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Abstract

A graph-constructive approach to solving systems of geometric con-

straints capable of e�ciently handling well-constrained, overconstrained

and underconstrained con�gurations is presented. The geometric constraint

solver works in two phases, in the analysis phase the constraint graph is

analyzed and a sequence of elementary construction steps is derived, and

then in the construction phase the sequence of construction steps is ac-

tually carried out. The analysis phase of the algorithm is described in

detail, its correctness is proved, and an e�cient algorithm to realize it is

presented. The scope of the graph analysis is then extended by utilizing

semantic information in the form of angle derivations, and by extending

the repertoire of the construction steps. Finally, the construction phase is

brie
y discussed.
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1 Introduction

The problem of solving systems of geometric constraints is central to numerous
applications, such as computer aided design and manufacturing [18, 30], stere-
ochemistry [7, 10], kinematic analysis of robots and other mechanisms [23] and
robot motion planning.

In CAD/CAM applications the user draws a sketch and annotates it with
geometric constraints. Overconstrained and underconstrained con�gurations
may occur, deliberately or erroneously. Figure 1 illustrates a case, where one
of the four 90� angles and one of the three distances (length of AB, length
of DE, and length of EC) are redundant. However, the con�guration is not
well-constrained since the length of b is not well speci�ed or derivable.

For applications where large constraint systems are not uncommon, it is
important to develop e�cient algorithms for solving the speci�ed constraint
systems with interactive speed [29].

Rigorous characterizations of the correctness and scope of the constraint
solving methods are needed to decide the suitability of such methods to appli-
cations.

Finally, techniques for navigating the solvers to meaningful and intuitive
solutions are necessary for providing useful solutions (see e.g., [17]).
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Figure 1: A system of geometric constraints de�ning a rectangle that is consis-
tently overconstrained but is not well-determined since its height is not speci�ed.

There are many attempts in the literature to provide a powerful, yet e�cient
method for solving systems of geometric constraints that address the above
requirements with varying success. Among them, we distinguish three broad
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classes of geometric constraint solvers. For an extensive review the reader is
referred to [13].

In numerical constraint solvers [36, 15, 27, 33, 24] the constraints are trans-
lated into a system of algebraic equations and are solved using iterative methods.
To handle the exponential number of solutions and the large number of param-
eters iterative methods require sharp initial guesses. Most iterative methods
have di�culties handling overconstrained or underconstrained instances. A so-
phisticated use of the Newton-Raphson method was developed in [24], where an
improved way for �nding the inverse Jacobian matrix is presented. In this work
when the Jacobian matrix is singular a modi�ed version of Doolittle's method
is used. However, such methods can only handle speci�c cases of ill-constrained
con�gurations.

Rule-constructive solvers [6, 3, 37, 35, 40, 39, 22] use rewrite rules for the
discovery and execution of the construction steps. In this approach, complex
constraints can be easily handled, and extensions to the scope of the method are
straightforward to incorporate. A method is presented in [37], where handling of
overconstrained and underconstrained problems is given special consideration.
Although rule constructive solvers provide a good approach for prototyping
and experimentation, the extensive computations involved in the exhaustive
searching and matching make it inappropriate for real world applications.

The graph-constructive method [28, 23, 2, 5, 11] is based on an analysis of the
constraint graph and consists of two phases. During the �rst phase the graph of
constraints is analyzed and a sequence of construction steps is derived. During
the second phase these construction steps are followed to place the geometry.
The graph analysis provides the means for developing rigorous and e�cient
methods. [28] describes a quadratic algorithm for handling well-constrained
con�gurations. [2] presents an algorithm for isolating well-constrained subsys-
tems of algebraic equations describing geometric constraints. Finally, [23] using
techniques from kinematics attempts to determine a solution that satis�es the
speci�ed constraints by analyzing the degrees of freedom.

In this paper we extend our graph-constructive approach [5, 11] to solving
systems of geometric constraints based on an analysis of the constraint graph
that derives a sequence of elementary construction steps. More speci�cally,

� A graph-constructive method capable of handling over-, under-, and well-
constrained con�gurations is presented.

� E�cient algorithms to analyze the constraint graph are introduced and
their worst-case time complexity is derived.

� The method is formally studied as a rewrite system of sets and its correct-
ness is proved. Note, that the behavior of the analysis for well-constrained
problems has been reported before in [11].
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� Extensions are presented that increase the scope of the core analysis tech-
niques.

� The construction phase is brie
y presented, its algorithmic complexity is
studied and the problem of avoiding complex coordinates is discussed.

Section 2 provides an overview of our approach. Section 3 describes the
reduction analysis for solving well-constrained and overconstrained con�gura-
tions. The decomposition analysis for handling underconstrained con�gurations
is presented in Section 4. Section 5 presents extensions that increase the scope of
the core reduction analysis. Section 6 brie
y describes the construction phase,
derives its complexity and discusses the problem of �nding a solution with real
number coordinates. Finally, Section 7 o�ers conclusions.

2 Overview and Background

A geometric constraint problem is given by a set of points, lines, rays, circles with
prescribed radii, line segments and circular arcs, called the geometric elements,
along with required relationships of incidence, distance, angle, parallelism, con-
centricity, tangency, and perpendicularity between any two geometric elements,
called the constraints. As it is explained in [12] with an appropriate represen-
tation and some preprocessing we may restrict ourselves to points, lines, with
pairwise distance and angle constraints. The geometric constraint problem is
then formulated as follows:

Given a set V of n points and lines and a set E of pairwise con-
straints among them, �nd an intuitive solution that satis�es the given
constraints. A pairwise constraint may be one of: point-line distance
and line-line angle, nonzero point-point distance. More formally E
is a partial mapping E : V � V ! <.

The problem can be coded as a constraint graph G = (V;E), in which the
graph nodes are the geometric elements and the constraints are the graph edges.
The edges of the graph are labeled with the values of the distance and angle
dimensions.

Example 1 Figure 2 shows a dimensioned sketch de�ning a constraint problem
involving 4 lines and 6 points. We have 8 implicit point-line distances that are
0, 2 explicit point-line distances, 3 angles and 4 point-point distances. Figure 3
shows the corresponding constraint graph. 2
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Figure 2: A well-constrained sketch de�ning a constraint problem with 10 geo-
metric elements and 17 constraints.

2.1 A Graph-constructive Method for Geometric Constraint
Solving

Our constraint solving method �rst forms a number of rigid bodies� with three
degrees of freedom, called clusters. For simplicity we will assume that a max-
imum number of clusters is formed, each cluster consisting of exactly two geo-
metric elements between which there exists a constraint.

Three clusters can be combined into a single cluster if they pairwise share a
single geometric element. Geometrically, the combination corresponds to placing
the associated geometric objects with respect to each other so that the given
constraints can be satis�ed.

The constraint solving method works in two conceptual phases:

� Phase 1 (analysis phase): The constraint graph is analyzed and a
sequence of constructions is stipulated. Each step in this sequence corre-
sponds to positioning three rigid geometric bodies (clusters) which pair-
wise share a geometric element (point or line).

� Phase 2 (construction phase): The actual construction of the geomet-
ric elements is carried out, in the order determined by Phase 1, by solving

�A rigid body is a set of geometric elements whose position and orientation relative to each
other is known.
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Figure 3: The constraint graph of the previous sketch

certain standard sets of algebraic equations.

To illustrate the process, consider three points A, B, and C between which
distances have been prescribed, as shown in Figure 4 left. The associated con-
straint graph is shown on the right. In Phase 1 of the constraint solving, we
determine �rst that every pair of points can be constructed separately, resulting
in three clusters. Moreover, the three clusters can be combined into a single
cluster since they share pairwise a geometric element. The combination merges
the three clusters into one. As soon as a single cluster is obtained, Phase 1
considers the constraint problem solvable.

Phase 1, the analysis phase, consists of two parts:

� the reduction analysis (Section 3) that produces a sequence of local cluster
merges and handles well-constrained and overconstrained problems, and

� the decomposition analysis (Section 4) that produces a sequence of decom-
positions (that correspond to a reverse sequence of cluster merges) and
handles underconstrained cases. The outcome of the reduction analysis is
fed as input to the decomposition analysis.
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Figure 4: Constraint problem (left), and associated constrain graph (right)
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Phase 2, the construction phase, is brie
y discussed in Section 6.

2.2 Multiple Solutions and Root Identi�cation

It is well known that a well-constrained geometric problem can have many in-
congruent solutions. At each construction step we may have to choose one of
several solutions. Therefore, di�erent choices may lead to incongruent geometric
placements, each mathematically satisfying the given constraints.

In order to select a solution at each step, a number of heuristics are applied
that make sense if the sketch with which the geometric problem has been spec-
i�ed has the same topological order type as the intended solution. This is an
application-speci�c issue that is further discussed in [5].

We assume that the geometric problem has been speci�ed by a user-prepared
sketch. The point-line distances, and the angles between oriented lines are
assumed to be signed quantities. The correct sign is determined from the original
input sketch. Observing the sign conventions, all construction steps have a
unique solution except in two cases, which are solved as follows:

(i) The relative placement of three points in a construction step has the same
cyclic ordering in the plane as the ordering of the points in the original
drawing (�gure 5 left).

(ii) The relative placement of two points and an oriented line is such that the
inner product of the direction vector of the points and the line is sign
invariant between the original sketch and in the chosen solution (�gure 5
right).

p1

p2

p3

p2

p1 l

Figure 5: (left) Relative placement of three points. (right) Relative placement
of a line and two points.

The geometric construction �rst places three geometric elements in this manner,
and then applies a rigid-body transformation to align the three clusters accord-
ingly. In particular, placing clusters by the shared geometric elements does not
involve a re
ection. We will see later that in well-constrained con�gurations
no matter in which order the clusters are combined, the same set of geometry
triples is used to select the geometric solution, and that this implies congruence.
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Note that the heuristics only imply the existence of a solution in a generic
sense. Speci�c dimensions of distance and angle could be such that the solution
selected by the heuristics would require complex coordinates. If this possibility
is to be systematically excluded, some strategy would be required that searches
the solution space in a canonical order. As the space of possible solutions may
be exponential in the number of geometric elements, this is not an attractive
prospect. In the case of ruler-constructible con�gurations, there is a theorem
by Hilbert stating that if one solution has only real coordinates, then all of
them must have real coordinates [16]. This means that for such con�gurations
the heuristics will never fail to deliver a solution if one exists. The theorem
does not generalize to ruler-and-compass constructible problems, and we know
of no results that make progress beyond Hilbert's theorem. The problem of
�nding a real solution of a system of geometric constraints is further considered
in Section 6.2.

2.3 Well-constrained, Overconstrained and Underconstrained
Problems

Each liney or point on the Euclidean plane has two degrees of freedom. Each
distance or angle corresponds to one equation. If we have no �xed geometric
elements (geometric elements whose absolute coordinates have been speci�ed
explicitly by the user) then we expect that

jEj = 2jV j � 3; where jV j = n

Recall that jV j is the number of geometric elements and that jEj is the number
of constraints. Note that the solution will be a rigid body with three remaining
degrees of freedom, because the constraints determine only the relative position
of the geometric elements. We use this argument to de�ne a technical notion
of well-constrained sketches in which no attempt is made to account for the
possibility that for special dimension values an otherwise well-constrained prob-
lem may happen to be underconstrained. An example is shown in Figure 6. In
the �gure, the vertex P of the quadrilateral has a well-de�ned position when
� + � 6= 90�. But for � + � = 90� the position of P is not determined. This
\semantic" notion of well-constrained problems is too speci�c for the constraint
graph analysis because there the generic problem of constructing a solution is
considered independent of dimension values.

Intuitively a dimensioned sketch is considered to be well-constrained if it
has a �nite number of solutions for nondegenerate con�gurations. Similarly a
dimensioned sketch is considered to be underconstrained if it has an in�nite
number of solutions for nondegenerate con�gurations. Finally a dimensioned

yPoints and lines are projective duals, hence must have the same number of degrees of
freedom.
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Figure 6: Degenerate Con�guration (right) for �+ � = 90�.

sketch is considered to be overconstrained if it has no solutions for nondegenerate
con�gurations.

The intuitive notions above can be made technically precise as follows:
De�nition 1 A graph with n nodes is structurally overconstrained if there is
an induced subgraph with m � n nodes and more than 2m� 3 edges.
De�nition 2 A graph is structurally underconstrained if it is not structurally
overconstrained, and the number of edges is less than 2n � 3.
De�nition 3 A graph is structurally well-constrained if it is not structurally
overconstrained, and the number of edges is equal to 2n� 3.
De�nition 4 A geometric constraint problem with a structurally over-, under-
or well-constrained constraint graph is called a structurally over-, under- or well-
constrained problem, respectively.

For an algorithm to test whether a graph is structurally well-constrained see,
e.g. [20, 34]. Note that a structurally well-constrained graph can be overcon-
strained in a geometric sense, for example if there are three lines with pairwise
angle constraints.

The core reduction analysis handles structurally well-constrained and over-
constrained problems. Section 3 presents this method in detail, together with a
correctness proof and an e�cient algorithm to realize it. Section 4 presents the
decomposition analysis that handles structurally underconstrained problems.

3 The Reduction Analysis

We are given a constraint graph G = (V;E) whose nodes V are geometric
elements, and whose edges E are the geometric constraints. Without loss of
generality, the geometric elements consist only of points and lines, and the
constraints are only distance and angle.

We consider sets S whose elements are sets C that in turn have as elements
nodes of G. Each set C represents a cluster. Intuitively, a cluster C consists
of geometric elements whose position relative to each other has already been
determined. A cluster thus can be considered a rigid geometric structure that
has three degrees of freedom, two translational and one rotational.
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Initially, we form a set SG from G. For each edge e = (u; v) in G, there is
a cluster Ce = fu; vg. The construction steps that solve the constraint problem
amount to one reduction step that merges three clusters whose pairwise inter-
section is a singleton. The reduction is denoted by !. The process of �nding a
sequence of reductions that derives a single set of clusters, and thus determines,
a sequence of construction steps that positions the geometric elements to satisfy
the initial set of constraints, is called reduction analysis.

Example 2 To illustrate better the process of the reduction analysis, consider
the constraint graph of Figure 3. After detecting a sequence of cluster merges,
we end up with three clusters, U , V and W , as shown in Figure 7. The analysis
concludes by merging the three clusters into one. 2
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Figure 7: Finding the clusters of the graph

3.1 Correctness

In [11], we considered clusters as sets and studied their structure under reduc-
tion. Given the constraint graph G = (V;E), we de�ne the set of clusters

SG = ffu; vg : (u; v) 2 Eg

Cluster sets are rewritten using a reduction !. The reduction ! is formally
de�ned as follows:
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De�nition 5 Let S be a set of clusters C in which there are three clusters C1,
C2, C3 such that

C1 \ C2 = fg1g
C2 \ C3 = fg2g
C3 \ C1 = fg3g

where g1, g2, g3 are distinct, then

C! C0

where
C0 = (C[ fS1 [ S2 [ S3g)� fS1; S2; S3g

We proved �rst a weak notion of correctness:

If the constraint graph is not structurally overconstrained, then our
method reduces the initial set SG to the same (irreducible) set, no
matter in which order the reduction steps are applied. That is the
set SG and the reduction ! are a terminating, con
uent rewriting
system (see e.g., [31]).

Here, con
uent means that if a set A can be reduced to two di�erent sets B1

and B2, then there are two reduction sequences, one reducing B1, the other B2

to the same set C.
Notice, however, that a well-constrained geometric problem has in general

several incongruent solutions (see Section 2.2). In [11], we proved therefore a
stronger uniqueness theorem:

If the constraint graph is well-constrained and our algorithm reduces
the initial set SG to a single cluster using, in the construction phase,
the placement rules given in Section 2.2, then the solutions derived
by di�erent reduction sequences place a �xed set of triples of geo-
metric elements in the same relative position.

This result implies that di�erent reduction sequences must produce geometric
solutions that are congruent.

3.2 An E�cient Reduction Algorithm

In this section, we provide an algorithm that runs in time quadratic in the num-
ber of geometric elements and constraints and realizes correctly the reduction
analysis.

Let G = (V;E) be the constraint graph. Let n = jV j and e = jEj. The
algorithm has an O(n2) worst case time complexity for constraint graphs that
are not structurally overconstrained. We can also show that we can test, in the
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same time bound, whether the graph is structurally overconstrained (see Section
3.3). For the purposes of the algorithm we will also consider an undirected
cluster graph H whose vertices are the edges and vertices of G. H has an edge
(e; v) i� there is an edge e 2 E and e is incident to v in G. Note that H is
bipartite.

The initial cluster graph H records clusters of size 2 in G. H is bipartite,
with one set of vertices corresponding to clusters, initially the edges of G, the
other corresponding to the geometric elements of the constraint problem, the
vertices of G. There is an edge in H if a vertex of G belongs to a cluster.

In this section we will assume that G is not structurally overconstrained thus
every subgraph Gs = (Vs; Es) of G satis�es jEsj � 2jVsj � 3.

3.2.1 Overview

The algorithm for solving the constraint graph is as follows:

1. Construct initial clusters of size 2, each consisting of two adjacent vertices
of G.

2. Construct the cluster graph H .

3. Find all triangles in G.

4. Successively rewriteH by replacing a 6-cycle in H by a four-node structure
as explained below. Record a cluster merging operation for each such
rewriting step.

5. If H can be rewritten into a �nal graph that is a star with center a cluster
and periphery the vertices of G, then G is solvable by reduction; otherwise
it is not solvable by reduction.

A 6-cycle in H corresponds to three clusters that pairwise share an ele-
ment (a vertex of G). The rewriting step corresponds to a cluster merge. Let
(u; U; v; V;w;W ) be such a 6-cycle, where u; v; w 2 G. We replace the three ver-
tices U , V and W with a new vertex X . Then X will be incident to all vertices
that U , V and W are adjacent to. That is, the nodes U; V;W are combined into
a single node. See also Figure 8.

A 4-cycle in H corresponds to two clusters that share two elements. If a
4-cycle exists, the graph G is structurally overconstrained. Thus, the shortest
possible cycle in H has length 6.

3.2.2 Details

The main work of the algorithm is to �nd and reduce 6-cycles. Finding triangles
in Step 3 identi�es all 6-cycles in H , and the algorithm will �nd other 6-cycles
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Figure 8: Rewriting a 6-Cycle in the Cluster Graph

that are formed by rewriting in Step 4. Those two steps must be implemented
carefully, and we explain how they are done.

Step 3: We assume that G is represented both by adjacency lists and by the
adjacency matrix. We �nd all triangles in G, using the method of [21]:

Build a depth-�rst search tree (see e.g. [1]). Three types of triangles are
possible, involving two, one, or no tree edges; Figure 9. Triangles that involve

father(u)

v

u

v

u

father(u)

u

v

father(u)

a) A triangle containing two tree edges b) A triangle containing one tree edge c) A triangle without tree edges

Figure 9: Three cases for a triangle in a depth �rst search

one or two tree edges are found uniformly as follows: Let (u; v) be a back edge.
If there is an edge in G between father(u)) and v, we have a triangle with one
or two tree edges, because in that case either (v; father(u)) is a tree edge or
(father(u); v) is a back edge.

Next, we remove all tree edges, and repeat the above search for all connected
components of the remaining graph. This is repeated until there are no more
edges. Clearly, all triangles that do not have tree edges in the �rst depth-
�rst search eventually become triangles involving tree edges in later depth-�rst
searches.

Step 4: A triangle in the constraint graph G corresponds to a 6-cycle in the
cluster graph H and vice versa. Having found all triangles in G, we now know
all 6-cycles of H .

When rewriting a 6-cycle, new 6-cycles could be created. They are found
by a limited-depth breadth-�rst search that originates at the new vertex X ; see
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Figure 10: Finding a 6-cycle by doing a breadth-�rst search

also Figure 10. In [26] limited depth-�rst search has been used to �nd cycles of
minimum length. To �nd all such 6-cycles, begin a breadth-�rst search at X .
Each vertex at level 3 that is reached twice in the breadth-�rst search closes a
6-cycle. Note that the search is done only to level 3. By the results of [11] there
is no need to consider which of several 6-cycles should be treated. Thus, we
choose one such 6-cycle, rewrite it, mark this vertex as candidate, and continue
with the next candidate vertex.

3.2.3 Time Analysis

Steps 1 and 2 require O(e) steps in all. Since G is not structurally overcon-
strained, this is linear in the number of vertices n.

Step 3 repeatedly performs depth-�rst search. It requires the adjacency
matrix of G which costs O(n2) if constructed with standard data structures.
The �rst depth-�rst search now requires O(e) steps, because the test whether
(father(u); v) is a graph edge can be done in constant time using the adjacency
matrix.

Let G1 be a connected component of G with m vertices. After a depth-
�rst search of G1, m � 1 edges are removed from the adjacency lists. This is
more than half the edges in G1 because G is structurally not overconstrained.
Consequently, the next depth-�rst search examines less than half the number of
edges. The total time for Step 3 is therefore O(e) which is O(n), excluding the
time for the adjacency matrix construction.

In Step 4, each reduction of a 6-cycle takes time O(e): We go through all the
adjacency lists and replace each of the three vertices U , V and W with vertex
X . Every new 6-cycle must involve the new node X . We do a breadth-�rst
search beginning at X to depth 3, looking for new 6-cycles. This takes again
time O(e). Initially, H contains at most 2n � 3 vertices representing clusters.
Each 6-cycle replacement reduces this number by 2, thus in Step 4 we may have
at most n reductions. And since each breadth-�rst search corresponds to one
reduction, Step 4 takes time O(ne) = O(n2).

14



3.3 Structurally Overconstrained Problems

We �rst show that we can test, in the same time bound as before, whether the
graph is structurally overconstrained.

With some extra checking the algorithm of Section 3.2 can detect an over-
constrained subgraph in the same time bound. For Step 1 before doing a depth
�rst search in a connected component graph G1 = (V1; E1) we check whether
jE1j � 2jV1j � 3, if yes we go on, otherwise we terminate the algorithm and
return the graph G1. Since this step is performed on the initial graph as well
we have ensured that the original graph has less than 2n�3 edges. Step 2 takes
again time O(n), and Step 3 takes time O(e), assuming that we check for struc-
turally overconstrained subgraphs before applying a depth �rst search. For Step
4, we keep reducing until we meet a 4-cycle, then we terminate the algorithm
and return the 4-cycle, the time complexity is again O(n2). The returned graph
is used for interactive editing.

To handle consistently overconstrained problems we introduce a new reduc-
tion operation that merges two clusters sharing two or more geometric elements.
This corresponds to checking in the construction phase whether the relative po-
sitioning of the shared geometric elements in the two clusters is consistent. If it
is consistent, then the two rigid bodies are merged into one. A cluster con�gu-
ration derived from a structurally overconstrained problem is depicted in Figure
11. In this cluster con�guration, C1, C2 and C3 are merged into a cluster C0,
and C4, C5 and C6 into a cluster C00. C0 and C00 have two common elements: p4
and p2. In the analysis phase we merge the two clusters and in the construction
phase we �rst check whether the distance between p4 and p2 in C0 matches the
distance between p4 and p2 in C00. If so, we rotate and translate, e.g. C 0 to
match C 00. We can prove that by adding this new reduction, we get con
uent
rewrite systems for all cluster con�gurations (overconstrained or nonovercon-
strained). However, geometric congruence cannot be proved by the techniques
of [11], since di�erent reduction choices will result in di�erent sets of geometry
triples.

We assume that in the initial constraint graph there may be no more than
one edge between any two vertices. Otherwise we can �nd such multiple edges
in time linear to the total number of edges and reduce them. Then the only
modi�cation to the algorithm of Section 3.2 is to add to Step 4, that if we meet
a 4-cycle in a breadth-�rst search we reduce it as if it was a 6-cycle and we go
on. To derive the time bounds note that the number of reductions is always
linear in the number of nodes in H . Also recall that each iteration of Step 4
takes only O(e). Steps 1 and 2 take time O(e). Step 3 becomes O(e

p
e) (see

[21]), and Step 4 becomes O(e2). This gives an overall O(e2) worst case time
complexity for the general case.

If the original graph has e = O(n) then Steps 1 and 2 take O(n) time, Step
3 takes O(n

p
n) and Step 4 takes time O(n2).

15



l1
l2

C1 C3

p2

p3
C2

p1

p4
C4

p5

l3

C5

C6

Figure 11: A cluster con�guration derived from a structurally overconstrained
problem.

4 The Decomposition Analysis

The bottom-up reduction analysis of Section 3 works well with overconstrained
and well-constrained problems. However, it has di�culties when dealing with
underconstrained problems, because there appears to be no reliable way to lo-
cally add constraints deduced from the input sketch to transform an undercon-
strained problem to a well-constrained one.

Example 3 Figure 12 shows the constraint graph of an underconstrained
geometric problem, that needs the addition of three constraints to become well-
constrained and solvable by the reduction analysis described in Section 3. The
vertices of the graph represent points, and the edges distance constraints be-
tween them. Adding distance constraints between (v1; v3), (v7; v9) and (v13; v15)
make the problem well-constrained and solvable. However, if we add a distance
constraint for (v16; v10) to trigger a local cluster merging, then any addition of
two more distance constraints will make the problem nonsolvable. Thus the
local reduction analysis is insu�cient for underconstrained problems. A global
analysis is needed. 2

We present now a global, top-down decomposition analysis that performs
especially well for underconstrained problems. The decomposition analysis also
handles well-constrained problems e�ciently, but does not do well on overcon-
strained problems, nor does it make it easy to include the angle transformations,
described in Section 5.2. Note that a top-down decomposition analysis was �rst
proposed by Owen [28]. His algorithm runs in quadratic time and uses the linear
algorithm for �nding triconnected components presented in [19].

The decomposition analysis presented now analyzes the cluster con�gura-
tion derived by the reduction analysis and is proved to handle all undercon-
strained problems that can become well-constrained and solvable -by reduction-,
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Figure 12: A structurally underconstrained graph where adding edges (clusters)
to trigger local cluster merging does not always work.

by adding constraints. Our decomposition algorithm has quadratic worst case
time complexity and uses the classical linear depth-�rst search algorithms for
�nding split components and articulation nodes [19, 38].

4.1 A Conceptual Algorithm

Initially, all clusters found by the reduction analysis are considered to be in a
set S. The set S is partitioned into two or three subsets Sk. Let S1 and S2
be two such subsets. We require that there is at most one geometric element
shared by the clusters in the two sets. That is, let G1 = fg j g 2 C;C 2 S1g be
the geometric elements that are in clusters of the set S1, and let G2 = fg j g 2
C;C 2 S2g. Then we require that jG1 \ G2j � 1. At each decomposition step,
we so subdivide a set of clusters S into two or three disjoint cluster sets. The
elementary decomposition steps (decomposition types) are shown in Figure 13.
In the Figure, Si, denotes a set of clusters, and Ci denotes an individual cluster.

A decomposition sequence is successful when every cluster of the original set
S is in a singleton set Sk . A successful decomposition sequence corresponds to a
sequence of cluster merges during the construction phase. These cluster merge
operations will be executed in reverse order of the decomposition sequence. A
decomposition step corresponds to one cluster merge in cases (a) and (b), and
to two cluster merges in case (c). A decomposition of type (a) is then a simple
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Figure 13: The three decomposition types.
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Figure 14: Adding clusters during the construction phase for each of the three
decomposition steps.
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set partition (Figure 14(a)). In the case of a decomposition of type (b), a new
cluster C1 is created for the purposes of the construction phase, corresponding
to adding a constraint (Figure 14(b)). A decomposition step of type (c) creates
three additional clusters (Figure 14(c)). The corresponding added constraints
can be formulated from the relative position of the geometric elements in the
input sketch.

We avoid selecting a partition where all three shared geometric elements are
lines in case (a). In case (b), when the shared element is a line we choose to
add a cluster C1 that does not consist of two lines. The restriction avoids a cor-
responding merge of three clusters with lines as the shared geometric elements,
for such a merge is geometrically undetermined. A similar restriction is placed
on the clusters C1, C2 and C3 in decompositions of type (c).

In case that S1 and S2 are singleton sets whose clusters consist of lines only,
then a virtual point is added as shown in Figure 15.

l1

l2

l3

p

C5

C3

C4

p

l1

l2

l3

l4

C3

C4
C5

C6

C7

S1

S2

S2

S1

Figure 15: Decompositions (b) and (c) for clusters containing only lines. A
virtual point p is added plus constraints to form the clusters Ck.

The reduction analysis has no e�ect on the underconstrained graph of Figure
12 because there are no triangles. The decomposition analysis, however, can
successfully solve the underconstrained problem and identify three additional
constraints that will make it solvable. For instance, the clusters formed initially
(one for each edge) can be split into three sets that share geometric elements
v1, v7 and v13.

On the other hand, decomposition cannot handle problems that are con-
sistently overconstrained, such as the one shown in Figure 11. There is no
decomposition of the clusters into two or three sets that pairwise share at most
one geometric element. However, the reduction analysis can e�ciently (in terms
of the overall time complexity) handle such geometric constraint problems.
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4.2 Correctness

Let C be a collection of sets S. Each set S consists of clusters C. We assume
that the cluster sets S of C are disjoint. Initially, C contains only one set whose
elements are the clusters derived by the reduction analysis.

The type (a) decomposition of Figure 13 is denoted !D(a), and is formally
de�ned as follows:
De�nition 6 Let C be a collection of sets of clusters in which there is a set
of clusters S whose elements can be partitioned in three nonempty sets S1, S2
and S3 such that:

(
S
C2S1

C)\ (
S
C2S2

C) = fg1g
(
S
C2S2

C)\ (
S
C2S3

C) = fg2g
(
S
C2S3

C)\ (
S
C2S1

C) = fg3g
where g1, g2, g3 are distinct and are not all lines, then

C !D(a) C0

where
C0 = (C [ fS1;S2;S3g)� fSg

The type (b) decomposition of Figure 13, denoted!D(b), is formally de�ned
as follows:
De�nition 7 Let C be a collection of sets of clusters in which there is a set of
clusters S whose elements can be partitioned in two nonempty sets S1 and S2
such that:

(
S
C2S1

C)\ (
S
C2S2

C) = fgg
then

C !D(b) C0

where
C0 = (C [ fS1;S2g)� fSg

Finally, the type (c) decomposition of Figure 13 which we denote by !D(c)

is formally de�ned as follows:
De�nition 8 Let C be a collection of sets of clusters in which there is a set of
clusters S whose elements can be partitioned in two nonempty sets S1 and S2
such that:

(
S
C2S1

C)\ (
S
C2S2

C) = ;
then,

C !D(c) C0

where
C0 = (C [ fS1;S2g)� fSg

21



De�nition 9 A decomposition !D applied to a collection C is one of !D(a),
!D(b), or !D(c).

We will show that the rewrite system (CG;!D) has a unique normal form
that is obtained after �nitely many steps. Note, that this result does not imply
geometric uniqueness since di�erent choices of constraint additions may result
from di�erent decomposition sequences. However, it proves the soundness of the
decomposition method meaning that the method will always �nd a successful
decomposition sequence, if such a sequence exists.
De�nition 10 The collection C 0 of cluster sets is derived from C, if C 0 can be
obtained by applying a �nite sequence � of decompositions to C. We denote this
by

C!D
� C0

De�nition 11 A collection C of cluster sets to which !D is not applicable is
called nondecomposable. If C is nondecomposable and can be derived from C 0,
then C is called a normal form of C 0. A collection of cluster sets whose normal
form contains only singleton cluster sets is called solvable.

We will show that a collection of cluster sets has a unique normal form and
is derived by a �nite sequence of decomposition steps.

Lemma 1 A normal form of a collection of cluster sets is derived by a decom-
position sequence whose length is bounded by c� 1 where c is the total number
of clusters.

Proof
(By induction on the number of clusters). For c = 1, C = fSg and S = fCg,
which is already in normal form. Assume the lemma holds for all sets with
fewer than c > 1 clusters, and let C be such that there are c clusters in all the
element sets of C. If C has more than 1 element, then each set S 2 C has fewer
than c elements. By the induction hypothesis, C can be brought into normal
form in at most c � 1 steps. Otherwise, C = fSg. If C is not in normal form
already, then S can be decomposed in one step into two or three sets Sk, each
with fewer than c elements. By the induction hypothesis, therefore, normal
form is reached in at most 1 + (c1 � 1) + (c2 � 1) = c � 1 steps or in at most
1 + (c1 � 1) + (c2 � 1) + (c3 � 1) = c� 2 steps. 2

Theorem 1 The rewrite system (C;!D) is con
uent.

Proof

Let C be a collection of cluster sets. Assume that two di�erent decomposition
steps , C !D

1 C1 and C !D
2 C2, are applicable to C. We will prove that C1 !D

� C0
and C2 !D

� C0. This proves local con
uence which however su�ces to show
global con
uence (see e.g. [9]).

If !D
1 and !D

2 partition two di�erent sets S1 and S2 of C, then C2 !D
1 C0

and C1 !D
2 C0. So, we assume that !D

1 and !D
2 partition the same set S of
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clusters. Without loss of generality we assume that C = fSg.
Assume that !D

1 and !D
2 are both of type (a) and partition S into S11,

S12, S13 and into S21, S22, S23, respectively. Intuitively, the collection C 0 is
C0 = fS0ikg, where S0ik = S1i \ S2k, 1 � i; k � 3 and S0ik 6= ;.

We want to decompose S11 into the sets S011, S
0
12 and S

0
13, assuming that all

three sets are not empty. Since the decomposition !D
2 requires that S21, S22

and S23 pairwise share one geometric element, the sets S011, S
0
12 and S

0
13 pairwise

share at most one geometric element. Therefore, the decomposition of S11 can
be done by in one of four ways, depending on the number of shared geometric
elements:

(3) | by a single step of type (a)
(2) | by two steps of type (b)
(1) | by one step of type (b) and one step of type (c)
(0) | by two steps of type (c)

If one or more of the S01k are empty, a similar case analysis establishes the
decomposition of S11. By symmetry, S12 and S13 are decomposed into the sets
S02k and S

0
3k. Therefore,

C !D
1 C1 !D

� C0

if both reductions are of type (a). Again, by symmetry, we also have

C !D
2 C2 !D

� C0

It is now routine to argue con
uence in the cases where one, or both, of!D
1

and !D
2 are of type (b) or type (c). 2

Corollary 1 (Normal Form Theorem)
A collection C has a unique normal form under !D that is obtained by �nitely
many decomposition steps.

Proof
Immediate from Theorem 1 and Lemma 1. 2

Note that two decomposition sequences need not result in congruent geomet-
ric solutions, since di�erent decompositions may determine di�erent choices of
constraint additions. An example is shown in Figure 16. The user speci�es the
underconstrained problem in (a). Assume that the distance between Pt1 and
Pt2 is 13.738, and between Pt5 and Pt6 is 17.000, in the input sketch. Then,
depending on the decomposition sequence, solutions (b) or (c) may be obtained.
The decomposition sequence, which determines the insertion of the additional
constraints, is randomly selected among the feasible ones. In CAD applications,
the user may delete some of the inserted constraints and rerun the constraint
solving algorithm.
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Figure 16: Getting two geometrically incongruent solutions, (b) and (c), from
the same underconstrained draft (a).

4.3 An E�cient Algorithm

The conceptual decomposition method just described can be implemented to run
in time quadratic in the number of clusters and geometric elements. It can also
be combined with the reduction analysis of Section 3 because the decomposition
only requires abstract clusters that are sets of geometric elements whose relative
position is known. Thus, the set of clusters obtained by the reduction analysis
is the initial set S of the decomposition analysis.

For the implementation of decomposition we will make use of the cluster
graph HR = (VR; ER) derived by the reduction analysis. Recall that this graph
is bipartite, and the partition is VR = V c

R [ V
g
R, where V

c
R are the clusters and

V
g
R are the geometric elements. The graph edge (C; g) means that the geometric

element g belongs to the cluster C.
We construct a graph GD = (VD; ED) from the graph GR = (VR; ER), where

VD = V
g
R [ fv1; v2; v3 j v 2 V c

Rg
consists of the nodes of V g

R plus three nodes vk for every node v in V c
R. The

edges of GD are

ED = f(u; v1); (u; v2); (u; v3) j (u; v) 2 ER; u 2 V
g
R; v 2 V c

Rg
We will use a depth-�rst search algorithm for �nding the split components of a
biconnected graph. We recall some terminology from [19].
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Let G be a connected undirected graph. Then a is an articulation node of G
i� there are two vertices u and v di�erent from a such that a is on every path
connecting u and v. A graph with no articulation nodes is called biconnected.
Let a and b be two vertices in a biconnected graph G. The edges of G are divided
into separation classesE1; E2; : : :Ek. Two edges are in the same separation class
E if there is a path using both edges and not containing a or b except, possibly,
as endpoints.

If the two vertices a and b divide the edges into more than two separation
classes, then fa; bg is an articulation pair of G. Moreover, if fa; bg divides the
edges into two separation classes, each containing more than one edge, then
fa; bg is also an articulation pair. If G has no articulation pairs then G is
triconnected.

Assume there is an articulation pair fa; bg that induces the separation classes
E1; E2; : : :Ek. Let E 0 =

Sm
i=1Ei and E00 =

Sk
i=m+1Ei, such that jE 0j; jE00j � 2,

and let G0 = (V (E0); E0 [ f(a; b)g) and G00 = (V (E00); E00 [ f(a; b)g). Then the
graphs G0 and G00 are called split graphs of G. In this case we say that G has
been split into G0 and G00. The added edge (a; b) is labeled to denote the split
and is called a virtual bond. By merging G0 and G00 we mean the reconstruction
of G from the two graphs.

Assume that we recursively split G and its split graphs until we obtain graphs
that cannot be split further. The set of these (triconnected) graphs is called a
set of split components of G. The decomposition of a biconnected graph G

into two split components is not unique because the partition of the separation
classes is arbitrary. By merging the split components pairwise we recover the
original graph. We distinguish three types of split components: triple bonds (a
two-vertex subgraph with three edges), triangles and other triconnected graphs.

If we perform all merging operations between bonds and all merging oper-
ations between triangles, then the resulting graphs will be bonds and polygons
plus the nontrivial triconnected split components. It is a standard result that
the decomposition of a graph G into triconnected components is unique [25].

The algorithm presented in this section is based on the following lemma.

Lemma 2 A cluster con�guration with a biconnected graph GD as de�ned
above, is type (a) decomposable if and only if every set of split components of
the graph contains at least one triangle whose edges are all virtual bonds, and
whose vertices are not all lines.

Proof

Assume that among the split components of GD there is a triangle (a; b; c) whose
edges are virtual bonds, and whose vertices are not all lines. Then, since we have
replicated each cluster node and all the adjacent edges, we are certain that no
articulation node or articulation pair will contain any cluster nodes. Thus, all
three articulation pairs (a; b), (b; c) and (c; a) correspond to geometric elements,
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and GD can be decomposed into three sets of clusters, sharing pairwise a single
geometric element. These sets can be found if we follow the labels of the virtual
bonds (see Figure 18).

Now assume that the cluster con�guration can be decomposed into three sets
of clusters pairwise sharing exactly one geometric element. Let (a; b; c) be the
shared geometric elements, and assume without loss of generality that vertex a
corresponds to a point. We can �nd at least one decomposition of GD into split
components containing the triangle: (fa; b; cg; f(a; b); (b; c); (c; a)g). We know
however (see e.g. [25]), that the decomposition of any graph in triconnected
components is unique. We also know from [19] that merging split components
that are triangles as much as possible, will give us a number of polygons which
are triconnected components of the original graph. Since polygons occur as tri-
connected components only as a result of two or more triangles being merged
(otherwise they would split), we conclude that every decomposition of GD into
split components will contain a triangle graph where one vertex is a and the
edges are virtual bonds (there are no edges between geometric elements and all
articulation pairs consist of geometric elements). 2

By the above lemma and by observing that a cluster node cannot be an ar-
ticulation node, we can show that the following algorithm correctly implements
the decomposition analysis described earlier.

1. If the graph is not connected then split it into connected components. If
the graph has l connected components then there are l�1 decompositions
of type (c) that split the original graph. Apply Step 2 to each of the
connected components.

2. If the graph is not biconnected then split it into biconnected components.
If the graph has k biconnected components, then k� 1 decompositions of
type (b) split the graph into those components. Apply Step 3 to each of
the biconnected components.

3. Find all split components of the graph. If there is no articulation pair
stop.

If among the split components there is a triangle whose edges are virtual
bonds and whose vertices are not all lines, then the overall graph is type
(a) decomposable and the separation triple consists of the vertices of the
triangle. Find the three component graphs by following the virtual bonds.
Then apply the algorithm recursively to the three components.

When the algorithm terminates, every cluster represents a triconnected com-
ponent of the constraint graph that cannot be split further.

Figure 17 shows an underconstrained cluster con�guration that is missing
one constraint. The corresponding graphs for clusters C2 and C7 are shown on
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Figure 17: (left) A cluster con�guration that is derived from an underconstrained
system of geometric constraints, (right) the graphs representing a cluster with
two and a cluster with three geometric elements.

the right. A decomposition sequence of the set of clusters, is the following:

fC1; C2; C3; C4; C5; C6; C7; C8g !D(a)

ffC1g; fC2g; fC3; C4; C5; C6; C7; C8gg !D(a)

ffC1g; fC2g; fC3g; fC4g; fC5; C6; C7; C8gg !D(a)

ffC1g; fC2g; fC3g; fC4g; fC5g; fC6g; fC7C8gg !D(b)

ffC1g; fC2g; fC3g; fC4g; fC5g; fC6g; fC7g; fC8gg
The con�guration is solvable, and the last decomposition is a type (b) decom-
position and means that we have to add a cluster (constraint) between p5 and
p7 or alternatively, between p5 and p4.

In Figure 18 we see a decomposition into split components of the graph GD

for the cluster con�guration of Figure 17. The edges inside the clusters are
omitted and they are as in Figure 17 (left). The existence of the triangle,

ffp1; l2; l3g; f(p1; l2); (l2; l3); (l3; p1)gg
means that there is a decomposition of the cluster in three sets that pairwise
share a single geometric element, and that one of them represents a point.

The �rst step of the algorithm takes time O(jEDj+ jVDj) [38]. Finding the
split components each time the second step is executed takes time O(jEDj +
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Figure 18: A decomposition in split components of the graph that corresponds
to the cluster con�guration of the previous �gure. The edges inside each cluster
are omitted, only the virtual bonds are shown.

jVDj) [19]. The number of times that we need to decompose the components
is bounded by jVDj, since each time we decompose the graph, the number of
cluster nodes at each component is reduced by one.

Thus the algorithm takes at mostO((jEj+jV j)2) time. If we assume that the
number of edges jEj= O(n) then the decomposition analysis of the algorithm
takes time O(n2).

5 Extending the Scope of the Analysis Phase

We present two extensions of the scope of the analysis phase. Both extensions are
incorporated in the reduction analysis, do not a�ect the overall time complexity
and can be used also in conjunction with the methods of Section 3.3 for solving
consistently overconstrained problems.
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5.1 Extending the Repertoire of Reductions

The reduction analysis can be extended to include more complicated reductions,
as the one depicted in Figure 19 for which the constructions are presented in [5].
We replace the depth-�rst search of step 3 of the reduction analysis algorithm
(Section 3.2), for �nding the triangles in graph G, with a breadth-�rst search.
The breadth-�rst search begins from every cluster node of the bipartite graph
H , to �nd a 4-cycle or a 6-cycle. If neither can be found, we search for an 8-cycle
with exactly 3 incoming edges at the cluster-node of level 4; see also Figure 20.
We modify step 4 of the reduction analysis algorithm analogously.

An 8-cycle with exactly 3 incoming edges corresponds to the cluster con-
�guration of Figure 19. In �gure 20 we have started breadth-�rst search from
C1 and at level 4 we detect that the node that corresponds to cluster C2 has
exactly 3 incoming edges. Recall that all geometry nodes g1; : : :g6, and cluster
nodes C3, C4 and C5 have only one incoming edge, since there are no 6-cycles
and no 4-cycles by assumption. However, having more than 3 incoming edges to
a cluster node of level 4 means that we have an overconstrained con�guration.
In that case, we can either return the overconstrained subgraph or treat it as
a consistently overconstrained con�guration by taking into account only three
incoming edges, merge the 5 clusters into one and check for consistency using
the remaining clusters. Although step 3 is now computationally more expensive,
the overall worst-case time complexity remains O((jEj+ jV j)2).

g3

g4

C5

C4

C3

g6

g5

C2

C1

g2

g1

Figure 19: A well-constrained cluster con�guration that cannot be solved by the
basic method
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Figure 20: Detecting the cluster con�guration of the previous �gure during the
reduction analysis, by a breadth-�rst search rooted at C1.

5.2 Incorporating Angle Derivations

By exploiting geometric theorems, we perform certain graph transformations
that may convert a constraint graph that is unsolvable by our basic method into
an equivalent, solvable constraint graph.

l1 l2

l3

p1

p3

p2

l1 l2

l3

p1

p3

p2

p4

p5

p6

p7

Figure 21: Two constraint con�gurations that can be solved only if we utilize
angle derivations.

A powerful graph transformation rule can be based on the following simple
observation: if we have three lines l1, l2, and l3 and the angles �(l1; l2) and
�(l2; l3), then the angle between 
(l1; l3) must be �� (�+�). This implies that
we can substitute for any tree representing n lines and n � 1 angle constraints
between them, by any spanning tree of the complete graph with those n nodes.

In Figure 21 (left) we see a constraint graph that is not solvable by our basic
reduction analysis, but it becomes solvable if we replace edge (l1; l2) with edge
(l1; l3) applying the graph transformation rule described above. This rule can
be generalized to apply in cases where there are no explicit angles initially be-
tween lines, yet implicit angle constraints arise later as a consequence of cluster
merging. Figure 21 (right) shows an example.
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This graph transformation can be implemented e�ciently as follows. We
partition all nodes that correspond to line geometries into a number of angle
classes. Two vertices belong to the same angle class if and only if the angle
between them is known. The binary relation known angle between two lines
is re
exive, transitive and symmetric. We can �nd the angle classes formed
by the initial angle constraints in time O(jEj + jV j), maintaining with each
line geometry a bidirectional pointer to its angle class, which is initially set to
contain only the line itself. Then we traverse the original constraint graph (e.g.
by a depth-�rst search), and every time that we �nd an edge between two lines
representing an angle constraint we merge the two corresponding angle classes.
All lines in the same cluster belong to the same angle class, we say that the
corresponding cluster node belongs to the angle class.

l1  l2  l3

l1 l2 C1
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C4

C1 C5C4 C2
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  l1   l2

p4
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C7

p7

l3

C8

C9

p3p1 l1l3l2 p2

Figure 22: Cluster con�gurations for the geometric constraint problems of the
previous �gures after some initial cluster merging has occurred. The correspond-
ing information for the angle classes is also shown.

We nowmodify step 3 of the reduction analysis to check, in addition, whether
some angle class triggers a cluster merging. In the graph H , this is done by
checking which cluster nodes belonging to the angle class have a point vertex
in common. This can be done in time O((jEj + jV j)2). When clusters are
merged, the associated angle classes are also merged, and the links to and from
the clusters and the corresponding line vertices are updated in time O(jEj +
jV j). Finally when we perform a breadth-�rst search from a cluster vertex upon
merging three clusters, we also check whether the associated angle class triggers
any further cluster merging, also in time O(jEj+ jV j). Thus, the overall worst
case time complexity remains O((jEj+ jV j)2).
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Figure 23: Cluster Merge

In Figure 21 (left), there is initially only one angle class fl1; l2; l3g, whereas
in Figure 21 (right) there are initially three angle classes fl1g, fl2g, and fl3g.
In Figure 22 (left) we have the cluster con�guration of the constraint problem
of Figure 21 (left) after the �rst two cluster merges have occurred. We check
to see whether the angle class triggers some additional cluster merging and �nd
that C2 and C5 have a common point vertex p3. Thus clusters C2 and C5 can
be merged.

In Figure 22 (right) we have the cluster con�guration of the constraint prob-
lem of Figure 21 (right) after four cluster merges. The two angle classes and
their links to the clusters are also shown. When clusters C5, C6 and C8 are
merged, the corresponding angle classes are also merged. Now the problem
becomes similar to the one in Figure 21 (left).

6 The Construction Phase of the Algorithm

The graph analysis produces a sequence of instructions to Phase 2 of the con-
straint solver in which coordinates for the various geometric elements are com-
puted based on the repertoire of construction steps. The geometric construction
involves cluster creation and cluster merging. During cluster creation, we place
two geometric elements that have a constraint between them with respect to
each other. The construction is obvious, since it is a direct interpretation of the
equations for distances and angles [11].

In the cluster merging phase we repeat the following: three clusters with
three pairwise common geometric elements g1, g2 and g3 are merged into a
single cluster, as shown in Figure 23. We place the three common geometric
elements, noting that their relative positions are known [11]. Having positioned
the shared geometric elements, we translate and rotate the three clusters so that
the three geometric elements are in the required location. Note that cluster
merging cannot be done when the shared geometric elements are three lines.
The constructions for the extension of Section 5.1 is described in [5].
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6.1 Complexity of the Construction Phase

Cluster formation takes time O(e), where e is the number of edges of the con-
straint graph. The sequence of cluster merges, derived by the analysis phase,
can be done in time O(e log e). This is seen as follows.

The rigid motion positioning a cluster, by moving every geometric element of
the cluster, requires O(m) steps, where m is the number of geometric elements
in the cluster. We consider the largest of the three clusters �xed, and apply the
required motion to the two smaller ones. If the largest cluster has m elements,
at most O(m) steps are required for the merge. Observe that with this heuristic,
the size of the largest cluster is at least 1/3 the size of the combined clusters.
Thus, if a geometric element is in a cluster that is moved, then it becomes part of
a new cluster at least twice as large. Consequently, a geometric element cannot
be moved more than log(r) times, where r is the sum of the cardinalities of the
clusters and is bounded, by 2e. Since the number of merge operations is O(e),
the construction phase takes at most O(e log e) steps.

6.2 The Real Solution Problem

We have shown that we can check whether a given geometric constraint problem
is solvable by our method in a generic sense in time quadratic in the number
of geometric objects. However, computing a real solution for a solvable well-
constrained problem will be shown to be NP{hard in a strong combinatorial
sense. Although �nding a real solution is central to geometric constraint solv-
ing, the problem seems to have been neglected in the literature and we are not
aware of any results other than a theorem by Hilbert for ruler-constructible con-
�gurations [5, 16]. The problem of selecting a certain root by overconstraining
has shown to be hard [12]. The following example illustrates the problem of
�nding a real solution for a constraint con�guration.

Example 4 Given the �ve points A, B, C, D, E and the following set of
geometric constraints:

A distance 3 from B
C distance 4 from A C distance 5 from B

D distance 5 from A D distance 4 from B
E distance 2 from C E distance 2 from D

�nd a placement of the points that satis�es the above geometric constraints. The
placement of the points is with respect to each other, so the derived solution is
invariant up to translation and rotation. One placement sequence that satis�es
the imposed constraints is the following:

(i) position A and B with respect to each other

33



5.0

5.0

4.0

3.0

4.0

5.0

5.0

4.0

3.0

4.0

5.0

5.0

4.0

3.0

4.0

5.0
5.0

4.0

3.0

4.0

(b)(a)

(d)(c)

A

B

C

D

A

B

C

D

B

A
C

D

A

B

C

D

Figure 24: Four discrete solution for placing the four points A, B, C and D
with respect to each other

(ii) construct C from A and B as the intersection of two circles

(iii) construct D from A and B as the intersection of two circles

(iv) construct E from C and D as the intersection of two circles

Step (i) has only one solution, and for Steps (ii), (iii) and (iv) there are 2
solutions each. Thus, we have eight distinct solution in the complex space.
There are four ways in which the points A, B, C, and D may be placed; Figure
24. Solutions (c) and (d) do not extend to a real solution for E, since the
circles of step (iv) do not intersect. Solutions (a) and (b) each extend to two
real solutions for E, resulting in a total of four real solutions of the constraint
problem. 2

6.2.1 NP{hardness

We reduce the following version of 3SAT to the geometric real solution problem.

One-in-three monotone 3SAT (1IN3-M3SAT) [14, 32]: Given a set U
of variables, a collection C of clauses over U , such that each clause
c 2 C has three literals, none of them negated. Is there a truth
assignment for U , such that each clause in C has exactly one true
literal?

34



x(2, 0)(1, 0)(0, 0)

LΛ

r

(0, 2)

(0, -2)

y

Figure 25: Constructing an instance of the real solution problem

We will prove that for each instance of 1IN3-M3SAT we can construct, in poly-
nomial time, a solvable geometric constraint problem that has a real solution i�
the corresponding instance of 1IN3-M3SAT is satis�able.

Let fx1; x2; : : :xkg be the set of literals used in C. Let � be the line x = 1
and L be the line x = 2. For each literal xi, i = 1 : : :k, we construct a point pi
on the x{axis at distance 1 from �; see also Figure 25. For each point pi we can
choose independently, one of two solutions, namely (0; 0) or (2; 0), which will
correspond to the variable xi being assigned false or true, respectively.

For the clause c = (xa; xb; xc), we introduce the points p
0
a; p

0
b; p

0
c; pab; pbc; pca

and the lines la; lb; lc. The following constraints are imposed:

pi on x{axis pi distance 1 from �
pa distance 0 from la la angle 0 with the y-axis
pb distance 0 from lb lb angle 0 with the y-axis
pc distance 0 from lc lc angle 0 with the y-axis
p0a distance 2 from O(0; 0) p0a distance 0 from la
p0b distance 2 from O(0; 0) p0b distance 0 from lb
p0c distance 2 from O(0; 0) p0c distance 0 from lc
pab distance 3 from p0a pab distance 2 from p0b
pbc distance 3 from p0b pbc distance 2 from p0c
pca distance 3 from p0c pca distance 2 from p0a

Thus, the lines lu are parallel to the y-axis through p0u. The points p0u are at
distance 2 or 0 from the points pu. Note that to each point pu there correspond
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several p0u, one for each occurrence of xu in a clause of C.

Lemma 3 There is a truth assignment for U with exactly one true literal in
each clause i� the system of geometric constraints described above has a real
solution.

Proof

=): Assume that there is a truth assignment for U with exactly one true
literal in each clause. We set pm = (2; 0) whenever xm =true, and the value
pn = (0; 0) whenever xn =false for a solution of U . Since a solution of U requires
that exactly one literal in each clause c = (xa; xb; xc) is true, exactly one of the
points pa, pb, or pc is at (2,0), say pb. Then lb coincides with L and la and lc
coincide with the y-axis. Consequently, p0b has a unique solution: (2, 0), and for
each of the points p0a and p0c there are two solutions, namely: (0; 2) or (0;�2).
If we choose the value (0; 2) for p0a and the value (0;�2) for p0c we see that the
points pab, pbc, and pca are real. Thus the geometric constraint problem has a
real solution.

(=: Clearly, every point pi must be at the origin or at (2; 0), and these position
can be interpreted as a truth assignment to the variables xi of the formula.
Assume that (2; 0) is interpreted as true, and there is no truth assignment for
U with exactly one true literal in each clause. Let c = (xa; xb; xc) be a clause
that does not have exactly one true literal. We distinguish two cases:
(i) xa = xb = xc =true, or xa = xb = xc =false: Then the lines la, lb, and lc
coincide, hence so must at least two of the points p0a, p

0
b or p

0
c, say p0a and p0b.

But then we cannot place pab with real coordinates.
(ii) xa = xb =true: Then the lines la and lb coincide with L, hence p0a = p0b =
(2; 0). Again, pab cannot have real coordinates.

Now assume that (0; 0) is interpreted as true. By the above argument, there
is a real solution of the constraint problem only if every clause of U has exactly
two true literals. But then the complement assignment solves U . Hence there
cannot be a real solution of the constraint problem.2

Proposition 1 The problem of �nding a real solution of a system of geometric
constraints solvable by a constructive method is NP{hard.

The problem may not even be in NP, since it involves real arithmetic. How-
ever, it naturally falls in DNP<(see e.g., [4, 8]), where the guess is polynomial
to the size of the input but the checking procedure needs in�nite precision to
give an answer in polynomial time.
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6.2.2 Discussion

We have proved that the problem of �nding a real solution for a system of
geometric constraints that is solvable by our constructive method is NP{hard
in a strong combinatorial sense. From the nature of the proof we conclude
that several specialization of this problem are also NP{hard. In particular, all
subproblems derived by imposing any combination of the following restrictions
are also NP{hard:

the set of geometric objects consists only of lines and points.

the set of geometric constraints consists only of distances and angles.

the domain of the value of the geometric constraints is f0; 1; 2g.
the geometric problem is well-constrained.

Furthermore, if we restrict the geometric objects to be points only and the
geometric constraints to be distances only, then we can prove that the problem
remains NP{hard.

When the geometric problem is underconstrained, we have argued in this
paper that additional constraints should be added to make the problem well-
constrained and solvable. It remains to be investigated whether the addition of
constraints can facilitate �nding real solutions.

7 Remarks

We have presented a quadratic algorithm that solves a system of geometric con-
straints using a graph constructive approach. The bottom-up analysis algorithm
of [5] has been augmented with a top-down decomposition algorithm and so not
only solves consistently overconstrained problems but underconstrained prob-
lems as well. Both over- and underconstrained problems occur in practice and
it is important to handle them.

It should be possible to speed up the analysis to take only O(n log(n)) time
for constraint graphs with O(n) edges. Such an improvement would be impor-
tant in applications where large constraint problems are not uncommon.
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