

 1

Theme Park Bites
CSE2410 Project Report

Austin Phillips, Adrian
Rodriguez, Evan Thompson

 12/10/2023

 2

Abstract

This report describes "Theme Park Bites," a web application aimed at assisting
individuals with food allergies in navigating dining options at theme parks. The
application's primary goal is to simplify the process of identifying allergen-free food
items, enhancing the overall experience for these visitors.

Developed utilizing the Blazor Server Framework and MudBlazor for interface
elements, the project employs a streamlined architecture to ensure a responsive and
intuitive user experience. The design phase focused on creating a clear, easy-to-
navigate data structure, while the construction phase emphasized robust security
measures and efficient functionality, particularly in data management.

In the testing phase, the application underwent rigorous checks to confirm its
operational integrity across various devices, with a special emphasis on mobile
compatibility. The report concludes with an evaluation of the application's
performance and potential areas for future enhancements. "Theme Park Bites"
represents a thoughtful and technically sound solution to a common challenge faced
by theme park visitors with dietary restrictions.

 3

Table of Contents

Title...1

Abstract..2
Table of Contents...3

Introduction...4
Methodology...4
Design..5

Construction..6
Testing..7
Conclusion..8
References..9
Appendices..9

 4

Introduction

The project's initial idea was to create an application that could benefit users
by increasing their time efficiency in a specific use case. The next idea was to base the
project around menus, but increased complexity was needed. So, the finalized idea
was a user-orientated application to efficiently search food menus at theme parks
focusing on attendants with allergies and diets.

The decision to base the project around theme park menus compared to any
other restaurant was due to realizing a problem that could be fixed. This problem was
because most menus were designed to appeal to a customer's appetite by
separating food options by categories, making it difficult for users with allergies and
specific diets to find items that meet their criteria. Regarding theme parks, attendants
only have a little time to browse a website's menu, with theme parks tending to be
overcrowded and attendants constantly being on the move, making wasted time
even more significant. This led to the birth of "Theme Park Bites," which looks to
create a user-friendly menu with the capability to filter items by common allergens,
dietary restrictions, location, and area.

Methodology

Multiple process models were discussed to divide the software development phases,
but the prototype model was the most effective model that best fit the goal and
requirements. The prototype model (Figure 1) is to repeatedly create a tangible and
visual representation of the software before finalizing the product. This model proved
especially useful during the implementation of the filters, allowing each filter to have
its own model to test if it is working correctly. This process made testing more
straightforward than having all filtering options in a single module. Since the goal was
to provide a simple menu filtering experience to the user, prototyping allowed for
testing each procedure with the overall filtering process to ensure that each filter
linked correctly to the corresponding tags. In the end, the prototype model helped
immensely by enabling the continuous refactoring of the code until the product's
finalization.

A list of requirements was created that would need to be met to achieve the desired
goal of a user-friendly menu filtering application. The requirements were split among
stakeholders who would be invested in the project. These stakeholders included the
application users, the site admins, and theme park management. The requirements
for the users were to be able to filter from a multitude of options such as festival, park,
area, location, allergies, and tags. The idea was that users would click park or festival
and then filter for what they need based on location, tag, and allergies. In addition to
filtering, the user's requirements included being available on a mobile device to

 5

provide a fast means of accessing the information they need. Other non-functional
requirements that were not the main focus but would improve the user experience
are the additional features of a downloadable menu, a rating system, and a light/dark
background theme. Of these additional features, only two were implemented due to
time constraints, leaving the rating system to be one feature that was wanted to be
implemented but could not be.

The second list of requirements falls under the site admin stakeholder. The site admin
would have access to alter the application's data and change what is displayed to the
users. This means admins can change parks, festivals, locations, tags, and allergies.
Additionally, they can change food items, food descriptions, and prices. Allowing for
fast and efficient changes to be implemented into the app for rotating food items or
adding items to new locations. The admin can make changes to either parks or
festivals to ensure that changes made to one does not alter the other since park
menus are generally unchanging, while festival-themed menus are constantly rotating
items.

The last requirement is based on theme park management. They must supply official
menus to incorporate into the database. Since the application focuses on user
satisfaction through quick and accurate filters, it must reflect well on the theme park
that chooses to incorporate it. Maintaining the theme park's image is essential, and
marketing it to attract more customers is integral to having a successful product.

Design

The design of "Theme Park Bites" implements a data class mapping approach (Figure
3), where each data class is directly linked to a corresponding model class. This one-
to-one mapping simplifies the system's overall structure, enabling each module's
independent development, testing, and maintenance. This approach leads to a
flexible design that is easily adaptable to refactoring and adding functionality.

In choosing the Model View Controller (MVC) architecture, the application benefits
from its pattern, which distinctly separates the data (Model), user interface (View), and
business logic (Controller). This separation works particularly well for "Theme Park
Bites" due to the need for consistent and smooth interactions between the user and
the data. The MVC architecture enhances the app's efficiency and streamlines the
development process, allowing for distinct phases of development focused on each
aspect of the application.

The application's interface design is user-focused, emphasizing ease of navigation
and optimal user experience. It organizes food offerings according to their locations
within the park, enabling users to conveniently find and select their preferred dining
options. In Emphasizing cross-platform compatibility, the design ensures a seamless

 6

and accessible user interface on mobile devices. This mobile-optimized approach is
essential for accommodating the dynamic environment of theme parks, where users
predominantly rely on mobile access. The application's user interaction flow, which is
central to the design, is depicted in Figure 2, illustrating the use case diagram that
guides the development of these design elements. Additionally, Figure 4 presents an
initial design concept that was ultimately not used. This early design did not meet the
project's requirements for mobile accessibility, leading to its exclusion in favor of a
design that better accommodated mobile phone usage.

Construction

In the construction phase of "Theme Park Bites," the focus was on implementing the
design using the Blazor Server Framework, known for its robust server-side
processing capabilities. This choice proved vital for the application, particularly in
enhancing its performance on various devices, including those with limited
processing capabilities. The app offloads significant computational tasks from the
client side by leveraging the server-side processing, resulting in a smoother user
experience.

Dapper ORM was crucial in this phase, especially in securing data transactions. By
using this Object-Relational Mapping tool, the application ensures secure and
efficient interactions with the database, thereby preventing common security
vulnerabilities like SQL injection attacks. This choice was instrumental in maintaining
the integrity and security of user data, a critical aspect given the sensitive nature of
dietary and allergen information.

The MVC architecture significantly influenced the development of data and model
classes. By clearly separating concerns, it allowed for a more organized and efficient
construction process. Each data class, representing the application's data layer, was
developed with a focus on accurately modeling the information structure relevant to
the app's functionality. Correspondingly, model classes were designed to integrate
into a single data class, ensuring seamless one-to-one mapping and interaction. This
clear distinction and alignment between data and model classes enhanced the
overall coherence and maintainability of the codebase. The MVC architecture
immensely helped the development of the interface for performing database
operations within the application. The Controller layer in the MVC structure played a
crucial role in mediating between the View (user interface) and the Model (data),
handling the logic for database operations. This separation allowed for a more
modular approach, where database interactions could be efficiently managed and
updated without impacting the user interface or the underlying data structure. While
each model class has an individual data class, these classes were designed to create a
hierarchal structure with the ParkModel on the top and the FoodModel on the

 7

bottom; this structure is shown in the code snippet in Figure 5. This allowed the
ParkModel produced from the query in Figure 5 to be filtered by allergy, tags,
location, and area.

The user interface construction was undertaken with a keen focus on responsiveness
and interactivity. MudBlazor components were utilized to develop a user interface
that is aesthetically pleasing and highly functional across different platforms,
especially mobile devices. Critical features like interactive menu filtering were
implemented using these components, which allowed for an intuitive and user-
friendly experience. This feature enables users to easily filter food options based on
various criteria, such as allergen content, thus enhancing the overall usability of the
application.

Throughout the construction phase, the development team strongly emphasized
adaptability and scalability. This approach ensured that the application could be
easily updated and expanded in line with emerging user needs and technological
advancements. The combination of Blazor Server Framework, Dapper ORM, and
MudBlazor components resulted in a well-rounded construction of "Theme Park
Bites," aligning with the initial design objectives and paving the way for an effective
and secure user experience.

Testing

Component Testing
This stage involved rigorous examination of the application's modular components.
Individual data and model classes were tested through their corresponding admin
panels. By inputting, updating, and deleting data, we verified the correct functioning
of these classes (Figure 3). The success of these operations was confirmed by
matching the data entered in the admin panel with what was displayed in the
application and stored in the database. This verification ensured that each
component interacted seamlessly with the database, as demonstrated by the
consistency between the data table and the database records.

The light and dark mode functionality underwent testing across multiple devices. The
application's responsiveness to system settings for theme changes was validated,
ensuring the user's preference for visual themes was accurately reflected. This
adherence to user settings was crucial for maintaining a personalized experience.

Integration Testing

Integration testing focused on the cohesive operation of the application's
components when functioning together. The application was put through scenarios
mimicking real-world mobile device usage to ensure full functionality. The proper

 8

integration of components was evident in the responsive behavior of the application
on mobile platforms, confirming that the application's design was effectively
translated into a practical and operational framework.

Through these testing protocols, "Theme Park Bites" was verified to meet most of its
core functional requirements. However, the ability for users to rate food offerings and
see those ratings alongside food items was not able to be implemented within the
project's timeframe. Despite this, the application's modular design ensures that such
features can be easily integrated in future updates.

Conclusion

The creation of "Theme Park Bites" stemmed from the goal of developing an
application that enables users to view food offerings at theme parks through various
filters. Overall, it successfully does that while fulfilling most of the requirements laid
out at the beginning of development. Though it only fulfills some requirements, the
only one left to be implemented is a non-functional requirement, which can be added
to the application by an update without drawing from the project's primary goal. In
Conclusion, this application would be a fantastic addition to any theme park and
significantly decrease time spent by users searching for food items compatible with
their dietary restrictions.

 9

References
https://disneyworld.disney.go.com/dining/animal-kingdom/flame-tree-
barbecue/menus

Appendices
Figure 1

Figure 2

https://disneyworld.disney.go.com/dining/animal-kingdom/flame-tree-barbecue/menus
https://disneyworld.disney.go.com/dining/animal-kingdom/flame-tree-barbecue/menus

 10

Figure 3

Figure 4

 11

Figure 5

	Abstract
	Table of Contents
	Introduction
	Methodology
	Design
	Construction
	Testing
	Conclusion
	References
	Appendices

