Development and dipplication of gravity-based population allocation model

Special Feature: Technical Report | Published: 03 July
Spatially explicit residential and, working population assumptions for projecting and assessing natural capital and ecosystem services in Japan

Takanori Matsui \boxtimes, Chihiro Haga, Osamu Saito \& Shizuka Hashimoto

Chihiro Haga (D.Eng.)
Osaka University, Japan chihiro.haga@ge.see.eng.osaka-u.ac.jp

Data requirement

 for our gravity-based population allocation modelGridded population data

- Current
- Future (Business as Usual)
<- Ask your government or SSP scenario researchers!
Population scenario narratives

Gravity-based population allocation?

Four grids with different population

Gravity-based population allocation?

Step 1

6 people will be allocated

Compute proportion for each grid == gravity

Gravity-based population allocation?

Step 2

6 people are allocated according to the percentage

PANCES scenario narratives

Natural capital-based compact society (NC)

Ecotourism and expansion of tourism in domestic countries

- Use of ecosystem-based green infrastructures

Increase in the use of renewable energy

Inexpensive, diverse choices by increased imports
Extensive use of ICT/AI for improved productivity
Conventional infrastructure development
Improved efficiency in conventional power generation and energy consumption
Utilization of carbon capture and storage technology
Assumption of our gravity-based population allocation model

- Total population sizes are the same
- Population distributions are different in response to each storylines
- Consider migration only within each administrative boundary

Algorithm 1. Urban Compactification

People are assumed to abandon rural areas and move to the centers of cities

Total $=54$
Zero pop grids $=8$

1	1	0	0	1
1	3	7	7	1
0	1	8	10	1
0	2	4	4	0
1	1	0	0	0

BaU
in 2050

1	1	0	0	1
1	3	7	7	1
0	1	8	10	1
0	2	4	4	0
1	1	0	0	0

Select grids to be 0

See our technical paper!!

0	0	0	0	0
0	1	1	1	0
0	0	1	2	0
0	0	1	1	0
0	0	0	0	0

Allocate eight people
to centers of cities

Total $=54$
Zero pop grids = 16

0	0	0	0	0
0	4	8	8	0
0	1	9	12	0
0	2	5	5	0
0	0	0	0	0

Compact in 2050

Algorithm 2. Dispersed population

People are assumed to remain in the rural area to manage natural areas

Total $=54$
Zero pop grids $=8$

1	1	0	0	1
1	3	7	7	1
0	1	8	10	1
0	2	4	4	0
1	1	0	0	0

BaU
in 2050

1	1	0	0	1
1	3	7	7	1
0	1	8	10	1
0	2	4	4	0
1	1	0	0	0

Select grids to preserve at the 2010 level

0.2	0.2	0.0	0.0	0.2
0.2	0.7	1.7	1.7	0.2
0.0	0.2	1.9	2.4	0.2
0.0	0.5	1.0	1.0	0.0
0.2	0.2	0.0	0.0	0.0

Allocate
13 people
from the surrounding grid

Total $=54$
Zero pop grids = 0

1	1	3	2	1
1	2	5	5	1
1	1	6	8	1
1	2	3	3	2
1	1	1	2	1

Dispersed in 2050

Case study: Population sçenarios in Japan

Urban Compactification

Inhabitant area:
$110,813 \mathrm{~km}^{2}$

BaU
Dispersed

Inhabitant area:
$145,516 \mathrm{~km}^{2}$

Residential population distribution in 2050 by scenario ($n=97,074,889$ in both scenarios). The population density (person/km²) is shown in red, the uhinhabitable areas are shown in gray, and the zero population areas are showh in yellow

Case study: Population scenarios in Japan

BaU

Dispersed

Application: Population vs. Natural Capital

Fig 10 b
Distribution of poorly accessible natural landscape resources in 2050 on the Noto Peninsula in the Ishikawa Prefecture. The black points indicate locations of natural landscape resources. The red points represent natural landscape resources where accommodations within a $10-\mathrm{km}$ radius become difficult to maintain in 2050.

Summary:

Development and application of

 gravity-based population allocation modelData requirement:

- Current \& future baseline gridded population
- Population scenario narratives

For more complex modeling \rightarrow Next speaker

- Consider age - sex class cohort dynamics
- Migration beyond administrative boundaries
- Strength of compactification/dispersion

Any questions or ideas?

