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Abstract

Sequencing of transposon-mutant libraries using next-generation sequencing (TnSeq) has become 

a popular method for determining which genes and non-coding regions are essential for growth 

under various conditions in bacteria. For methods that rely on quantitative comparison of counts of 

reads at transposon insertion sites, proper normalization of TnSeq datasets is vitally important. 

Real TnSeq datasets are often noisy and exhibit a significant skew that can be dominated by high 

counts at a small number of sites (often for non-biological reasons). If two datasets that are not 

appropriately normalized are compared, it might cause the artifactual appearance of differentially 

essential genes in a statistical test, constituting type I errors (false positives). In this paper, we 

propose a novel method for normalization of TnSeq datasets that corrects for the skew of read 

count distributions by fitting them to a Beta-Geometric distribution. We show that this read-count 

correction procedure reduces the number of false positives when comparing replicate datasets 

grown under the same conditions (for which no genuine differences in essentiality are expected). 

We compare these results to results obtained with other normalization procedures, and show that it 

results in greater reduction in the number of false positives. In addition we investigate the effects 

of normalization on the detection of differentially essential genes.
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1. Introduction

Sequencing of transposon-mutant libraries using next-generation sequencing has become a 

popular method for determining which genes and non-coding regions are essential for 

growth under various conditions in bacteria. 19 Briefly, a transposon-mutant library is made 

by transfecting in a vector carrying a transposable element, such as the Himar1 
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transposon 8,15, which can insert at random locations throughout the genome (Himar1 can 

insert randomly at any TA dinucleotide). Each mutant in the library has an insertion at a 

single location, but the goal is to construct a saturating library where nearly all of the 

potential insertion sites are represented. When grown under selective conditions, mutants 

with transposon insertions in essential regions will fail to survive. The abundance of the 

remaining insertion sites can be determined by using PCR to amplify the junctions between 

the transposon and the surrounding genome 9, and the position of each insertion can be 

eficiently determined using a next-generation sequencer such as an Ilumuna HiSeq. This 

experiment typically yields several million reads, and the number of reads associated with 

each TA site is tabulated. While TA sites in non-essential regions have stochastically varying 

read counts, essential genes and non-coding regions (such as tRNAs, rRNAs, and sRNAs) 

can be identified as regions where the TA sites are uniformly devoid of insertions (i.e. read 

counts are 0). 16,17,6,7

Determining which genes in an organism are essential is a dificult problem. The primary 

challenge is in lower-density datasets, where the fraction of TA sites represented in the 

library could be in the 20–30% range. The lower the density of the dataset, the more dificult 

it is to determine whether a region lacks insertions due to essentiality, or just due to random 

statistical fluctuations. In addition, not all TA sites in an essential gene must lack insertions, 

as insertions can sometimes be tolerated in the N- or C-terminus of an essential gene, or in 

non-essential domains or linkers between domains.18,1 For methods that rely on comparing 

read-counts, the variability of the data poses an additional problem. 20

To address these challenges, several statistical methods the have been proposed for 

quantifying the significance of essential genes. One method fits a Negative Binomial 

distribution to the insertion counts in each gene, and uses this to determine a p-value for 

significance of sparse regions. 21 The length of ‘gaps’ or consecutive TA sites lacking 

insertions has also be used to quantify the significance of essential regions using the 

Extreme Value distribution. 5 Hidden Markov Models have also been developed for 

analyzing TnSeq data. 4,12 For comparison between growth conditions, the sum of read 

counts in a gene has been compared between conditions using a non-parametric test to 

identify regions with statistically significantly depressed insertions.20

For methods that rely on comparison of read-counts, proper normalization of TnSeq datasets 

is vitally important. If two datasets that are not appropriately scaled are compared, it might 

cause the appearance of differentially essential genes in a statistical test, constituting type I 

errors (false positives). Several methods for normalizing TnSeq datasets have been proposed. 

Most of these methods rely on a linear transformation of the data, whereby the read-counts 

in a dataset are scaled by a constant factor. The simplest of these is to normalize datasets 

such that their read-counts have the same mean (e.g. by dividing by the total read-count). 

Other methods like Relative Log Expression (RLE) 2 and Trimmed Mean of M-values 

(TMM)14 have been proposed, both of which were initially developed for normalizing RNA-

Seq datasets. These methods as well as others mentioned here are described in more detail in 

Section 2.2. Another approach is to fit a Negative Binomial distribution (or a zero-inflated 

Negative Binomial to help account for an abundance of empty sites) and scaling by the 

estimated means of the model. While scaling read-counts linearly is the most common 
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procedure, other methods which use a non-linear transformation have been proposed. These 

include quantile normalization 3 which estimates empirical quantiles and then fits the 

datasets to match, and simulation-based normalization like the one used by ARTIST 12 

which simulates a “control” dataset with similar statistical properties to an experimental 

dataset by sampling from a multinomial distribution.

One significant limitation of methods that linearly transform datasets is that they are 

susceptible to large spikes in read-counts. Because these methods multiply read-counts by a 

constant scalar value, they cannot reduce large outliers without also affecting small read-

counts which are more common. Even if the datasets share the same mean, for instance, any 

skew in distribution of read-counts itself would still be present.

The distribution of read-counts in most TnSeq datasets resembles a Geometric-like 

distribution, in that read-counts at most sites are small (i.e. 1–50), with a (rapidly) 

decreasing probability of sites with large counts. Ideally, a normalization method would 

improve detection of conditionally essential genes between conditions by eliminating any 

skew and making the datasets more closely fit this Geometric-like distribution.

In this paper, we propose a novel method that corrects for the skew of read count 

distributions observed in many TnSeq datasets by fitting them to Geometric distribution with 

a variable probability parameter modeled by a Beta distribution (which we call a Beta-

Geometric distribution). We show that the Beta-Geometric correction procedure (BGC) 

reduces the number of false positives when comparing replicate datasets grown under the 

same conditions (for which no genuine differences in essentiality are expected). These 

results are comparable to those results obtained with other normalization methods, and we 

show the BGC procedure produces the largest reduction in false-positives. In addition we 

explore the effects of BGC on the detection of differentially essential genes.

2. Beta-Geometric Correction (BGC) Normalization Method

The most common method for normalization is to divide the read counts at each TA site by 

the overall number of reads in a dataset, which will factor out gross differences due to the 

amount of data collected, analogous to the calculation of RPKMs in RNA-Seq. 11 A 

refinement of this approach that is specific to TnSeq is to scale the read counts to have the 

same mean over non-zero sites (which we call ‘Non-Zero Mean Normalization’ or 

NZMean), since different datasets can have widely varying levels of saturation, and 

distributing the same number of reads over fewer TA sites will naturally inflate the mean 

read count among them.

Despite these attempts at normalization, TnSeq datasets can still display quite different 

statistical patterns. In practice, some datasets appear “well behaved”, where the distribution 

of read counts tends to resemble a Geometric distribution (where small read-counts are most 

abundant, while sites with high counts are much rarer), while other datasets are skewed, with 

a few highly over-represented sites dominating the read-count distribution. One justification 

why the distribution of read-counts in (well-behaved) datasets might be expected to appear 

Geometrically distributed could be due to competition between the mutants in the population 
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of clones in the library. The abundance of the different clones in the population will vary, 

reflecting differences in growth rates. In the Motomura model of species abundance 10, 

competition leads to a geometric series that describes the abundance of the species in the 

population, where the most fit individual has the highest abundance, and less fit individuals 

have exponentially decreasing abundances, with the majority of the population having very 

low abundance. TnSeq, by sequencing reads from this culture, is in essence obtaining a 

sample of read-counts in roughly the same proportion as the underlying population. Some 

models of abundance of populations use a Negative Binomial distribution instead. However, 

because the Geometric distribution is a limiting case of the Negative Binomial distribution, 

standardizing to a Geometric distribution can be seen as standardizing to an equivalent 

Negative Binomial, with size parameter r = 1.

The resemblance to Geometric distribution can be observed in four representative datasets 

shown in Figure 1. The skew away from an ideal Geometric, especially at high counts, can 

be seen better on a log scale (Figure 1b). These datasets are from a Himar1 Tn-mutant 

library in M. tuberculosis, where A1 and A2 are two replicates grown in vitro, and B1 and 

B2 representing in vivo datasets (where the library has been passaged through a mouse). 

Each dataset has 2 to 5 million reads distributed over 74,602 TA sites in the H37Rv genome. 

Datasets A1 and A2 appear to fit a Geometric distribution more closely than B1 and B2, 

which show greater skew. This can also be seen on a QQ-plot (quantile-quantile), where B1 

and B2 veer farther away from the 1:1 diagonal than the in vitro datasets. Indeed, B1 and B2 

have extremely high counts at a few individual sites (with maximum read counts of 6,009 

and 16,146 respectively), compared to maximum counts of 1,693 and 1175 in the A1 and A2 

datasets.

The effect of the skew observed in datasets like B1 and B2 (which is a common 

phenomenon in TnSeq) is that it can bias the statistical analysis of essential regions, 

especially for methods that depend quantitatively on the read counts. Certainly, for genes 

containing TA sites with high spikes in read counts, they will appear exceedingly non-

essential, and it could make the gene appear differentially essential in other conditions. 

Simultaneously, the spikes in read counts at some TA sites will suppress the apparent level 

of reads at other sites, potentially making them appear relatively more essential. Figure 3, 

illustrates how the insertion patterns of a skewed dataset might look, before and after 

adjusting for the skew using the method proposed in this paper. Note that due to the non-

linear nature of this transformation, high counts are significantly reduced, while suficiently 

small read-counts increase.

We propose a novel method for correcting for this skew in read-count distributions by fitting 

each dataset to a modified distribution called a Beta-Geometric distribution (Equation 1), 

and using this to adjust the observed read counts so they more closely fit a Geometric. The 

Beta-Geometric distribution is like a Geometric distribution but with a variable, instead of 

constant, parameter p, where the variation in p is modeled by a Beta distribution. This 

approach is based on the observation that skewed TnSeq datasets actually appear to fit not a 

single Geometric with a single Bernoulli parameter, p, but the weighted sum of multiple 

Geometric distributions with different values of p. As weights on p, we choose the Beta 

distribution, with parameters ρ and κ set so that the peak is around p. The Beta distribution 
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has an extra degree of freedom representing dispersion around p (See Figure 4). This reflects 

a generative model in which individual clones in the Tn-mutant library have different growth 

rates, some growing slightly faster and some slightly slower than wild-type cells, depending 

on the location of the transposon insertion in their genome. This variability in growth rates 

will smear out the apparent abundance of read counts after selection (i.e. several rounds of 

doubling in selective conditions). In this model, the spikes in read counts would come from 

clones that had higher-than-average growth rates, for whatever reason (biological or 

random).

(1)

2.1. Parameter Estimation

Given a set of read counts, Yi, at n TA sites for i ∈ 1, 2, 3, …, n, we assume read-counts are 

Geometrically distributed, with a variable parameter, p, governed by the Beta distribution:

where the Beta distribution is parameterized using ρ and κ, such that ρ represents the mean 

of the parameter p, and κ can be thought of as analogous to a “sample size”, effectively 

proportional to the inverse of the variance.

We seek to estimate the parameters ρ and κ that minimize the sum of squared errors (ε) 

between the observed read-counts and the quantiles of the distribution:

(2)

Here, X′ represents the read counts in ascending order, F−1, represents the quantile function 

of the Geometric distribution, and qi ∈ [0, 1] represents the quantiles.

To facilitate the parameter estimation, the parameter ρ is estimated as , 

which is the maximum likelihood estimate of the Geometric distribution. The remaining 

parameter, κ is found by determining the root of the gradient. The gradient with respect to κ 
is defined as follows (derivation is included in Appendix Appendix A):
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(3)

The root of this gradient has a analytical solution:

Once parameters ρ and κ have been estimated, capturing the skew in the dataset, the original 

read counts are corrected by mapping each of them to the equivalent quantile in an ideal 

Geometric distribution as follows:

(4)

where Q(c; ρ, κ) is the quantile function (CDF, obtained by sampling) for the Beta-

Geometric, and F −1(q; p) is the inverse of the quantile function for the Geometric 

distribution.

2.2. Other normalization methods

In Section 3, we compare BGC to five other normalizations methods that have been 

proposed in the TnSeq and RNA-Seq literature.2,13 Because of the similarities between 

RNA-Seq and TnSeq procedures, as well as their dependence on normalizing count-data 

obtained from sequencing reads, methods used for normalizing RNA-Seq data serve as a 

good starting point for comparison. We include two of the most popular methods from the 

RNA-Seq, and as well as other methods more specific to TnSeq analysis. We briefly 

describe each method before presenting results.

2.2.1. Relative Log Expression (RLE)—One of the more popular normalization 

methods used in the RNA-Seq literature is Relative Log Expression (RLE). This 

normalization was proposed by Anders and Hubers and used in their DESeq method for 

detection of differential expression.2 For each sample being normalized, RLE calculates a 

size-factor meant to make datasets comparable regardless of their sequence depth. The 

factors are calculated as follows:

(5)

where sj represents the scaling factor for the j-th sample, and kij represents the counts at the 

i-th position of the j-th sample. The denominator is the geometric mean across all m 
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replicates, and the median over all sites (which is more robust to outliers than the mean) is 

taken as a scale factor for each dataset. Read-counts are then normalized by dividing them 

by this size-factor, rendering them comparable.

2.2.2. Trimmed Mean of M-values (TMM)—Another normalization method used in 

RNA-Seq is the Trimmed Mean of M-values (TMM) method. This method was developed 

by Robinson and Oshlack 13, and estimates log-fold changes in expression and absolute 

expression:

(6)

(7)

where Ygk represents counts at the g-th counts in the k-th sample, and Nk represents the total 

reads in that sample. The values of Mg are trimed by 30% while the samples of Ag are 

trimed by 5%. Finally the normalization factors are calculated by taking a weighted mean of 

the remaining Mg (after trimming) as follows:

(8)

where

(9)

and

(10)

2.2.3. Negative Binomial—The Negative Binomial distribution (NB) is frequently used 

to model count data 2,21, particularly for data that may exhibit over-dispersion. TnSeq 

datasets, however, contain an overabundance of sites with read-counts of zero, representing 

either locations which are essential for growth or which were not sampled in the 

construction of the mutant library. Those libraries with a low saturation might make the 

mean read-count look artificially low. Ideally, the mean read-count would be calculated for 
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all non-essential sites, however it is dificult to separate those sites which are essential from 

those sites that are non-essential but missing from the library. One way to account for an 

excessive number of zeros, and thus attempt to separate essential sites from non-essential 

ones, is to use a zero-inflated model. In order to examine the influence of zeros in 

normalizing datasets, we compared against a zero-inflated negative binomial model (ZI-

NB), which is a 2-component mixture model. The parameters were estimated by minimizing 

the log-likelihood of the following model:

(11)

(12)

where π represents the probability of observing a zero outside of the negative binomial 

distribution, and r and p are the shape parameters of the the NB distribution. For each 

sample, the estimated mean of the NB distribution (i.e. ) is used as its scaling factor.

2.2.4. Multinomial Simulation Normalization—Recently, Pritchard et al. proposed 

using simulation-based normalization to effectively simulate a control sample with a 

multinomial distribution in order to mimic the saturation (loss of library diversity) observed 

in the given experimental samples. This simulation method was used as part of the ARTIST 

pipeline for analyzing TnSeq datasets.12

Because this method is based on simulating samples from a multinomial distribution, it is 

capable of generating an arbitrary number of control samples. To compare with the other 

normalization methods, we took the expected value of the simulation as the normalized 

dataset. In addition, we simulated the dataset with the highest density to match the dataset 

with the lowest density. The method used in our comparison can be summarized briefly as 

follows:

(13)

where X̄ is the vector of read-counts for the input experimental sample, and C̄ is the vector 

of read-counts for the input control sample, and Nx = Σi Xi and Nc = Σj Ci, which are the 

total number reads in the experimental and control datasets.

2.2.5. Quantile Normalization—Another non-linear normalization method we compare 

against is the Quantile Normalization method (QNM). This method was proposed as a way 

to normalize DNA micro-array data by Bolstad et al.3 QNM normalizes datasets so that they 

share the same empirical distribution of values. For a given p × n matrix of counts, Xi,j:

1. Sort each column of X, individually, to get matrix S.
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2. Take the means across the rows of S and assign it to each element in the row to 

get S′.

3. Get the normalized matrix, X′, by rearranging each column of S′ to have the 

same ordering as X.

This method can be seen as a special case of the transformation , where the 

functions F and G are calculated empirically from the datasets being normalized.

3. Empirical Comparison of Normalization Methods

A set of 32 pairs of TnSeq datasets was obtained from various libraries of M. tuberculosis 
Tn-mutants grown under different conditions, with each condition being tested in duplicate. 

The raw read counts were reduced to unique template counts using sequencing barcodes 9, 

though we will continue to refer to them generically as ‘read counts’ throughout this paper. 

Each dataset had an average of 2.4M total counts, with a range of 1.1–5.4M. Densities (i.e. 

fraction of TA sites represented in each dataset) were in the range of 38% to 69%.

The Beta-Geometric correction (BGC) was applied to each of the 64 datasets (followed by 

NZMean normalization). As an example, Table 1 contains statistics for the original datasets 

A1, A2, B1 and B2 (corresponding to the ‘in vitro’ and ‘Trans02c’ datasets among the 32 

pairs), as well as the values of ρ and κ estimated by the BGC method. The dispersion 

parameter κ is lower for the B1 and B2 datasets, consistent with the greater variability that is 

observed in those datasets. A QQ-plot of the corrected values for dataset B2 is shown in 

Figure 5, displaying a much better fit to the Geometric distribution, with the skew removed 

(compare to Figure 2).

One empirical metric we can use to evaluate whether our correction method helps is to 

compare replicate datasets. In two datasets selected from the same Tn-mutant library under 

the same growth conditions, one would ideally expect no differences in essentiality of genes. 

However, in practice, there is usually high variability observed in TnSeq datasets, even 

between biological replicates. Any method for statistical analysis of TnSeq data has to be 

conservative enough not to detect many differentially essential genes between replicates. 

Yet, when using a permutation test (described below) on multiple pairs of replicates, we 

often observe differentially essential genes, in some cases far beyond what would be 

expected from random statistical sampling differences. We attribute many of these false 

positives to the skew inherent in individual datasets. Our goal in this paper is to show that, 

by fitting each dataset to a Beta-Geometric distribution, we can correct for the skew in read 

counts, and thereby reduce many of these false positives. This enhanced normalization 

method could be applied to other TnSeq analysis methods to improve the detection of 

statistically significant differentially essential genes.

3.1. Permutation Test to Identify Conditionally Essential Genes

In order to evaluate the differential essentiality of a gene between two conditions, possibly 

with multiple replicates of each, we use a non-parametric permutation test on the corrected 

and normalized counts at TA sites within the gene. Briefly, the counts are summed over all 

sites in a gene and replicates to determine the mean in each condition and then the difference 
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is compared to background distribution of means from 10,000 random permutations of the 

sites. The p-value is calculated from the number of times the observed mean is greater than 

one of the samples.

Suppose we have m1 replicates (datasets) in condition A, and m2 replicates in condition B. 

Let Cij be a (m1 + m2) × n matrix of counts at each of n TA sites i within the gene, for each 

dataset j.

(14)

Ten thousand random permutations of the counts in matrix Cij are generated, and Δ′ is 

calculated for each permutation. The p-value is estimated as the number of times Δ > Δ′ (or 

Δ < Δ′ for negative differences).

3.2. Reduction in Type I Errors

To assess the impact of the different normalization procedures when performing a 

comparative analysis of TnSeq datasets, we compared replicate datasets against each other. 

Because the datasets in each pair of replicates are selected under the same condition, the 

expectation is that there should be no differentially essential genes between them. A false 
positive was defined as a gene that had a p < 0.05, since no statistically significant 

differences in essentiality are expected between replicates of the same growth condition. 

Note that because of the large number of genes in the M. tuberculosis genome (i.e. 3,989), 

the permutation test is expected to incorrectly reject the null hypothesis on as many as 5% of 

the genes through chance alone.

Table 3 presents the number of false positives obtained by using the permutation test after 

normalizing with the different methods. Using NZMean normalization as a reference, an 

average of 71.4 false positives are detected over the 32 pairs of datasets. BGC reduces false-

positives in 22 out of 32 cases. In comparison to other methods, BGC reduces the most false 

positives in 14.8 out of 32 conditions (fraction due to ties), which is more than any other 

normalization method. The next best normalization method was RLE, achieving the greatest 

reduction of false positives in 7.7 datasets. On average, BGC reduces the number of false-

positives the most, achieving a mean reduction of 21.7 Type I errors overall.

No method achieves a consistent reduction in the number of false-positives on all datasets. 

However, even though false-positives are increased in some datasets, the amount of false-

positives increased by BGC is generally small (i.e. average of 6.4). In addition, most 

normalization methods tend to increase false-discoveries on the same conditions, suggesting 

these conditions are problematic for most of the methods. For instance, on condition 

Trans01c, which was the condition that proved toughest for BGC (increasing false positives 

by 23), most other methods increased false positives as well. RLE increased false positives 

by 11, and TMM by 141. Only ZI-NB reduced false positives by two.
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Because of the way BGC corrects for the skew in datasets, it is most likely to have a more 

substantial effect on those cases where there is a large skew between datasets. Table 2 

contains some statistics for the datasets for which applying BGC resulted in the largest 

reduction in read-counts (BXD04), and in vitro (where the false positives were nearly 

unchanged). As can be seen, the condition on which BGC performed the best showed a very 

high skew and kurtosis (3rd and 4th moments of read-counts) between its replicates, where 

as the skew and kurtosis in the in vitro datasets were much smaller by comparison. For 

comparison, the skew of a dataset fitting an ideal Geometric distribution would 

approximately 2.0 (depends slightly on the mean). The skew in the in vitro datasets is quite 

close to this value, implying they are not very skewed. By correcting the skew in datasets 

and adjusting them to a Geometric distribution (with a variable parameter), the BGC will 

have more success in those datasets that are more highly skewed. On those datasets where 

the read-counts are not skewed, BGC is expected to have less of an effect, but these are 

likely the datasets that would benefit the least from normalization (as is the case for the in 

vitro datasets).

3.3. Effect on Detection of Differential Essentiality

So far, the previous sections have focused on the effects of BGC on reducing the number of 

false-positives when comparing replicates of the same condition (where no true positives are 

expected). It is important, however, to study the effects of BGC on detecting genes when the 

datasets are grown on different conditions (and thus at least some differentially essential 

genes, or true positives, are expected). Determining the effects of normalization on detecting 

true positives is complicated by the fact that it is difficult to determine a (complete) set of 

genes which are known a priori to be differentially essential in the conditions studied. This 

renders a proper analysis of the true-positive rate between normalization methods 

prohibitively difficult.

Instead, to study the effects of the normalization method on the comparative analysis 

between conditions, each pair of replicates for all the in-vivo conditions was compared 

against the pair of replicates grown in vitro. This way we can get an idea of how the 

normalization methods would affect the overall number of significant hits (though we cannot 

say for certain whether this leads to more true positives or not). Table 4 contains the total 

number of genes labeled as differentially essential (relative to in-vitro) after normalizing 

with each of the procedures. Differentially essential (DE) genes were those which were 

assigned an adjusted p-value of q < 0.05 (using the Benjamini-Hochberg correction for 

multiple comparisons). On average, the TMM method tended to predict more genes as 

differentially essential, with a mean of 406 DE genes, followed by RLE with a mean of 398. 

On the other hand, MSN showed a tendency to consistently predict the least number of DE 

genes, predicting an average of 67 genes as DE. The BGC method falls in between, 

predicting an average of 253 genes as DE.

To further explore the effect of normalizing with the BGC method, we plotted the number of 

DE genes detected before and after applying BGC normalization (See Figure 6). A slight 

reduction in the number of DE genes identified is seen in most conditions (possibly 

representing a decrease in the number of false-positives obtained by correcting for the skew). 
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This shows that the reduction in false positives between replicates is not achieved at the cost 

of a dramatic reduction in overall DE genes detected between conditions. However, when 

the number of genes classified as DE is low (due to possible under-detection of true 

positives), the BGC procedure tends to increase the number of DE genes predicted. On the 

other hand, when the number of DE genes predicted is exceedingly high (> 500), BGC 

normalization significantly decreases the number of DE genes predicted. This phenomenon 

suggests that applying BGC adjusts datasets so that they produce results that are less 

extreme in terms of number of DE genes detected.

4. Discussion

Analysis of TnSeq data has become a valuable tool for determining differentially essential 

genes. However, the large amount of intrinsic variability that is observed in these datasets 

(e.g. read-counts) makes direct comparison between datasets problematic. Common ways of 

normalizing the datasets have focused primarily on a linear transformation of read counts 

between datasets 2,14, usually by making their mean-read counts comparable. While 

important, normalization of the means alone is not enough to correct for the large skew that 

is observed in some datasets.

Other non-linear normalization methods have been proposed in the past to overcome the 

limitations of scaling datasets by a constant factor.3,12 Indeed, the BGC method is similar to 

quantile normalization 3, except traditional quantile normalization scales datasets together 

based on an empirical distribution function, without making assumptions about the form of 

the distribution. On the other hand, the simulation-based approach taken by ARTIST is 

fundamentally different.12 It attempts to simulate the effects of selection on the control 

dataset, by sampling read-counts from a multinomial distribution to obtain a new, simulated, 

control sample that has approximately the same number of reads and saturation.

We proposed the BGC method for adjusting datasets for comparative analysis. This method 

showed the largest overall reduction in false-positives out of all the normalization methods 

studied. What sets BGC apart from most of the other methods evaluated is the fact that it is a 

non-linear transformation of the data that is based on adjusting observed reads to an ideal 

distribution. It assumes that the skew in read counts comes from dispersion in the parameter 

p underlying a Geometric distribution. The skew is captured by fitting the data to a Beta-

Geometric distribution, which allows the parameter p of the Geometric distribution to vary 

according to a Beta distribution. The original read counts are then adjusted back to an ideal 

Geometric distribution by matching quantiles. This approach is nonlinear, with high-counts 

(spikes) being reduced and unusually suppressed counts increased. We choose to correct 

read counts back to a Geometric distribution (with a variable parameter), since such a profile 

of abundances at different TA sites (i.e. high proportion of low counts, low proportion of 

high counts) would be expected from sampling from a population of competing cells with a 

range of growth rates.

In addition to reducing false positives in replicate datasets from the same condition, we 

examined the effects of applying BGC when comparing datasets of different conditions 

(where at least some true positives are expected). While it is difficult to say with certainty 
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how the BGC method affects the detection of true differentially essential genes, we showed 

that in most cases it tends to decrease the number of differentially essential genes slightly, 

likely due to reducing false-positives. As the overall reduction was relatively small, this 

suggests that the reduction of Type I errors that is seen when comparing replicates of the 

same condition is not does not come at the expense of a large reduction in the overall 

number of positives detected.

One potential limitation of BGC, along with most of the normalization methods examined 

here (except ZI-NB and MSN), is that they do not take the saturation (or density) of the data 

into account when adjusting reads. Accounting for different saturation levels is especially 

important when comparing datasets from different libraries, where saturation levels can be 

significantly imbalanced due to differences in biological selection. ZI-NB and MSN take 

into consideration the differences in saturation of the libraries in their own ways (ZI-NB by 

using a mixture model to allow the Negative Binomial distribution to include some, but not 

all, empty sites; and MSN by adjusting the saturation of the control dataset). Despite this 

limitation, BGC actually produces a larger reduction in false-positives compared to ZI-NB 

and MSN. This suggests that correcting for the skew in datasets may be more important for 

reducing false-positives than accounting for the difference in saturation, particularly for the 

well-saturated datasets such as those examined here (with insertion densities in the range of 

38% to 69%). A future direction for this work could be to modify BGC so that it takes into 

consideration the differences in saturation levels between datasets.
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Appendix A. Derivation

To minimize the SSE, we find the root of the derivative of SSE with respect to κ:

To facilitate finding the root we ignore the denominator and remove constant terms from the 

numerator as these do not affect the final result:
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Fig. 1. 
a) Histogram of non-zero read counts obtained from M. tuberculosis Tn-mutant libraries. 

A1, A2 are replicates grown in vitro, and B1 and B2 are replicates grown in vivo. The black 

line represents a Geometric fit. b) Histogram of read counts on a log scale.
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Fig. 2. 
QQ-plot of the raw read counts for dataset B2, and the theoretical Geometric quantiles.
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Fig. 3. 
Example insertion pattern in a before and after adjusting spikes in read-counts. Unusually 

large read-counts can cause regions to appear to be differentially essential, artificially 

deflating counts at other sites below the mean (dashed line). Using a non-linear 

transformation, large spikes are decreased while low counts are increased, adjusting them to 

be more in line with each other.
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Fig. 4. 
a) Example of a Beta distribution with ρ = 0.05, and κ = 40. b) Histogram of counts from a 

regular Geometric distribution (p = 0.05, black curve), and a Beta-Geometric distribution (ρ 
= 0.05, κ = 40, red).
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Fig. 5. 
QQ-plot of the raw read counts for dataset B2, and the Beta-Geometric variables obtained by 

sampling the parameter p from a Beta distribution with estimated parameters ρ = 0.0078 and 

κ = 434.7.
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Fig. 6. 
Scatter plot of the number of the differentially essential (DE) obtained with and without 

applying BGC. The solid black line represents the identity line. Applying BGC results in a 

reduction in the number of DE genes identified in most conditions, possibly representing a 

reduction in false-positives. In addition, BGC produces results which are less extreme, 

increasing the number of DE genes identified when this number is low and decreasing the 

number of DE genes identified when it is very high.
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