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Abstract—In recent years, energy efficiency has become a major 
focus of data centre designers and operators. This has 
predominantly been due to the rising cost of energy and the 
exponential increase in the absolute energy consumption of data 
centres. As carbon taxes, emissions trading and environmental 
imperatives become an increasing influence in the regions in 
which data centres are based, measuring and controlling the 
emissions resulting from the energy consumed in a data centre 
will become as important as controlling the energy consumption 
itself. In this paper, two bodies of research are investigated: 
granular energy monitoring in data centres and electricity 
generation emissions calculation. We propose a method to 
accurately calculate the emissions caused by a single piece of 
computation by correlating the two areas. It is shown that a 
saving of 45% of the resultant emissions of scheduling a piece of 
computation can be made by choosing one of two contrasting 
times with different marginal power plants on the Irish electricity 
grid. This saving increases to over 99% at times when wind 
generation is being curtailed. 

Keywords-component; datacentre energy, data centre emissions, 
emissions trading;  

I.  INTRODUCTION 
THE amount of carbon emissions directly attributable to a 

piece of computation can be calculated by multiplying the 
amount of electricity the server consumed due to this 
computation by the emissions per kWh the generation of that 
electricity released. This requires two pieces of information:  

1)  How many kWh were consumed by the computation  

2) How many grams of CO2 were emitted per kWh 
generated on the grid  

The emissions attributable to the electricity being consumed 
by the data centre is a function of all of the power generation 
sources feeding into the electricity grid from which the data 
centre is drawing power. Such a measure is called the carbon 
intensity of electricity and can be quantified in gCO2 / kWh [1] 
[2]. The carbon intensity is an average figure for the entire grid 
however. To get the exact figure for the CO2 that will be 
emitted due to the extra generation required for this piece of 
computation, should we choose to schedule it, we need to know 
what power plant will supply the extra demand. This can be 
established with some freely available information about the 
electricity market. 

An extended figure of Emissions Intensity can also be 
calculated to include other polluting gases released such as 

carbon monoxide, methane and nitrogen oxides. However, 
carbon dioxide is the most common subject of emissions taxes 
and trading and so has the largest financial implications for 
energy generators and consumers. The State and Trends of the 
Carbon Market 2010 report from the World Bank shows the 
global carbon market grew to $144 billion in 2009 [3]. Carbon 
dioxide is also by far the largest greenhouse gas (GHG) emitted 
by volume of the six GHGs covered by the Kyoto Protocol, 
representing about 80% of these gases associated with airborne 
pollution [4]. For these commercial and environmental reasons, 
carbon dioxide will be the primary focus of this paper.  

The layout of this paper is as follows. Section II 
investigates related work in the area of energy monitoring and 
control in data centres. Section III proposes a method to 
measure the electricity consumption of a piece of computation. 
Section IV discusses electricity grid emissions and how these 
can be used to get an accurate measurement of the emissions 
attributable to a piece of computation, and Section V concludes 
the paper.  

A. The Cost of Carbon - Why Large Electricity Consumers 
Should Worry About Emissions 
On January 1st, 2005, a carbon dioxide Emissions Trading 

scheme was introduced in the EU. This covers a region of the 
world that accounts for about 20% of global GDP and 17% of 
the world’s energy related CO2 emissions [5]. It was the first 
such scheme to be attempted on such a scale. One main 
observation of Ellerman and Buchner [6] is that the biggest 
shortage of emissions allowances falls in the electricity utility 
sector. This will result in increased electricity costs from 
sources with high emissions. The success of this scheme makes 
the model a likely candidate for implementation by other 
regions around the world looking to limit emissions, 
particularly if a global agreement comes into force at some 
point in the future.  

 

II. RELATED WORK 

A. Granular Energy Monitoring in Data Centres 
It can be clearly shown that the electricity consumption of a 

server increases as it performs computation. In “The Case for 
Power Management in Web Servers” [7], Boher et al. measure 
the power consumption of a server’s various hardware 
components while loading it with a real life server workload. In 
their measurements, visualised in figure 1, an unloaded CPU  
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Figure 1.  Showing the increase in energy consumption of a Server’s CPU 
and hard disk between 0% and 100% utilisation as measured in [7].  

 

consumed 5.0 Watts of power. At 100% utilisation, the 
consumption jumped to 26.5 Watts, an increase of 430%. The 
consumption of other components such as the disks and 
memory also increased under load, although less markedly. 

B. Measuring Energy Consumption of an Application - 
Current State of the Art 
A great amount of research has been dedicated to 

measuring, modeling and reducing the energy consumption of 
data centres. Most of this effort has been directed at the 
hardware components and power control of the servers – server 
virtualisation and consolidation etc.  

Chen et al. [8] investigate server-power control methods to 
reduce energy costs for data centres when utilisation is low. 
They measure the effectiveness of automatically consolidating 
workloads and shutting down servers and/or modulating their 
operational speed to minimise electricity consumption while 
meeting the required SLA. They conclude their algorithm can 
save data centres $43 per server per year, or $219K per year for 
an enterprise-level data centre with 5000 servers. Voltage and 
frequency scaling is another popular method of reducing power 
consumption. Power savings of up to 30% are achievable with 
only a small drop in response times using a voltage scaling 
policy [7]. Talwar et al. [9] attempt to deal with power 
consumption in a data centre in all its forms – power delivery, 
electricity consumption, and heat management – together rather 
than separately. They cite an IDC report showing that 
worldwide spending on enterprise power and cooling to be 
more than $44 billion in 2010 and is likely even to surpass 
spending on new server hardware [10].  

More recently, attempts have been made to develop 
algorithms to model, estimate or measure the energy consumed 
by individual applications running on servers. With the rise of 
cloud computing, the way in which servers in data centres are 
used has changed. The move towards machine consolidation 
onto virtual machines, several of which will run simultaneously 
on one server, means measuring electricity consumption at the 
server level is insufficient; measuring energy consumption at 
the thread or application-level gives data centre operators 

knowledge of not just where the energy was spent, but who 
was responsible for the energy consumption [11].  

Mantis [12] is an algorithm for measuring the power 
consumption of each hardware component in a server. When an 
initial calibration of the model is complete, the algorithm can 
derive accurate predictions of overall and component-level 
power consumption. It uses a range of available performance 
monitoring information including OS event information such as 
perfctl and perfmon [13]. Resultant measurements are 
successfully validated using a data acquisition board which 
measures electricity consumption by the CPU, memory, hard 
drive, network devices and peripherals. The initial calibration 
phase is a cumbersome drawback to this method however.  

The shortcomings of using older server-level power 
measurement methodologies for data centres employing virtual 
machine technology, and the challenges of creating an accurate 
virtual machine level power-measurement model, are outlined 
in Virtual Machine Power Metering and Provisioning [14]. 
Joulemeter, an application which uses existing instrumentation 
in server hardware and hypervisors to measure virtual machine 
(VM) level power to a higher degree of accuracy than existing 
methodologies, achieves errors within 0.4W – 2.4W. The 
model is essentially a summation of a VM’s power footprint on 
each significant hardware resource. Joulemeter does not require 
pre-collected or calibrated information on hardware or 
operating systems and this is what sets it apart from other 
application-level power monitoring applications (Mantis for 
example). It uses the measured power to successfully 
implement VM power capping on server traces from several 
thousand real-world servers hosting Microsoft’s cloud 
applications.  

Embedded event counters alone (e.g. processor 
performance counters) can be used to investigate the energy 
usage patterns of individual threads [15]–[17]. Counters 
embedded in the target hardware are used to register events that 
imply the consumption of a certain amount of energy.  

Because of a limitation in the number of available counters 
and in the difficulty and overhead of measuring them, 
approximations when using such counters are sometimes 
necessary. However, with the increasing interest in energy 
accounting systems, it is expected that future hardware 
generations will provide a rich set of event counters which will 
allow very accurate, low-overhead tracking of application-level 
power consumption [15]. For this reason, this paper believes 
that performance counters will prove to be the most cost-
effective way of ascertaining application-level power 
consumption in the medium term.  

Some ways have been proposed in which applications can 
become energy aware in order to dynamically react to their 
energy context. For instance, an application hosted in a data 
centre may decide to turn off certain low utility features if the 
energy budget is being exceeded, or an application on a mobile 
device may reduce its display quality when the battery is low 
[18]. Fine-grained energy profiling for Power-Aware 
Application Design [18] proposes a system, using Windows 
Performance Tools [13], which would allow developers to view 
and compare the energy implications of different calls while 
writing code. It does this by summating the energy consumed  
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Figure 2.  Showing the breakdown of the sources of data centre energy 
consumption [20]. The percentage of energy consumed by cooling in data 
centres utilising free air cooling will be considerably lower but this will be 

reflected in the PUE figure, which will still allow accurate computation of the 
non-server power consumption at the software application-level.  

 

by the various subsystem components inside a machine in order 
to process the code. If nothing else, this highlights the 
opportunity seen in application-level energy savings. Energy 
Aware Applications are applications which dynamically 
modify their behavior to conserve energy. The main 
consideration is the trade-off between energy consumption (e.g. 
price) and user experience. When energy is plentiful, 
application behavior is biased toward a good user experience; 
when it is scarce, the behavior is biased toward energy 
conservation, achieving power savings of up to 50% [19]. This 
is a common decision facing web server operators when 
provisioning capacity. A balance must be struck between 
capacity cost and meeting users’ requests in a reasonable time. 

 In summary, this body of existing research can be broken 
into three categories. The first and second categories deal with 
various methods of reducing energy consumption at the data 
centre level [7]–[9] and at the software level respectively [18], 
[19]. The third, which is of most interest to this paper, is that 
which measures energy consumption at the granularity of 
individual applications or virtual machines [11], [14]–[17]. 
This requirement has only recently emerged and papers use a 
variety of methods to calculate the energy footprint of 
applications. These initial efforts either lack the accuracy 
required to base commercial decisions upon, or impose too 
large a resource footprint on the server, and so are not yet 
practical. With commercial-level accuracy in mind and with the 
aim of minimising cost and server resource footprint, this paper 
believes that a model based on performance counters represents 
the best way to measure application-level energy. As energy 
consumption increasingly becomes a concern in future 
hardware design, richer sets of event counters will allow very 
accurate, low overhead tracking of application-level power 
consumption. For a more general approach that could be used 
on hardware without sufficient performance counters, 
approximation models like Joulemeter are an acceptable 
compromise. 

 

III. CALCULATING THE ELECTRICITY 
CONSUMPTION OF A PIECE OF COMPUTATION 

Increasing utilisation of computing resources also indirectly 
increases the energy consumption of a data centre. This can 
take the form of increased cooling requirements, energy lost in 
power supply units, energy consumed by networking devices 
and various other small losses. Figure 2 shows a breakdown of 
the major sources of power consumption inside a data centre 
and gives a good indication of where the indirect power 
consumption of a piece of computation will occur.  

The sum of these loads is summarised in the form of a data 
centre’s Power Usage Effectiveness or PUE. This figure is the 
ratio of power consumed by the entire data centre to the power 
consumed only by the servers, known as the critical power. A 
data centre with a PUE of 1.5 means that for every 1 watt of 
electricity consumed by the servers, 0.5 watts is consumed to 
provide cooling, power supply, networking and other functions. 
This summary figure removes the need to calculate each one of 
the sources of consumption separately.  

 

PUEservercomp ×Ε=Ε       (1) 

 

Thus, to calculate the total energy consumption of a piece 
of computation, compΕ (kWh), in a data centre after we have 
measured or calculated its direct electricity consumption on a 
server serverΕ (kWh), we need only multiply it by the PUE 
for the data centre. For example, if the running of an 
application was calculated as having consumed 5kWh on a 
server in a data centre with a PUE of 1.5, then the total figure 
for the computation would be 7.5kWh. 

IV. ELECTRICITY GENERATION EMISSIONS 
CALCULATION 

A. Equating the Energy Consumption Figure to a CO2 
Emissions Measure 
To measure the emissions per kWh consumed by a data 

centre, the carbon intensity of the electricity entering the data 
centre must be calculated. Bulk electrical power production 
comes from many sources, each with different characteristics 
including the fuel type and cost, and the efficiency of the power 
plant. The generation sources (i.e. Power Plants) on a grid can 
vary significantly and with it, the carbon intensity. Figure 3 
shows the carbon intensity over a 24 hour period of Ireland’s 
Electricity Grid. The rate of carbon emissions is calculated in 
real time using the generator’s MW output, the individual heat 
rate curves for each power station and the calorific values for 
each type of fuel used. The heat rate curves are used to 
determine the efficiency at which a generator burns fuel at any 
given time. The fuel’s calorific values are then used to 
calculate the rate of carbon emissions for the fuel being burned 
by the generator [1]. Taking the average CO2 figure does not 
accurately represent the CO2 emitted due to the piece of 
computation. To get this figure, we need to get the carbon 
intensity of the marginal unit of electrical power, i.e. the extra  
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Figure 3.  The CO2 intensity of a 24 hour period on the Irish National Grid 
shows CO2 intensity almost doubling during the course of one day. As 

demand increased and wind generation decreased, more fossil fuel power 
plants were brought online which increased the emissions per kWh generated.  

 

carbon emitted if one more unit of electrical power was 
produced. 

B. How Power Plants are Scheduled and How This Dictates 
the Price and Emissions of the Next Required kWh 
Power plants are typically scheduled according to an 

augmented auction between power suppliers. Power plants first 
submit bids to reflect their costs of production. Capacity is then 
scheduled iteratively by the market operator from the next 
cheapest supplier until the total electrical demand is met at the 
least cost. The marginal price is the price of the most expensive 
generator currently supplying electricity to the grid, and this is 
the price paid to all suppliers for their electricity for that hour 
(or other time period). In this way, the market price will vary to 
reflect the level of demand.  

Different generators will have different technical and 
economic characteristics. Conventional thermal plants can vary 
their output in response to demand, within certain limits. Wind 
plants can only produce up to the amount of wind production 
which is available at that instant, but a wind farm operator has 
only to consider its fixed costs (i.e. construction and 
maintenance), because its fuel is free. 

 

 
Figure 4.  A comparison of carbon dioxide emissions of various electricity 
generation sources, collated from life-cycle assessments (LCAs) carried out 
around the world. A life-cycle assessment is an environmental assessment of 
all of the steps involved in creating a product including extraction, processing 
and transportation of fuels, building of power plants, production of electricity 

and waste disposal. [21].  

 

Conventional generators are subject to a cost of starting, a 
no-load cost, i.e. the cost to overcome losses in the plant, and 
also a cost of production that is non-linear with respect to 
output, making it cheaper per kWh to produce 2 kWh than to 
produce 1kWh [22]. This means that their average cost is a 
complicated function of output.  

Because wind and other, similar renewables have zero cost 
for their fuel, it is always in their interest to sell generation 
when it is available. To do this, they bid a price of zero on the 
electricity market. This means electricity generated from 
renewable power station will always be taken when it is 
available unless constraints on the power system limit its 
contribution. These constraints are to do with maintaining 
frequency and stability on the grid, the minimum operating 
levels of scheduled thermal units, and the ramp up ability of 
remaining power plants to meet a sudden drop in renewable 
generation [23] [24]. These periods have been experienced in 
areas with high wind penetration levels such as Ireland, and are 
a very interesting case. At times when wind contribution to the 
grid is being curtailed, it becomes the marginal generation on 
the grid. Extra demand will be supplied by the surplus wind 
energy available. Flexible electricity consumers can choose 
these times to increase demand if they wish to lower the 
effective emissions of the electricity they use.  

We can use the market information discussed above, which 
is typically published by market operators, to work out the 
marginal power plant on the grid. That is, the last power plant 
to be added and the power plant that will generate the 
additional electricity required should our data centre schedule 
some computation. If exact emissions figures are not published 
by the market operators, two approximations can be used: an 
approximation based on average CO2 emissions figures for the  
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Figure 5.  CO2 Emissions of a Benchmarked Computation job for various 
Marginal Plant types on the Irish electricity grid. Power Plant emissions 

figures from [25] and [28].  

TABLE I.  THE EMISSIONS PRODUCED BY THE SAME 
COMPUTATION JOB WITH FOUR TYPES OF GENERATION SOURCES 

AS THE MARGINAL PLANT ON THE IRISH ELECTRICITY GRID 

Marginal Power 
Plant Type 

Emissions for 
this plant type 
(gCO2 / kWh ) 

Total Emissions 
for computation 

job (gCO2 / kWh) 
Gas 610 2104 

Coal 1100 3795 

On-Shore Wind 9.7 33.5 

Off-Shore Wind 16.5 56.9 

 

 

given marginal plant type; or an approximation based on the 
average carbon intensity of the electricity produced on the grid.  

If the power plant type of the marginal plant is known, 
approximate CO2 figures can be used for emissions from plants 
of that type. Figure 4 shows the Greenhouse Gas emissions of 
various electricity generation sources. There is a huge range for 
these figures in the literature [21], [25]-[28], which can be 
attributed to variations in plant and fuel efficiencies. 

If no power plant specific information is available on an 
electricity grid, the second approximation that can be made is 
based on the average carbon intensity of the electricity being 
produced on the grid. An inefficient marginal plant will exert 
an upward pressure on the average carbon intensity, and so 
higher carbon intensity will usually indicate higher emissions 
from the marginal plant, and therefore higher emissions would 
result from scheduling energy consuming computation. 

C. Calculating Emissions 
 

Now that the total energy consumption of a piece of 
computation can be measured, and the emissions of the extra 
electricity required for this piece of computation can be 
calculated, we can make an accurate prediction of the 
emissions that a single piece of computation will create. This is 
given by 

MUCompComp ℑ×Ε=ℑ    (2)  
 

Compℑ  represents the emissions generated by the 
computation in gCO2, which equals the energy consumed by 
the computation in the data centre, CompΕ  (kWh) multiplied 
by the emissions of the marginal power plant, MUℑ  (gCO2 per 
kWh). 

We can use this calculation to show the variability of 
emissions generated by the same piece of computation at 
different times on the Irish electricity grid, for which we have 
historic scheduling information.  

Figure 5 uses the energy consumption of one particular 
application to display the emissions which would have been 
produced by a hypothetical computation job at various times on 
the Irish electricity grid. The emissions figures for four types of 
plants used on the grid are shown in table I.  

These figures represent the full life-cycle greenhouse gas 
(GHG) emissions as surveyed by Schleisner [25] and Weisser 
[28]. The total energy consumption of the computation job is 
calculated at 3.45kWh. “The Benefits of Event–Driven Energy 
Accounting in Power-Sensitive Systems” [15] records a power 
consumption of 46 watts for a benchmarking workload running 
800 million instructions per second. Scaling this up to 50 
servers for one hour gives us a server energy consumption of 
2.3kWh. Assuming a data centre PUE of 1.5 for the data centre 
in which we run the computation job, this results in a total 
energy consumption of 3.45kWh. 

The results of this calculation show the very large variance 
of emissions produced by the same computation job scheduled 
at different states of an electricity grid. If the computation is 
scheduled when the coal plant is the marginal unit, meaning it 
will provide the electricity required for the computation, the 
total resultant emissions are 3.79 Kg CO2. Scheduling the job at 
a time when the gas plant is the marginal unit results in 2.1 Kg 
CO2, or 55% of the emissions of that produced by the coal 
plant. If we can schedule our computation at a time when on-
shore wind generation is being curtailed, and is therefore the 
marginal unit, the emissions drop to 0.03 Kg CO2 or less than 
1% of the coal plant. 

 

V. CONCLUSIONS  
Several methods exist for the accurate modeling and 

measurement of the energy consumption of a single application 
running on a server. Combining this figure with the PUE of the 
data centre in which it is running allows the calculation of the 
total resultant electricity consumption of the scheduling of a 
piece of computational load (or the running of an application).  

With some information on the electricity grid from which 
our data centre is drawing power, we can obtain a figure for the 
amount of emissions that will be emitted if we were to schedule 
a piece of computation now. The more accurate the information 
on the power plants contributing power to the grid, the more 
accurate our figure will be. Simply knowing the current 
average carbon intensity (gCO2 / kWh) and comparing this to 
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the monthly or yearly average will give us a general indication 
of whether drawing more power now will result in more or less 
emissions than usual. If we have further information on the 
marginal plant, or can acquire this knowledge from the market, 
we can calculate the exact figure for the emissions that would 
be released by the additional electrical load our computation 
will cause if we choose to schedule it.  

An anecdotal calculation of the emissions produced by a 
piece of computation, run at times when two different power 
plant types are the marginal unit on the Irish electricity grid, 
shows that choosing one time over the other to schedule the 
computation could save 45% of the resultant CO2 emissions. 
This saving increases to over 99% during times when wind 
generation is over the percentage of demand at which it is 
curtailed. This will become an increasingly common 
occurrence due to growing wind penetration, as countries strive 
to meet emissions-reduction targets. 

With the introduction of carbon trading, carbon taxes, and 
increasingly tough regulations around the emission of 
greenhouse gases, measuring, controlling and considering such 
emissions in the technology sector will become increasingly 
important. As such, developing ways to measure emissions 
resulting from the functions of large energy consumers will be 
essential in order to mitigate against the increasing costs 
associated with energy consumption. 
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