- Local or API model execution
- RAG capabilities
- Agentic pipelines
- Llama index and Langchain usage
- Basic GPT
- Basic RAG
- RAG Agent
- CV Generator (under development)
- clone and start the project under a virtual environment
python -m venv .venv
- activate virtual env
source .venv/bin/activate
(for windows:.\.venv\Scripts\activate
) - install requirements
pip install -r requirements.txt
- install Ollama
https://ollama.com/
- rename .env.example to .env and set it up with your keys and secrets when applicable
- make necessary changes under settings.py
- run the app:
python app.py
- open
http://127.0.0.1:8123
- add documents under the
data/module_name/source_data
folder for the corresponding module
- add SQlite3 file under
dbs
folder - add a database url under .env file