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Abstract 

Finding the configurations of a set of rigid bod- 
ies that satisfy a set of geometric constraints is 
a problem traditionally solved by reformulating 
the geometry and constraints as algebraic equa- 
tions which are solved symbolically or numerically. 
But many such problems can be solved by rea 
soning symbolically about the geometric bodies 
themselves using a new technique called degrees 
of freedom analysis. In this approach, a sequence 
of actions is devised to satisfy each constraint 
incrementally, thus monotonically decreasing the 
system’s remaining degrees of freedom. This se- 
quence of actions is used metaphorically to solve, 
in a maximally decoupled form, the equations re- 
sulting from an algebraic representation of the 
problem. Degrees of freedom analysis has signifi- 
cant computational advantages over conventional 
algebraic approaches. The utility of the technique 
is demonstrated with a program that assembles 
and kinematically simulates mechanical linkages. 

Introduction 

Solving geometric constraint systems is an important 
problem with applications in many domains, for ex- 
ample: describing mechanical assemblies, constraint- 
based sketching and design, geometric modeling for 
CAD, and kinematic analysis of robots and other mech- 
anisms. An important class of such problems involves 
finding the configurations (positions and orientations) 
of a set of rigid bodies that satisfy a set of geomet- 
ric constraints. This paper first examines traditional 
means of solving such problems. Degrees of freedom 
analysis is then introduced as a novel and more intu- 
itive solution technique with substantially better com- 
putational properties. The power of this technique is 
demonstrated with a system that kinematically simu- 
lates mechanical linkages. 

Mechanical design presents interesting challenges 
due to the intimate role that complex 3D geometry 
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plays in design analysis and synthesis [Dixon, 19861. 
While algebraic methods are dominant in mechanism 
analysis, purely geometric methods are also used be- 
cause they ‘maintain touch with physical reality to a 
much greater degree than do the algebraic methods’ 
and ‘serve as useful guides in directing the course of 
equations’ [Hartenberg and Denavit, 19641. 

This paper describes how to use geometric reasoning 
to guide the solution of the sets of complicated nonlin- 
ear equations that arise in mechanism simulation. A 
program called TLA embodies this methodology. It 
simulates a mechanism by first reasoning at the geo- 
metric level about how to assemble it. TLA then uses 
this assembly plan as a metaphor to solve the equations 
in a stylized, highly decoupled manner. Efficient solu- 
tion is important because these equations are solved 
repeatedly in tasks such as simulation and optimiza- 
tion. The approach described in this paper greatly 
reduces the computational complexity of solving such 
systems, and is a strategy which is unique to TLA. 

Kinematic simulation 

Kinematic analysis answers questions about the mo- 
tion of mechanisms, without regard to the forces which 
produce that motion [Hartenberg and Denavit, 19641. 
Kinematic assembly of a mechanism requires determin- 
ing the configuration of each body to satisfy all as- 
sembly constraints. These are either joint constraints, 
which describe how bodies may move relative to each 
other, or driving input constraints, which further re- 
strict a joint by specifying a value for an angle or dis- 
placement. 

Kinematic simulation involves repeatedly finding 
the configurations of the parts of a mechanism for par- 
ticular values of the driving input constraints; this is 
effectively the same as repeatedly assembling the mech- 
anism for different values of the driving inputs. As 
the values of the driving inputs are varied, the mech- 
anism will trace its characteristic path. The motion 
is a function only of geometric relationships between 
the various joints. Thus, engineers use kinematic di- 
agrams, which are stick-figure ‘schematics’ of mecha- 
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nisms. They contain only geometry relating the joints, 
not the actual shapes or boundaries of the parts. They 
help designers understand a mechanism’s kinematic be- 
havior. This research is concerned with simulating 
mechanisms at the level of kinematic diagrams. 

Mechanical constraints 

Constraints describing joint behavior can be modeled 
as relationships between sets of points on different bod- 
ies. A marker consists of a point in 3D space, along 
with two orthogonal axes, z and x, which emanate from 
the point. The position of a marker is the position of 
its point, while its orientation is determined by its axes. 
Since all bodies are rigid, constraints between markers 
constrain the bodies to which they are attached. The 
constraints between pairs of markers ml and m2 are: 

coincident (ml, mz): Markers ml and m2 are spa- 
tially coincident. 
in-line(ml, m2): ml lies on the line through m2 par- 
allel to mfL’s z axis. 

in-plane(ml, m2): ml 
normal to m2’s z axis. 

lies in the plane through m2 

parallel-z( ml, m2): 
are parallel. 

the z axes of markers ml and m2 

perpendicular-z(ml 
are perpendicular. 

, ml:): the z axes of ml and m2 

co-oriented(ml, ma, a): the z axes of ml and m2 are 
parallel; and the angle from ml’s x axis to mz’s x axis 
is LY. 
screw(ml, m2, S): the z axes of ml and m2 are par- 
allel; and the angle from ml’s x axis to m2’s x axis is 
linearly related to the distance between ml and m2 by 
a pitch constant S. 

Combinations of these constraints, relating mark- 
ers on different rigid bodies, may be used to model 
all of the ‘lower pair’ joints described by Reuleaux 

,, [Reuleaux, 18761. For example, a revolute joint, which 
allows one rotational degree of freedom between two 
bodies, is modeled with a coincident constraint and 
a parallel-z constraint. A translational, or prismatic, 
joint is modeled with an in-line constraint and a co- 
oriented joint. Some types of higher pairs may also be 
modeled with the above constraints, for example, the 
‘universal’joint and ‘slotted pin’ joint. The constraints 
defined above are sufficient to describe all mechanical 
linkages as well as many static mechanical assemblies; 
there is no restriction to ‘fixed axis’ mechanisms as is 
common in the literature [Faltings, 1989; Joskowicz, 
19871. 

Figure 1 illustrates the modeling of a crank-slider 
mechanism. The crank-slider consists of three parts. 
The ground, G, is fixed in space, and serves as the 
global reference frame. Markers gl and 92 are therefore 
also grounded, or fixed in space. In the figure, marker 
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(4 

G 
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Figure 1: Crank-slider: (a) parts; (b) assembled. 

z axes are shown in black; if not shown, they point out 
of the page. Relevant marker x axes are shown in grey. 
The geometric constraints are: 

in-line(r1, gl) coincident (92, c2) 
coincident (r2, cl) paralleLz(g2, c2) 
paralleLz(r2, cl) co-oriented(g2, c2, (Y) 
The in-line constraint models a pin (~1) in a slot 

(gl’s z axis). The coincident, parallel-z pairs model 
revolute joints. The revolute joint 92, c2 has a driving 
input cy, which fully constrains crank C’s position and 
orientation relative to ground. Rotation of the crank 
is accomplished by changing the value of Q. As the 
crank C rotates, marker rl of the connecting rod R 
slides along the z axis of grounded marker gl. 

Equational solution 

Constraint systems like the crank-slider described 
above are usually solved by modeling the geometry and 
constraints with algebraic equations. A local coordi- 
nate frame is assigned to each body. Then the configu- 
ration variables of the different bodies - the six quan- 
tities that uniquely specify a local coordinate frame 
[Snyder, 19851 - are related by equations that model 
the problem constraints. Solving these equations yields 
the desired configuration for each b0dy.l A simple ex- 
ample, involving a single rigid body, illustrates the so- 
lution of a small set of such equations: the brick of 
Figure 2 must be configured to satisfy the three co- 

‘Solving these types of equations for robotics applica- 
tions is usually not too difficult because most robot ma- 
nipulators are open-loop mechanisms. Mechanical link- 
ages, however, involve closed loops. This leads to a much 
greater degree of equation coupling. Hence, solving these 
equations must be done simultaneously and is substantially 
more difficult . 
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b3 

Figure 2: A brick with three coincident constraints. 

incident constraints graphically depicted as the grey 
lines between the brick’s markers bl, b2, b3 and the de- 
sired locations, denoted by markers gl, 92, g3 fixed in 
the global coordinate frame. Equations are developed 
to relate the configuration variables of the brick’s co- 
ordinate frame to those of the global coordinate frame. 
The equations may then be solved either numerically 
or symbolically. 

Numerical solution 

Numerical solutions represent constraints using error 
terms, which have zero value when the constraint is 
satisfied, and otherwise have some value proportional 
to the degree to which the constraint is violated. The 
objective function is the sum of all error terms. Nu- 
merical techniques try to find a zero of the objective 
function by ‘sliding’ down the function’s gradient. This 
process is necessarily iterative for nonlinear problems, 
which include any problem involving rotation. Fig- 
ure 3 shows, in grey, some of the intermediate configu- 
rations reached using Newton-Raphson iteration (one 
of the most efficient methods [Press et al., 19861) to 
move the brick from its initial configuration to one 
satisfying the constraints. Numerical techniques have 
many drawbacks. Each iteration of Newton-Raphson is 
slow, taking O(n3) time, where n is the number of con- 
straints. Overconstrained situations, which are quite 
common, require pre- and post-analysis to remove re- 
dundant constraints before solving and to check them 
later for consistency. 

Symbolic solution 

Symbolic solutions use algebraic re-write rules or other 
techniques to isolate the configuration variables in the 
equations in a predominantly serial fashion. Once a 
solution is found, it may be re-used (executed) on any 
topologically equivalent problem. Execution is fast, 
approximately linear in the number of constraints. If 
numerical stability is properly addressed, the solution 
can be more accurate by virtue of being analytic; there 
is no convergence tolerance as found in numerical tech- 
niques. The principal disadvantage of symbolic tech- 
niques is the excessive - potentially exponential - 
time required to find a solution or determine one does 
not exist. Poorly-chosen configuration variable assign- 

Figure 3: Brick solution using Newton-Raphson. 

b2” 

Figure 4: Brick solution using geometric approach. 

ments can exacerbate the problem by coupling the 
equations in unnecessarily complicated ways, requir- 
ing more clever and complex inferences. Thus, the 
symbolic techniques are feasible and complete only for 
small problems. 

Many shortcomings of the above methods can be 
traced to problems inherent in the configuration vari- 
able representation and the complexity of the result- 
ing equations. This suggests a different approach to 
the solution of geometric constraint problems: avoid 
equational reformulation entirely, reasoning instead di- 
rectly about the geometric entities. A program called 
TLA has been developed to do this. 

Geometric solution 

TLA solves the brick problem using geometric knowl- 
edge to satisfy the constraints incrementally. The 
solution is shown in Figure 4. Assume that ini- 
tially the brick is free to move anywhere; it just hap- 
pens to be in the given initial configuration CO. To 
satisfy coincident (bl, g 1) , TLA translates the brick 
by the vector from bl to gl, leaving the brick in 
configuration C1. To ensure coincident (bl , g 1) re- 
mains satisfied, all further actions that move the brick 
must be rotations about gl, i.e., the brick has only 
its rotational degrees of freedom left. To satisfy 
coincident (b3, g3), TLA measures the vector v 1 from 
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g 1 to b3’ (where b3 has been moved by the previ- 
ous translation) and vector v2 from gl to g3. These 
two vectors are shown as dashed lines in Figure 4. 
Then TLA rotates the brick about gl around vector 
vl x v2 by the angle between vl and v2, to config- 
uration C2. This satisfies coincident(b3,g3) without 
violating coincident (b 1, g 1). This action also removes 
two of the remaining rotational degrees of freedom; in 
order to preserve the two already-satisfied constraints, 
all future actions must be rotations about v2. To 
satisfy the final constraint, TLA drops perpendiculars 
from b2” to v2, and from g2 to v2, and rotates the 
brick about v2 by the angle between the perpendicu- 
lars. This brings the brick to its final configuration. 
The solution is very deliberate, as opposed to the me- 
andering of the numerical approach of Figure 3. The 
sequence of actions performed above constitute a plan 
for moving the brick from an arbitrary position to one 
satisfying the constraints. 

For this part of the problem solution, TLA reasons 
only about geometry, actions and degrees of freedom. 
No equations are developed, and no model requir- 
ing configuration variables or other abstract state is 
needed. Constraints are satisfied by measuring the 
brick’s geometric properties (often using additional 
geometric constructions) and then moving it. This 
method is called degrees of freedom analysis. The 
brick-moving plan derived using this method is next 
used to solve for the brick’s configuration variables as 
represented in a computer; this may be done regard- 
less of how the local coordinate frame of the brick is 
described. All that is required is a set of operators 
for translating and rotating rigid bodies, and a set of 
functions that can measure, relative to a global coordi- 
nate system, points and vectors attached to any rigid 
body. These capabilities are provided by homogeneous 
coordinate transforms [Snyder, 19851, which most 3D 
graphics and robotics systems use. 

The plan, when executed, becomes a metaphor for 
solving the equational representation of the constraint 
system. By using the primitive actions of translation 
and rotation, which are implemented as matrix mul- 
tiplications, the plan effectively decouples the equa- 
tions into small independent sets that can be solved 
analytically. 2 As new constraints are satisfied, previ- 
ously satisfied constraints (which may correspond to 
complicated relations between configuration variables) 
become invariants for later steps in the solution. Ge- 
ometry, as used in the metaphorical plan, provides 
the vocabulary and operators that allow preserving 
these invariants. The use of the assembly plan as a 
metaphor to guide equation solution distinguishes TLA 

from other 
equations. 

programs that solve large sets of nonlinear 

Since the plan does not depend on metric properties 
of the problem, it can be executed on any topologi- 
tally equivalent problem. 3 The time required for plan 
generation is thus amortized over repeated executions. 

Degrees of freedom analysis 

TLA keeps track of the number and types of degrees of 
freedom each body (or link) has as it solves a prob- 
lem. It represents this information with predicates 
of the form link-has-n-TDOF(linL, arg1, arg2, . . . ) 
and link-has-n-RDOF(ZinE, arg1, arg2, . . . ), for 
n E (0, 1,2,3). TDOF stands for translational degrees 
of freedom, and RDOF for rotational degrees of free- 
dom. The arguments urgl, urg2, . . . specify any fixed 
points or axes on the links that restrict their freedom. 
Initially, every link in the system except the grounded 
body has 3 TDOF and 3 RDOF. As actions are taken to 
satisfy constraints, the links in the system lose some of 
their degrees of freedom. When all bodies have 0 TDOF 
and 0 RDOF, the problem is solved. 

At each step in solving for a body’s configuration, 
TLA must know what action to take given the body’s 
current constraints, and how that action further re- 
duces the body’s degrees of freedom. This informa- 
tion is stored in a plan fragment table. Conceptually, 
the plan fragment table is a three-dimensional dispatch 
table, indexed by TDOF, RDOF, and constraint type. 
Each entry in the table specifies how to move the rigid 
body to satisfy the new constraint using only available 
degrees of freedom, and what degrees of freedom the 
body will have after the action is performed. The plan 
fragment table contains information about how to sat- 
isfy constraints when one of the markers participating 
in the constraint has its appropriate attributes fixed, 
or globally known. Thus, a globally known position of 
one marker is required for solving a coincident con- 
straint, and a globally known z axis is needed to solve 
a perpendicular-z constraint. 

In the brick example, the first constraint to be satis- 
fied is arbitrarily chosen to be coincident(b1, gl). The 
global position of gl is known. Initially the brick has 3 
TDOF and 3 RDOF; thus the index into the plan frag- 
ment table is (3,3, coincident). This entry contains 
the following information (modified for readability): 

Initial state: 
link-has-3-TDOF( link) 
link-has-3-lXDOF( Zink) 

2Not all problems may be solved analytically; some re- 3Actually, this is not quite true. Mathematical degen- 
quire iterative solutions. In such cases TLA fails in the eracies may cause the plan to fail. For example, the brick 
plan construction phase. It is possible, however, to use the plan fails to remove the final rotational degree of freedom 
information from the failure to reduce significantly the di- if the three markers are collinear. TLA can test for such 
mensionality of the iterative problem that must be solved. degeneracies, and try to generate a new plan taking them 
See [Kramer, in preparation] for details. into account, if possible. 

KRAMER 711 



Plan fragment: 
begin 
translat e( link, 

vector-difference(gmp( Ml), 
gmP(M2))); 

end; 

New state: 
link-has-0-TDOF( Zink, gmp( M2)) 
link-has-3-RDOF( link) 

Explanation: 
Body link is free to translate. A coincident 
constraint must be satisfied between marker M1, 
whose global position is known, and marker M2 
on link. Therefore link is translated by the vec- 
tor from the current global position of M2 to the 
known global position of M1. This action re- 
moves all three translational degrees of freedom. 

The variable Zink is bound to the object represent- 
ing the brick. The initial state of the link is that it 
has all six of its degrees of freedom; it is free to trans- 
late and rotate through space. The variable Ml gets 
bound to the globally known marker (i.e., gl), while 
variable M2 is bound to the underconstrained marker 
in the coincident constraint being satisfied (i.e., bl). 
The plan fragment specifies how to move the body to 
satisfy the constraint (the function name gmp stands 
for “global marker position”). In the specification of 
the new state, the predicate link-has-0-TDOF has 
an additional argument which specifies the point on 
the body which is constrained to be stationary. The 
textual explanation - with variable names replaced 
by their bindings - helps the user to understand the 
solution process. 

The next constraint satisfied in the brick example is 
coincident(b3, g3). S ince the brick now has 0 TDOF 
and 3 RDOF, the index into the plan fragment table 
is (0,3, coincident). The plan fragment in that entry 
specifies how to rotate a body with 0 TDOF, 3 RDOF 
to satisfy a coincident constraint, and specifies that 
the new state of the body is 0 TDOF, 1 RDOF. The 
process continues until all constraints are satisfied. 

For the constraints defined in this paper, there are 
112 valid entries in the plan fragment table; some 
plan fragments are quite simple, like the one described 
above, while others involve more complex calculations 
and conditionals to handle potential mathematical de- 
generacies. The complete plan fragment table appears 
in [Kramer, in preparation]. 

Interacting bodies 

Bodies rarely interact exclusively with fixed points, as 
in the brick example. Often, they interact with other 
partially constrained bodies. In Figure 5 body A is 
constrained to 0 TDOF, 1 RDOF by the constraints 

bl, $2 

I 
/’ 

.i 

\ “%. q +<.’ /’ 
‘.... -15.... ~ ..-c ‘.-.. . . y c . . . . . . . ““-* ----.. .’ --..... . . . . . . . .-.--* . ..*. 

Figure 5: Solving for two interacting bodies (z axes 
point out of the page). 

coincident(a1, gl) and parallel-z(u1, gl). TLA infers 
that marker a2 must lie on a circle about al. Body B 
is similarly constrained. To satisfy coincident (a2, b2), 
TLA intersects the circles to find the two globally ac- 
ceptable locations for the markers. TLA distinguishes 
the locations with a branch variable q. A user of TLA 
chooses which solution to use by specifying the value of 
q. TLA places a ‘pseudo-marker’ p at the this location; 
this is a marker which is not part of the original prob- 
lem specification, but is introduced during the problem 
solution. 

With the intersection point defined, TLA satisfies 
the coincident constraint for bodies A and B inde- 
pendently. It does this by introducing the constraints 
coincident (p, ~2) and coincident (p, b2). Since v’s 
position is globally known, the plan fragment table 
may be used to find the appropriate actions to sat- 
isfy the two introduced constraints. When they are 
satisfied, coincident(u2, b2) is also satisfied. 

In this manner, local information, in the form of 
loci of points on partially constrained bodies, may 
be combined through locus intersection to yield infor- 
mation about globally permissible locations of points. 
Pseudo-markers denote these intersections, and auxil- 
iary constraints are introduced to relate the partiallv 
constrained markers to the pseudo-marker. Then the 
plan fragment table is used to find the appropriate ac- 
tions to satisfy the constraints. 

TLA uses a locus table to specify the loci to which 
pa.rtially constrained markers are confined. Loci are 
determined completely by the degrees of freedom that 
a body has. For example, all markers on a body with 0 
TDOF, 1 RDOF are constrained to lie on circles around 
the body’s fixed point. Markers on a body with 0 
TDOF, 3 RDOF must lie on spheres, and markers on a 
body with 2 TDOF, 0 RDOF must lie in planes. 

A locus intersection tubZe allows TLA to know when 
enough information is known about sets of partially 
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constrained markers to determine their configurations 
fully. This table has entries for all pairs of shapes in the 
locus table. For example, a sphere intersected with a 
circle yields at most two discrete points (except in the 
degenerate case of the circle lying on the sphere); a 
plane intersected with a cylinder yields an ellipse. For 
the constraints described in this paper, all loci are an- 
alytically describable, as are all pairwise intersections 
of loci. 

Plan generation 

The plan fragment table and locus tables allow sim- 
ple and efficient algorithms to solve geometric con- 
straints. TLA’s metaphorical plan construction dif- 
fers from blocks world planners like HACKER [Suss- 
man, 19731, which generate physically realizable plans 
to get from one world state to another. Kinematic dia- 

(1 grams do not represent the true physical boundaries of 
the mechanism’s parts, so the geometric entities may 
pass through each other in intermediate plan states 
as they move toward their final configurations. TLA’s 
only concern is the final plan state, where all objects 
satisfy their constraints. This lack of concern about in- 
termediate states allows TLA to satisfy the constraints 
incrementally, without backtracking. 

An assembly plan generated by TLA is compiled into 
an assembZy procedure, which is a machine executable 
version of the plan. The assembly procedure is opti- 
mized in various ways: removing nested function calls, 
removing duplicate calculations, etc. Mechanism simu- 
lation is accomplished by alternately changing the val- 
ues of the driving inputs and then calling the assem- 
bly procedure; the simulation moves the mechanism 
through its characteristic motions. 

The assembly procedure may be reused when the 
sizes and shapes of the parts change; however, if the 
mechanism topology (e.g., number of bodies, or num- 
ber or types of joints connecting the bodies) changes, 
a new assembly plan and procedure must be derived. 

Implementation 

The current version of TLA is written in Common 
Lisp and CLOS, and runs on a Symbolics Lisp Ma- 
chine. A rule-based system generates the assembly 
plans. Each rule implements part of the plan frag- 
ment table or the locus tables, of which about 60% 
have been implemented to date. A database stores as- 
sertions during the assembly planning. The database 
grows monotonically; no retractions are made. A sim- 
ple pattern matcher is used, rather than full unifica- 
tion, and the few search heuristics (for efficiency only) 
are hard-wired into the rule triggers. This allows a 
simple control structure: 

o Make any applicable deduction (e.g., ‘marker m lies 
on a circle’). 

e Perform any 
rotation). 

applicable action h., a translation or 

e Succeed 
dom. 

when all bodies have zero degrees of free- 

e Fail when there is no applicable deduction or action. 

While a rule-based system allowed flexibility in de- 
ciding how TLA would be structured, a future imple- 
mentation will use explicit tables and object-oriented 
programming to avoid the need for pattern matching, 
substantially reducing the computational complexity 
of constructing assembly plans. 

Complexity analysis 

A complete analysis of the computational complexity 
of TLA is given in [Kramer, in preparation]; only the 
results appear here. For the rule-based implementa- 
tion, plan generation time is O(nd), where n is the 
number of constraints, and d is a constant determined 
by the average number of arguments for each database 
predicate (Ca M 3). In practice, TLA’s plan generator 
tends to run in time nearly proportional to n2. 

Thus, for generating a solution, TLA’s planning algo- 
rithm has polynomial complexity, as opposed to the ex- 
ponential complexity of symbolic algebraic techniques. 
For executing a solution, TLA’s compiled plan runs in 
O(n.) time, as opposed to the O(n3) time of iterative 
numerical methods. 

Speed comparisons 

TLA has simulated dozens of complex planar and spa- 
tial mechanisms, the largest example being a sofa-bed, 
shown in Figure 6. This mechanism has 16 links, 22 
joints, and two driving inputs, and is described by 115 
algebraic constraints, 19 of which are redundant. A 
plan is generated in 297 seconds, and the assembly 
procedure compiled from it (655 lines of Lisp code) 
executes in 0.29 seconds on a Symbolics 3675. This 
is almost two orders of magnitude faster than simula- 
tion speeds using some of the commercially available 
numerically-based simulators, after scaling for differ- 
ences in processor speed (commercial programs run on 
machines other than the Symbolics). 

Discussion 

Algebra has long been the lingua fruncu of science and 
engineering, but it can provide only a partial apprecia- 
tion of the actual domain under study. An understand- 
ing of geometry is essential to solving problems in- 
sightfully and efficiently in the mechanical world. TLA 
demonstrates this for the task of mechanical assembly 
and simulation. By using geometry to guide equation 
solving, TLA provides orders of magnitude speedup 
over ‘general-purpose’ mathematical techniques. This 
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thesis, Stanford University, Stanford, California, 
July 1979. 

Figure 6: Sofa-bed mechanism (extended). 

means that interactive tools for the simulation, opti- 
mization, and synthesis of complex mechanical devices 
become feasible [Kramer and Barrow, 19891. 

Using degrees of freedom analysis to generate an 
assembly plan, and using the resulting plan as a 
metaphor -to guide equation solution both appear 
unique to TLA. Sketchpad [Sutherland, 19631 and 
ThingLab [Borning, 19791 represented geometric con- 
straints equationally, relying on relaxation for nonlin- 
ear equations. Popplestone et al. explored, with lim- 
ited success, solving assembly problems algebraically 
using some geometric guidance [Popplestone eZ al., 
19861. More recently Popplestone has focused on us- 
ing group theory to represent geometric symmetries 
[Popplestone, 19871. Th is work could profitably be 
incorporated into TLA. Faltings [Faltings, 19891 and 
Joskowicz [Joskowicz, 19871 are investigating deriving 
kinematic constraints directly from geometry. Such 
a facility would free the user of TLA from having to 
model a mechanism in terms of abstract concepts like 
markers. 

The ideas embodied in TLA may be extended in 
many ways, including: expanding the range of con- 
straints TLA understands (e.g., gears, cams, etc.); an- 
alyzing dynamic behavior more efficiently by virtue of 
understanding the kinematics; using knowledge of ge- 
ometry to aid-in design synthesis. In all of these cas&, 
geometric knowledge leads to a better understanding 
of the underlying mathematics. Degrees of freedom 
analysis allows unifying geometric reasoning with al- 
gebraic techniques for efficient and intuitive modeling 
of real-world mechanisms and assemblies. 
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