in space.

The configuration variables are used to parametrize an

object’s translational, rotational, and dimensional de-

grees of freedom (DOF’S), with one variable required for

each DOF. A configuration of an object is a particu-

lar assignment of the configuration variables, yielding a

unique instantiation of the geometric entity.

The definition of a GCSP is then as follows: Given a set

of geometric entities and constraints between them, find

the values of the configuration variables of the objects

such that all constraints are satisfied. The collection of

entities and constraints is called the constraint system,

or simply the system.

Kinematic constraints

The initial application domain of mechanical linkages

was chosen because the constraints in that domain are

applicable to a wide variety of other tasks. The appli-

cation domain is restricted to rigid bodies; therefore,

bodies have translational and rotational DOF’S, but no

dimensional DOF’S.

Constraints describing joint behavior in mechanical

devices can be modeled as relationships between sets

of distinguished points on different bodies. A marker

consists of a point in 3D space, along with two orthog-

onal axes, z and x, which emanate from the point. The

position of a marker is the position of its point, while

its orientation is determined by its axes. Since all bod-

ies are rigid, constraints between markers constrain the
bodies to which they are attached. The constraints be-

tween pairs of markers ml and mz are:

coincident(rnl, m2): Markers ml and mz are spatially

coincident.

in-line(ml, m2): ml lies on the line through m2 parallel

to mz’s z axis.

in-plane(ml, mz): ml lies in the plane through m2

normal to mz’s z axis.

parallel-z(ml, m2): The z axes of markers ml and m2

are parallel.

offset-z(ml, m2, a): The z axes of ml and m2 make an

angle of a # O.l

offset-x(ml, m2, a): The z axes of ml and m2 are par-

allel; and the angle from ml’s z axis to m2’s x axis is

cr.

helical(ml, m2, 6): The z axes of ml and mz are par-

allel; and the angle from ml’s z axis to m2’s x axis is

linearly related to the distance between ml and m2 by

a pitch constant 6.

Combinations of these constraints, relating markers

on different rigid bodies, may be used to model all of

the ‘lower pair’ joints described by Reuleaux [Reuleaux,

1876]. For example, a revolute joint, which allows one

rot at ional degree of freedom between two bodies, is

modeled with a coincident constraint and a parallel-z

constraint. A translational, or prismatic, joint is mod-

eled with an in-line constraint and a offset-x con-

straint. Some types of higher pairs may also be modeled

with the above constraints, for example, the ‘universal’

joint and ‘slotted pin’ joint. The constraints defined

above are sufficient to describe all mechanical linkages

as well as many static mechanical assemblies.

Equational techniques for solving GCSP’S

GCSP’s are usually solved by modeling the geometry and

constraints with algebraic equations that relate the con-

figuration variables of the different objects according

to the problem constraints. Solving these equations—
either numerically or symbolically—yields the desired

configuration for each geometric entity.

Numerical solution

Numerical solutions represent constraints using error

terms, which vanish when the constraint is satisfied, and

otherwise have magnitude proportional to the degree to

which the constraint is violated. The error function is

the sum of all error terms; the constraint system is sat-

isfied when the error function is zero. One of the most

efficient methods for finding a zero of the error function

is Newton-Raphson iteration [Press et al., 1986].

Numerical techniques find zeros of the error function

by ‘sliding’ down the function’s gradient. This process

1This constraint restricts one rotational DOF (i.e., it

leaves the system of two markers with two rotational DOF’S).

If a were to be zero, the system of two markers would have
only a single rotational DOF, describing the qualitatively dif-

ferent state obtained by using the parallel-z constraint.

372

is necessarily iterative for nonlinear problems. Numer-

ical techniques have many drawbacks. Each iteration

of Newton- Raphson is slow, taking O(C3) time, where c

is the number of constraints. In addition, the Jacobian

matrix must be evaluated at every iteration. Overcon-

strained situations, which are quite common, require

pre- and post-analysis to remove redundant constraints

before solving and to check them later for consistency.

Newton-Raphson can jump chaotically between differ-

ent roots of the error function during solution [Peitgen

and Richter, 1986], which can make the choice of initial

solution guess crucially important. Underconstrained

situations require pseud~inverse techniques, since the

constraint matrix is non-square. Additionally, when a

solution is impossible, no information is available to pin-

point the smallest set of constraints which are inconsis-

tent.

Symbolic solution

Symbolic solutions use algebraic rewrite rules or other

techniques to isolate the configuration variables in the

equations in a predominantly serial fashion [Buchberger

et al., 1983]. Once a solution is found, it may be

reused-or executed—on topologically equivalent prob-

lems. Execution is fast, typically linear in the number of

constraints. If numerical stability is properly addressed,

the solution can be more accurate by virtue of being an-

alyt ic; there is no convergence tolerance as found in nu-

merical techniques. The principal disadvantage of sym-

bolic techniques is the excessive (potentially exponen-

tial) time required to find a solution or determine that

one does not exist [Liu and Popplestone, 1990]. Poorly-

chosen configuration variable assignments can exacer-

bate the problem by coupling the equations in unneces-

sarily complicated ways, requiring very clever and com-

plex inferences. Hence, the symbolic techniques are fe~

sible and complete only for very small problems.

Geometric techniques for solving GCSP’S

The geometric approach to solving GCSP’S relies on a

representation shift from reasoning about configuration

variables to reasoning about the DOF’S of the actual ge-

ometric entities. Configuration variables are related to

each other by sets of equations that may be very com-

plicated, tightly coupled, and highly nonlinear; in ad-

dition, the domains of the configuration variables are

continuous, yielding an infinite search space. In con-

trast, the degrees of freedom of an object form a com-

pact, discrete-valued, linear description of the state of

the object. Coupling of degrees of freedom is rarely

encountered, and when it does occur, it can be accom-

modated easily.

Degrees of freedom form abstract equivalence classes

describing the state of a geometric entity without speci-

fying how the constraints that lead to that state are sat-

isfied. DOF’S are grouped into three equivalence classes:

rotational, translational, and dimensional. All DOF’S

of the same type are considered identical elements of

Figure 1: A rigid body with two embedded points.

that resource. DOF resources are consumed by mov-

ing an object so as to satisfy a constraint. Further ac-

tions are then confined to those that do not violate any

previously-satisfied constraints. Therefore, every con-

straint, upon being satisfied, introduces invariant quan-

tities for the satisfaction of subsequent constraints, and

reduces the number of remaining degrees of freedom.

Measurements and actions form the basis for an oper-

at ional semantics for constraint sat isfact ion. For exam-

ple, consider points A and B on a line L, where L has no

constraints applied to it. Suppose a constraint specifies

that point A be coincident with a fixed point C. The line

may be translated to make those two points coincident.

If another constraint, say one involving point B on the

line, is solved next, any action applied to line L must

preserve the location of point A. Therefore, subsequent

actions are limited to rotations and scaling about point

A. The constraint coincident (A, C) removes the line’s

translational DOF’S, thereby restricting subsequent op-

erations. A similar operational semantics is found in

[Wang, in preparation].

Reasoning about degrees of freedom is essential to

decoupling constraints. Consider the xyz coordinate

frame in Figure 1, with points O, at the origin, and

P, in some arbitrary location, rigidly fixed in the co-

ordinate frame. The coordinate frame is parameterized

by six configuration variables, three for the translational

DOF’S, and three for the rotational DOF’S. Thus, the co-

ordinate frame is free to translate and rotate in space.

Fixing the position of either point O or P (through

the satisfaction of some constraint) removes the three

translational DOF’S in the system: the coordinate frame

may only rotate about the fixed point in order to satisfy

subsequent constraints. But consider the constraints in

terms of configuration variables. Fixing the position

of point O uniquely determines the three translational

configuration variables, while fixing the position of P in-

troduce~ nonlinear cond.raint equations into the ~Ystem

to relate the configuration variables to the distance ~.

Solving constraint systems in the configuration variable

space is difficult because of this type of coupling be-

tween configuration variables. Solving in DOF space is

simpler because the actions can be specified indepen-

373

Figure 2: A brick with three coincident constraints.

dently of how the system is parameterized in terms of

configuration variables.

The use of the metaphors of measurement and action

to guide equation solution distinguishes the approach

described here from other techniques for solving large

sets of nonlinear equations. Since the DOF representa-

tion is decoupled, a monotonic decrease in the degrees of

freedom in a system can be achieved as the constraints

are increment ally satisfied, leading to polynomial-time

algorithms for constraint sat isfact ion. 2

Degrees of freedom analysis

This section introduces the philosophy of degrees of free-

dom analysis through two examples. The TLA program’s

solution of each example is illustrated. The first ex-

ample involves constraints whose solution can be lin-

earized, while the second example involves interacting

constraints that must be solved simultaneously.

Example 1: the brick

In this problem, the brick of Figure 2 must be configured

to satisfy the three coincident constraints graphically

depicted as the grey lines between the brick’s markers

bl, b2, b3 and the desired locations, denoted by markers

gl, g2, g3 fixed in the global coordinate frame. Equa-

tions can be developed to relate the configuration vari-

ables of the brick’s coordinate frame to those of the

global coordinate frame. The numerical solution of

these equations, using Newton-Raphson, is illustrated

graphically in Figure 3. Each of the grey outlines repre-

sents an intermediate configuration of the brick during

the solution. The figure depicts only every third itera-

tion of Newton-Raphson, and step sizes were clipped to

improve the behavior of the algorithm.

21t should be noted that the plan of IUeaSurements and

actions that satisfy the constraint network do not necessar-

ily correspond to a physically-reahzable plan for assembling

a collection of real objects. Since the objects in a GCSP
are purely geometric, they have no volume or other phys-
ical properties. Objects may pass through each other in

a ghost-like fashion, on their way to satisfying constraints.
This property of the solution process allows decoupling the
solution of all constraints affecting any one entity.

Figure 3: Brick solution using Newton- Raphson.

The TLA program solves the brick problem more effi-

ciently by using geometric knowledge to satisfy the con-

straints incrementally. The solution is shown in Fig-

ure 4. TLA assumes that initially the brick is free to

move anywhere; it just happens to be in the given ini-

tial configuration CO. To satisfy coincident (bl, gl),

TLA translates the brick by the vector from bl to

g 1, leaving the brick in configuration Cl. To ensure

coincident(bl, gl) remains satisfied, all further actions

that move the brick must be rotations about g 1, i, e,,

the brick has only its rotational degrees of freedom left.

To satisfy coincident (b3, g3), TLA measures the vec-

tor v 1 from gl to b3’ (where b3 has been moved by

the previous translation) and vector V2 from gl to g3.

These two vectors are shown as dashed lines in Fig-

ure 4. Then TLA rotates the brick about g 1 around

vector V1 x V2 by the angle between VI and V2, to config-

uration C2. This satisfies coincident (b3, g3) without

violating coincident (bl, gl). This action also removes

two of the remaining rotational degrees of freedom; in

order to preserve the two already-satisfied constraints,

all future actions must be rotations about v2. To sat-

isfy the final constraint, TLA drops perpendiculars from

b2° to v2, and from g2 to v2, and rotates the brick

about V2 by the angle between the perpendiculars. This

brings the brick to its final configuration. The solution

is very deliberate, as opposed to the meandering of the

numerical approach of Figure 3. The sequence of ac-

tions performed above constitute a plan for moving the

brick from an arbitrary position to one satisfying the

constraints.

For this part of the problem solution, TLA reasons

only about geometry, actions and degrees of freedom.

No equations are developed, and no model requiring

configuration variables or other abstract state is needed.

Constraints are satisfied by measuring the brick’s geo-

metric properties (often using additional geometric con-

structions) and then moving it. The brick-moving plan

derived using this method is next used to solve for the

brick’s configuration variables as represented in a com-

puter; this may be done regardless of how the local co-

ordinate frame of the brick is described. All that is re-

374

Figure 4: Brick solution using-geometric approach.

quired is a set of operators for translating and rotating

rigid bodies, and a set of functions that can meaaure,

relative to a global coordinate system, points and vec-

tors attached to any rigid body. These capabilities are

provided by homogeneous coordinate transforms, which

most 3D graphics and robotics systems use [Snyder,

1985], or dual quaternions [Hamilton, 1969].

The plan, when executed, becomes a metaphor for

solving the equational representation of the constraint

system.3 By using the primitive actions of translation

and rotation, the plan effect ively decouples the equa-

tions into small independent sets that can be solved

analytically.4 As new constraints are satisfied, previ-

ously satisfied constraints (which may correspond to

complicated relations between configuration variables)

become invariants for later steps in the solution. Geom-

etry, as used in the plan, provides the vocabulary and

operators that allow preserving these invariants. The

use of the assembly plan to guide equation solution dis-

tinguishes TLA from other programs that solve large sets

of nonlinear equations.

Maintaining knowledge about DOF’S

TLA keeps track of the number and types of degrees of

freedom each body has as it solves a problem. It repre-

sents this information with predicates of the following

form:

3One way of viewing the computation is for the geometric

bodies to be actually moving in the computer’s virtual world

aa the constraints are satisfied. However, a more “pure”

view of the computation is as solving a set of equations,

independent of the interpretation of the solution steps as

geometric transformations. Since the goal of solving GCSP’S

is to find the configuration variables of the system, and not to

plan any actions to move objects through space, the notion of

action is being used merely to derive an efficient solution to

the constraint equations; in this sense, the plan is a metaphor

for equation solution.

4Not all problems may be solved analytically; some re-

quire iterative solutions. In such cases TLA fails in the plan
construction phase. It is possible, however, to use the in-

formation from the failure to reduce significantly the dimen-

sionality of the iterative problem that must be solved. See

[Kramer, 1990] for details.

body-has-n-TDOF(hxfy, argl, arg2, . ..)
body-has-n-RDOF(hxiv, argl, arg2, ,..)

where n c {O, 1,2,3}

In these predicates, TDOF stands for translational de-

grees of freedom, and RDOF for rotational degrees of

freedom. The arguments argl, arg2, . . . specify any

fixed points or axes on the bodies that restrict their

freedom. Initially, every body in the system except the

grounded body has 3 TDOF and 3 RDOF. As actions are

taken to satisfy constraints, the bodies in the system

lose some of their degrees of freedom. When all bodies

have O TDOF and O RDOF, the problem is solved.

At each step in solving for a body’s configuration, TLA

must know what action to take given the body’s current

constraints, and how that action further reduces the

body’s degrees of freedom. This information is stored in

a plan fragment table. Conceptually, the plan fragment

table is a three-dimensional dispatch table, indexed by

TDOF, RDOF, and constraint type. Each entry in the

table specifies how to move the rigid body to satisfy the

new constraint using only available degrees of freedom,

and what degrees of freedom the body will have after

the action is performed. The plan fragment table con-

tains information about how to satisfy constraints when

one of the markers participating in the constraint has its

appropriate attributes fixed, or globally known. Thus,

a globally known position of one marker is required for

solving a coincident constraint, and a globally known
z axis is needed to solve a offset-z constraint.

In the brick example, the first constraint to be satis-

fied is arbitrarily chosen to be coincident (bl, gl), The

global position of gl is known. Initially the brick has

3 TDOF and 3 RDOF; thus the index into the plan frag-

ment table is (3, 3, coincident). This entry cent ains

the following information (modified for readability):

Initial state:

body-has-3-TDOF(body)
body-has-3-RD0 F(body)

Plan fragment:

begin

translate(body, vector-difference(gmp(illl),

gmp(M2)));

end;

New state:

body-has-O-TDOF(body, gmp(M2))
body-has-3-RDOF(body)

Explanation:

Body body is free to translate. A coincident

constraint must be satisfied between marker Ml,

whose global position is known, and marker M2

on body. Therefore body is translated by the vec-

tor from the current global position of M2 to the

known global position of Ml. This action removes

all three translational degrees of freedom.

375

The variable body is bound to the object representing

the brick. The initial state of the body is that it has

all six of its degrees of freedom; it is free to translate

and rotate through space. The variable &f 1 gets bound

to the globally known marker (i. e., gl), while variable

M2 is bound to the underconstrained marker in the co-

incident constraint being satisfied (i. e., b 1). The plan

fragment specifies how to move the body to satisfy the

constraint (the function name gmp stands for “global

marker position”). In the specification of the new state,

the predicate body-has-O-TDOF has an additional ar-

gument which specifies the point on the body which is

constrained to be stationary. The textual explanation
— with variable names replaced by their bindings —

helps the user to understand the solution process,

The next constraint satisfied in the brick example is

coincident(b3, g3). Since the brick now has O TDOF

and 3 RDOF, the index into the plan fragment table

is (O, 3, coincident), The plan fragment in that entry

specifies how to rotate a body with O TDOF, 3 RDOF to

satisfy a coincident constraint, and specifies that the

new state of the body is O TDOF, 1 RDOF. The process

continues until all constraints are satisfied.

For the kinematic constraints defined in this paper,

there are approximately one hundred entries in the plan

fragment table; some plan fragments are quite simple,

like the one described above, while others involve more

complex calculations and conditionals to handle po-

tential mathematical degeneracies. The complete plan

fragment table appears in [Kramer, 1990].

Example 2: interacting bodies

Bodies rarely interact exclusively with fixed points, aa

in the brick example. Often, they interact with other

partially constrained bodies. In Figure 5 body A is

constrained to O TDOF, 1 RDOF by the constraints

coincidental, gl) and parallel-z(al, gl). TLA infers

that marker a2 must lie on a circle about al. Body B

is similarly constrained. To satisfy coincident (a2, b2),

TLA intersects the circles to find the two globally ac-

ceptable locations for the markers. TLA distinguishes

the locations with a branch variable q. A user of TLA

chooses which solution to use by specifying the value

of q. TLA places a ‘pseudo-marker’ p at this location;

this is a marker which is not part of the original prob-

lem specification, but is introduced during the problem

solution.

With the intersection point defined, TLA satisfies the

coincident constraint for bodies A and B indepen-

dently. It does this by introducing the constraints

coincident (p, a2) and coincident (p, b2). Since p’s po-

sition is globally known, the plan fragment table may

be used to find the appropriate actions to satisfy the

two introduced constraints. When they are satisfied,

coincident (a2, b2) is also satisfied.

In this manner, local information, in the form of

loci of points on partially constrained bodies, may

be combined through locus intersection to yield infor-

Ca2 b2,,

Figure 5: Solving for two interacting bodies (z axes

point out of the page).

mat ion about globally permissible locations of points.

Pseudo-markers denote these intersections, and auxil-

iary constraints are introduced to relate the partially

constrained markers to the pseudo-marker. Then the

plan fragment table is used to find the appropriate ac-

tions to satisfy the constraints.

Maintaining knowledge of loci

TLA uses a locus table to specify the loci to which par-

tially constrained markers are confined. Loci are de-

termined completely by the degrees of freedom that a

body has. For example, all markers on a body with

O TDOF, 1 RDOF are constrained to lie on circles around

the body’s fixed point. Markers on a body with O TDOF,

3 RDOF must lie on spheres, and markers on a body with

2 TDOF, O RDOF must lie in planes.

A locus intersection table allows TLA to know when

enough information is known about sets of partially con-

strained markers to determine their configurations fully.

This table has entries for all pairs of shapes in the locus

table. For example, a sphere intersected with a circle

yields at most two discrete points (except in the de-

generate case of the circle lying on the sphere); a plane

intersected with a cylinder yields an ellipse. For the con-

straints described in this paper, all loci are analytically

describable, as are all pairwise intersections of loci.

Theoretical and empirical analysis

Space does not permit a full description of the algo-

rithms used in degrees of freedom analysis; details may

be found in [Kramer, 1990]. The high-level outline of the

algorithm is described below. Give a constraint graph

delineating the rigid bodies and the constraints that per-

tain to them:

1

2

Identify rigid substructures (chains or loops) in the

constraint graph.

For a given rigid substructure, construct a plan (a

sequence of measurements and actions) to assemble

the substructure.

376

Number d hks

Figure 6: Timing comparisons of TLA and ADAMS.

3. Rewrite the chain or loop aa a single node in the con-
straint graph.

4. Repeat the above steps until the entire graph has been

reduced to a single node.

Using this algorithm, a plan to satisfy a GCSP is gener-

ated in O(gc) time, where g is the number of geometric

entities in the constraint system, and c is the number

of constraints. The plans may be executed in O(g log g)

time, although typically the execution time is linear in

An important aspect of the algorithm is that it is

canonical. Whenever there is a choice among actions to

take in satisfying constraints, any action may be cho-

sen with the confidence that no backtracking will be

required later. This property is essential to ensuring

the polynomial complexity of the algorithm.

The TLA program has also been empirically compared

with the ADAMS mechanism simulator, which employs

iterative numerical solution techniques [ADAMS, 1987].

The graph of Figure 6 shows the runtimes of ADAMS

and TLA as a function of the number of bodies in a

mechanism. The daehed line shows the time per itera-

tion for ADAMS; typically, between 2 and 12 iterations

are required to solve a GCSP, as indicated by the gray

area. In contrast, the behavior of TLA is linear, and is

substantially more efficient.

TLA has simulated dozens of comDlex Dlanar and

spatial mechanisms; the largest exam~le is ‘a sofa-bed,

shown in Figure 7. This me.haniam h- 16 rigid bod-

ies (or links), 22 joints, and two driving inputs, and

is described bv 115 algebraic constraints, 19 of which

are redundant: The z&embly plan generated by TLA

is stored as a program which is 655 lines of Lisp code.

This Lisp program runs almost two orders of magnitude

,
i

—..”..--.,

~ljT.................................;...
Figure 7: Sofa-bed mechanism (extended).

faster than iterative numerical techniques embodied in

ADAMS, when used to solve the same set of constraints,5

Discussion

Algebra has long been the lingua franca of science and

engineering, but it can provide only a partial appre-

ciation of the actual domain under study. An under-

standing of geometry is essential to solving problems

insightfully and efficiently in the mechanical world. TLA

demonstrates this for the task of mechanical assembly

and simulation. By using geometry to guide equation

solving, TLA provides orders of magnitude speedup over

‘general-purpose’ mathematical techniques. This means

that interact ive tools for the simulation, optimization,
,s

and synthesis of complex mechanical devices become

feasible [Kramer and Barrow, 1989].

TLA currently reasons only about rigid bodies. We are

in the process of expanding this research to include more

general geometric objects with dimensional constraints

as well. In addition, we plan to explore tolerancing and

dynamics issues in a geometric context,

Related work

Using degrees of freedom analysis to generate an aesem-

bly plan, and using the resulting plan as a metaphor

to guide equation solution both appear to be novel fea-

tures of TLA. The use of actions to satisfy constraints is

found in [Wang, in preparation] and [Rossignac, 1986],

but the solution methods are somewhat weaker.

Sketchpad [Sutherland, 1963] and ThingLab [Born-

ing, 1979] represented geometric constraints equation-

ally, relying on relaxation for nonlinear equations. Pop-

plestone et al. explored, with limited success, solving

aesembly problems algebraically using some geometric

guidance [Popplestone et al., 1980]. More recently Pop-

plestone hae focused on using group theory to represent

geometric symmetries [Popplestone, 1987]. This work

could profitably be incorporated into TLA. Faltings
[Faltings, 1959] and Joskowicz [Joskowicz, 1967] are in-

vestigating deriving kinematic constraints directly from

51n fact, while the time per iteration could be measured

for ADAMS, numerical stabdity problems kept ADAMS from
converging in this particular example.

377

geometry. Such a facility would free the user of TLA

from having to model a mechanism in terms of abstract

concepts like markers.

Summary

It seems unlikely that there will ever be an efficient solu-

tion technique to general constraint problems. However,

this research may be viewed as a step toward efficient

solution of a specific type of constraint satisfaction prob-

lem. While it provides leverage in solving GCSP ‘s, it is

doubtful that the method will extend very far beyond

the realm of geometry.

There are some broad concepts that can be reused in

formulating constraint satisfaction problems for other

domains. The notion of abstracting some continuous

space (e.g., position and orientation) into a discrete

space (e. g., degrees of freedom) may apply to other

domains. Designing algorithms that exploit monotonic

trends (such as the reduction of degrees of freedom of

a geometric entity) can lead to polynomial-time algo-

rithms. Creative representation shifts will be required

to use these principles in other domains, but if they can

be found, the benefits may be substantial.

Acknowledgments

Phil Agre helped implement the latest version of TLA,

and contributed technically in many ways. I would

also like to thank Harrv Barrow. David Barstow, David

Gossard, Walid Keiro~z, Reid Smith,

David Unman.

References

[ADAMS, 1987] Mechanism Dynamics,

Bob Young, and

Inc., Ann Arbor,

Michigan. ~DAMS Users ~anual, 1987.

[Borning, 1979] Alan H. Borning. Thinglab: A

Constraint-Oriented Simulation Laboratory. PhD

thesis, Stanford University, Stanfordj California, July

1979.

[Buchberger et al., 1983] B. Buchberger, G. E. Collins,

and R. Loos, editors. Computer Algebra: Symbolic

and Algebraic Computation. Springer-Verlag, Wien,

second edition, 1983.

[Faltings, 1989] Boi Faltings. Reasoning about kine-

matic topology. In Proceedings of the International

Joint Conference on Arti$cial Intelligence, Detroit,

Michigan, August 1989.

[Hamilton, 1969] W. R. Hamilton. Elements of quater-

nions. Chelsea, New York, 1969.

[Hartenberg and Denavit, 1964] R. S. Hartenberg and

J. Denavit. Kinematic Synthesis of Linkages. Mc-

Graw Hill, New York, 1964.

[Joskowicz, 1987] Leo Joskowicz. Shape and function

in mechanical devices. In Proceedings of the National

Conference on Artificial Intelligence, Seattle, Wash-

ington, August 1987.

[Kramer and Barrow, 1989] Glenn A. Kramer and

Harry G. Barrow. New approaches to linkage synthe-

sis. In International Joint Conference on Artificial

Intelligence (video track), Detroit, Michigan, August

1989.

[Kramer, 1990] Glenn A. Kramer. Geometric Reason-

ing in the Kinematic Analysis of Mechanisms. Dphil

thesis, University of Sussex, Brighton, UK, October

1990.

[Liu and Popplestone, 1990] Yanxi Liu and Robin J.

Popplestone. Symmetry constraint inference in ass-

embly planning: Automatic assembly configuration

specification. In Proceedings of the National Con.

ference on Artificial Intelligence, pages 1038-1044,

Boston, Massachusetts, 1990.

[Peitgen and Richter, 1986] H.-O. Peitgen and P. H.

Richter. The Beauty of Fractals: Images of Complex

Dynamical Systems. Springer-Verlag, Berlin, 1986.

[Popplestone et al., 1980] R. J. Popplestone, A. P. Am-

bler, and I. M. Belles. An interpreter for a lan-

guage for describing assemblies. Artificial Intelli-

gence, 14(1):79-107, August 1980.

[Popplestone, 1987] R. J. Popplestone. The Edinburgh

Designer System as a framework for robotics or,

the design of behavior. COINS Technical Report

87-47, University of Massachusetts, Amherst, Mas-

sachusetts, May 1987.

[Press et al., 1986] William H. Press, Brian P. Flan-

nery, Saul A. Teukolsky, and William T. Vetterling,

Numerical Recipes: The Art of Scientific Computing.

Cambridge University Press, Cambridge, UK, 1986.

[Reuleaux, 1876] M. M. Reuleaux. The Kinematics

of Machinery. Macmillan & Co., New York, 1876.

Translated by Alex B. W. Kennedy.

[Rossignac, 1986] J. R. Rossignac. Constraints in con-

structive solid geometry. In Proceedings of the 1986

Workshop on Interactive 3D Graphics, pages 93-110.

ACM Press, 1986.

[Snyder, 1985] Wesley E. Snyder. Industrial Robots:

Computer Interfacing and Control. Industrial Robot

Series. Prentice-Hall, Inc., Englewood Cliffs, New Jer-

sey, 1985.

[Sutherland, 1963] Ivan E. Sutherland. sketchpad:

A Man-Machine Graphical Communication System.

PhD thesis, MIT, Cambridge, Massachusetts, 1963.

[Wang, in preparation] Bin Wang. An Operat~onal Ap-

proach for Constraint Satisfaction. PhD thesis, Uni-

versit y of Sout hem California, Los Angeles, Califor-

nia, (in preparation).

378

