Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
Latest commit ac5224a Feb 28, 2018 History
0 contributors

Users who have contributed to this file

#Driver for Sainsmart 1.8" tft display ST7735
#Translated by Guy Carver from the ST7735 sample code.
#Display uses SPI interface.
#todo: Use const()
import pyb
from math import sqrt
@micropython.native
def clamp( aValue, aMin, aMax ) :
return max(aMin, min(aMax, aValue))
@micropython.native
def TFTColor( aR, aG, aB ) :
'''Create a 16 bit rgb value from the given R,G,B from 0-255.
This assumes rgb 565 layout and will be incorrect for bgr.'''
return ((aR & 0xF8) << 8) | ((aG & 0xFC) << 3) | (aB >> 3)
class tft(object) :
'''Sainsmart tft-7735 display driver.'''
#TFTRotations and TFTRGB are bits to set
# on MADCTL to control display rotation/color layout
#Looking at display with pins on top.
#00 = upper left printing right
#10 = does nothing (MADCTL_ML)
#20 = upper left printing down (backwards) (Vertical flip)
#40 = upper right printing left (backwards) (X Flip)
#80 = lower left printing right (backwards) (Y Flip)
#04 = (MADCTL_MH)
#60 = 90 right rotation
#C0 = 180 right rotation
#A0 = 270 right rotation
_TFTRotations = [0x00, 0x60, 0xC0, 0xA0]
_TFTBGR = const(0x08) #When set color is bgr else rgb.
_TFTRGB = const(0x00)
_NOP = const(0x0)
_SWRESET = const(0x01)
_RDDID = const(0x04)
_RDDST = const(0x09)
_SLPIN = const(0x10)
_SLPOUT = const(0x11)
_PTLON = const(0x12)
_NORON = const(0x13)
_INVOFF = const(0x20)
_INVON = const(0x21)
_DISPOFF = const(0x28)
_DISPON = const(0x29)
_CASET = const(0x2A)
_RASET = const(0x2B)
_RAMWR = const(0x2C)
_RAMRD = const(0x2E)
_COLMOD = const(0x3A)
_MADCTL = const(0x36)
_FRMCTR1 = const(0xB1)
_FRMCTR2 = const(0xB2)
_FRMCTR3 = const(0xB3)
_INVCTR = const(0xB4)
_DISSET5 = const(0xB6)
_PWCTR1 = const(0xC0)
_PWCTR2 = const(0xC1)
_PWCTR3 = const(0xC2)
_PWCTR4 = const(0xC3)
_PWCTR5 = const(0xC4)
_VMCTR1 = const(0xC5)
_RDID1 = const(0xDA)
_RDID2 = const(0xDB)
_RDID3 = const(0xDC)
_RDID4 = const(0xDD)
_PWCTR6 = const(0xFC)
_GMCTRP1 = const(0xE0)
_GMCTRN1 = const(0xE1)
_BLACK = 0
_RED = TFTColor(0xFF, 0x00, 0x00)
_MAROON = TFTColor(0x80, 0x00, 0x00)
_GREEN = TFTColor(0x00, 0xFF, 0x00)
_FOREST = TFTColor(0x00, 0x80, 0x80)
_BLUE = TFTColor(0x00, 0x00, 0xFF)
_NAVY = TFTColor(0x00, 0x00, 0x80)
_CYAN = TFTColor(0x00, 0xFF, 0xFF)
_YELLOW = TFTColor(0xFF, 0xFF, 0x00)
_PURPLE = TFTColor(0xFF, 0x00, 0xFF)
_WHITE = TFTColor(0xFF, 0xFF, 0xFF)
_GRAY = TFTColor(0x80, 0x80, 0x80)
_SCREENSIZE = (128, 160)
@staticmethod
def color( aR, aG, aB ) :
'''Create a 565 rgb TFTColor value'''
return TFTColor(aR, aG, aB)
def __init__( self, aLoc, aDC, aReset ) :
'''aLoc SPI pin location is either 1 for 'X' or 2 for 'Y'.
aDC is the DC pin and aReset is the reset pin.'''
self._size = tft._SCREENSIZE
self.rotate = 0 #Vertical with top toward pins.
self._rgb = True #color order of rgb.
self.dc = pyb.Pin(aDC, pyb.Pin.OUT_PP, pyb.Pin.PULL_DOWN)
self.reset = pyb.Pin(aReset, pyb.Pin.OUT_PP, pyb.Pin.PULL_DOWN)
rate = 200000 #100000000 #Set way high but will be clamped to a maximum in SPI constructor.
cs = "X5" if aLoc == 1 else "Y5"
self.cs = pyb.Pin(cs, pyb.Pin.OUT_PP, pyb.Pin.PULL_DOWN)
self.cs.high()
self.spi = pyb.SPI(aLoc, pyb.SPI.MASTER, baudrate = rate, polarity = 1, phase = 0, crc=None)
self.colorData = bytearray(2)
self.windowLocData = bytearray(4)
def size( self ) :
return self._size
def on( self, aTF = True ) :
'''Turn display on or off.'''
self._writecommand(_DISPON if aTF else _DISPOFF)
def invertcolor( self, aBool ) :
'''Invert the color data IE: Black = White.'''
self._writecommand(_INVON if aBool else _INVOFF)
def rgb( self, aTF = True ) :
'''True = rgb else bgr'''
self._rgb = aTF
self._setMADCTL()
def rotation( self, aRot ) :
'''0 - 3. Starts vertical with top toward pins and rotates 90 deg
clockwise each step.'''
if (0 <= aRot < 4):
rotchange = self.rotate ^ aRot
self.rotate = aRot
#If switching from vertical to horizontal swap x,y
# (indicated by bit 0 changing).
if (rotchange & 1):
self._size =(self._size[1], self._size[0])
self._setMADCTL()
@micropython.native
def pixel( self, aPos, aColor ) :
'''Draw a pixel at the given position'''
if 0 <= aPos[0] < self._size[0] and 0 <= aPos[1] < self._size[1]:
self._setwindowpoint(aPos)
self._pushcolor(aColor)
def text( self, aPos, aString, aColor, aFont, aSize = 1 ) :
'''Draw a text at the given position. If the string reaches the end of the
display it is wrapped to aPos[0] on the next line. aSize may be an integer
which will size the font uniformly on w,h or a or any type that may be
indexed with [0] or [1].'''
if aFont == None:
return
#Make a size either from single value or 2 elements.
if (type(aSize) == int) or (type(aSize) == float):
wh = (aSize, aSize)
else:
wh = aSize
px, py = aPos
width = wh[0] * aFont["Width"] + 1
for c in aString:
self.char((px, py), c, aColor, aFont, wh)
px += width
#We check > rather than >= to let the right (blank) edge of the
# character print off the right of the screen.
if px + width > self._size[0]:
py += aFont["Height"] * wh[1] + 1
px = aPos[0]
def char( self, aPos, aChar, aColor, aFont, aSizes ) :
'''Draw a character at the given position using the given font and color.
aSizes is a tuple with x, y as integer scales indicating the
# of pixels to draw for each pixel in the character.'''
if aFont == None:
return
startchar = aFont['Start']
endchar = aFont['End']
ci = ord(aChar)
if (startchar <= ci <= endchar):
fontw = aFont['Width']
fonth = aFont['Height']
ci = (ci - startchar) * fontw
charA = aFont["Data"][ci:ci + fontw]
px = aPos[0]
if aSizes[0] <= 1 and aSizes[1] <= 1 :
for c in charA :
py = aPos[1]
for r in range(fonth) :
if c & 0x01 :
self.pixel((px, py), aColor)
py += 1
c >>= 1
px += 1
else:
for c in charA :
py = aPos[1]
for r in range(fonth) :
if c & 0x01 :
self.fillrect((px, py), aSizes, aColor)
py += aSizes[1]
c >>= 1
px += aSizes[0]
def line( self, aStart, aEnd, aColor ) :
'''Draws a line from aStart to aEnd in the given color. Vertical or horizontal
lines are forwarded to vline and hline.'''
if aStart[0] == aEnd[0]:
#Make sure we use the smallest y.
pnt = aEnd if (aEnd[1] < aStart[1]) else aStart
self.vline(pnt, abs(aEnd[1] - aStart[1]) + 1, aColor)
elif aStart[1] == aEnd[1]:
#Make sure we use the smallest x.
pnt = aEnd if aEnd[0] < aStart[0] else aStart
self.hline(pnt, abs(aEnd[0] - aStart[0]) + 1, aColor)
else:
px, py = aStart
ex, ey = aEnd
dx = ex - px
dy = ey - py
inx = 1 if dx > 0 else -1
iny = 1 if dy > 0 else -1
dx = abs(dx)
dy = abs(dy)
if (dx >= dy):
dy <<= 1
e = dy - dx
dx <<= 1
while (px != ex):
self.pixel((px, py), aColor)
if (e >= 0):
py += iny
e -= dx
e += dy
px += inx
else:
dx <<= 1
e = dx - dy
dy <<= 1
while (py != ey):
self.pixel((px, py), aColor)
if (e >= 0):
px += inx
e -= dy
e += dx
py += iny
def vline( self, aStart, aLen, aColor ) :
'''Draw a vertical line from aStart for aLen. aLen may be negative.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
stop = (start[0], clamp(start[1] + aLen, 0, self._size[1]))
#Make sure smallest y 1st.
if (stop[1] < start[1]):
start, stop = stop, start
self._setwindowloc(start, stop)
self._draw(aLen, aColor)
def hline( self, aStart, aLen, aColor ) :
'''Draw a horizontal line from aStart for aLen. aLen may be negative.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
stop = (clamp(start[0] + aLen, 0, self._size[0]), start[1])
#Make sure smallest x 1st.
if (stop[0] < start[0]):
start, stop = stop, start
self._setwindowloc(start, stop)
self._draw(aLen, aColor)
def rect( self, aStart, aSize, aColor ) :
'''Draw a hollow rectangle. aStart is the smallest coordinate corner
and aSize is a tuple indicating width, height.'''
self.hline(aStart, aSize[0], aColor)
self.hline((aStart[0], aStart[1] + aSize[1] - 1), aSize[0], aColor)
self.vline(aStart, aSize[1], aColor)
self.vline((aStart[0] + aSize[0] - 1, aStart[1]), aSize[1], aColor)
def fillrect( self, aStart, aSize, aColor ) :
'''Draw a filled rectangle. aStart is the smallest coordinate corner
and aSize is a tuple indicating width, height.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
end = (clamp(start[0] + aSize[0] - 1, 0, self._size[0]), clamp(start[1] + aSize[1] - 1, 0, self._size[1]))
if (end[0] < start[0]):
tmp = end[0]
end = (start[0], end[1])
start = (tmp, start[1])
if (end[1] < start[1]):
tmp = end[1]
end = (end[0], start[1])
start = (start[0], tmp)
self._setwindowloc(start, end)
numPixels = (end[0] - start[0] + 1) * (end[1] - start[1] + 1)
self._draw(numPixels, aColor)
def circle( self, aPos, aRadius, aColor ) :
'''Draw a hollow circle with the given radius and color with aPos as center.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
xend = int(0.7071 * aRadius) + 1
rsq = aRadius * aRadius
for x in range(xend) :
y = int(sqrt(rsq - x * x))
xp = aPos[0] + x
yp = aPos[1] + y
xn = aPos[0] - x
yn = aPos[1] - y
xyp = aPos[0] + y
yxp = aPos[1] + x
xyn = aPos[0] - y
yxn = aPos[1] - x
self._setwindowpoint((xp, yp))
self._writedata(self.colorData)
self._setwindowpoint((xp, yn))
self._writedata(self.colorData)
self._setwindowpoint((xn, yp))
self._writedata(self.colorData)
self._setwindowpoint((xn, yn))
self._writedata(self.colorData)
self._setwindowpoint((xyp, yxp))
self._writedata(self.colorData)
self._setwindowpoint((xyp, yxn))
self._writedata(self.colorData)
self._setwindowpoint((xyn, yxp))
self._writedata(self.colorData)
self._setwindowpoint((xyn, yxn))
self._writedata(self.colorData)
def fillcircle( self, aPos, aRadius, aColor ) :
'''Draw a filled circle with given radius and color with aPos as center'''
rsq = aRadius * aRadius
for x in range(aRadius) :
y = int(sqrt(rsq - x * x))
y0 = aPos[1] - y
ey = y0 + y * 2
y0 = clamp(y0, 0, self._size[1])
ln = abs(ey - y0) + 1;
self.vline((aPos[0] + x, y0), ln, aColor)
self.vline((aPos[0] - x, y0), ln, aColor)
def fill( self, aColor = BLACK ) :
'''Fill screen with the given color.'''
self.fillrect((0, 0), self._size, aColor)
def _draw( self, aPixels, aColor ) :
'''Send given color to the device aPixels times.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
self.dc.high()
self.cs.low()
for i in range(aPixels):
self.spi.send(self.colorData)
self.cs.high()
def _setwindowpoint( self, aPos ) :
'''Set a single point for drawing a color to.'''
x = int(aPos[0])
y = int(aPos[1])
self._writecommand(_CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = x
self.windowLocData[2] = 0x00
self.windowLocData[3] = x
self._writedata(self.windowLocData)
self._writecommand(_RASET) #Row address set.
self.windowLocData[1] = y
self.windowLocData[3] = y
self._writedata(self.windowLocData)
self._writecommand(_RAMWR) #Write to RAM.
def _setwindowloc( self, aPos0, aPos1 ) :
'''Set a rectangular area for drawing a color to.'''
self._writecommand(_CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = int(aPos0[0])
self.windowLocData[2] = 0x00
self.windowLocData[3] = int(aPos1[0])
self._writedata(self.windowLocData)
self._writecommand(_RASET) #Row address set.
self.windowLocData[1] = int(aPos0[1])
self.windowLocData[3] = int(aPos1[1])
self._writedata(self.windowLocData)
self._writecommand(_RAMWR) #Write to RAM.
@micropython.native
def _writecommand( self, aCommand ) :
'''Write given command to the device.'''
self.dc.low()
self.cs.low()
self.spi.send(aCommand)
self.cs.high()
@micropython.native
def _writedata( self, aData ) :
'''Write given data to the device. This may be
either a single int or a bytearray of values.'''
self.dc.high()
self.cs.low()
self.spi.send(aData)
self.cs.high()
@micropython.native
def _pushcolor( self, aColor ) :
'''Push given color to the device.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
self._writedata(self.colorData)
@micropython.native
def _setMADCTL( self ) :
'''Set screen rotation and RGB/BGR format.'''
self._writecommand(_MADCTL)
rgb = _TFTRGB if self._rgb else _TFTBGR
self._writedata(tft._TFTRotations[self.rotate] | rgb)
@micropython.native
def _reset( self ) :
'''Reset the device.'''
self.dc.low()
self.reset.high()
pyb.delay(500)
self.reset.low()
pyb.delay(500)
self.reset.high()
pyb.delay(500)
# def initb( self ) :
# '''Initialize blue tab version.'''
# self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
# self._reset()
# self._writecommand(_SWRESET) #Software reset.
# pyb.delay(50)
# self._writecommand(_SLPOUT) #out of sleep mode.
# pyb.delay(500)
#
# data1 = bytearray(1)
# self._writecommand(_COLMOD) #Set color mode.
# data1[0] = 0x05 #16 bit color.
# self._writedata(data1)
# pyb.delay(10)
#
# data3 = bytearray([0x00, 0x06, 0x03]) #fastest refresh, 6 lines front, 3 lines back.
# self._writecommand(_FRMCTR1) #Frame rate control.
# self._writedata(data3)
# pyb.delay(10)
#
# self._writecommand(_MADCTL)
# data1[0] = 0x08 #row address/col address, bottom to top refresh
# self._writedata(data1)
#
# data2 = bytearray(2)
# self._writecommand(_DISSET5) #Display settings
# data2[0] = 0x15 #1 clock cycle nonoverlap, 2 cycle gate rise, 3 cycle oscil, equalize
# data2[1] = 0x02 #fix on VTL
# self._writedata(data2)
#
# self._writecommand(_INVCTR) #Display inversion control
# data1[0] = 0x00 #Line inversion.
# self._writedata(data1)
#
# self._writecommand(_PWCTR1) #Power control
# data2[0] = 0x02 #GVDD = 4.7V
# data2[1] = 0x70 #1.0uA
# self._writedata(data2)
# pyb.delay(10)
#
# self._writecommand(_PWCTR2) #Power control
# data1[0] = 0x05 #VGH = 14.7V, VGL = -7.35V
# self._writedata(data1)
#
# self._writecommand(_PWCTR3) #Power control
# data2[0] = 0x01 #Opamp current small
# data2[1] = 0x02 #Boost frequency
# self._writedata(data2)
#
# self._writecommand(_VMCTR1) #Power control
# data2[0] = 0x3C #VCOMH = 4V
# data2[1] = 0x38 #VCOML = -1.1V
# self._writedata(data2)
# pyb.delay(10)
#
# self._writecommand(_PWCTR6) #Power control
# data2[0] = 0x11
# data2[1] = 0x15
# self._writedata(data2)
#
# #These different values don't seem to make a difference.
## dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
## 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
# dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
# 0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
# self._writecommand(_GMCTRP1)
# self._writedata(dataGMCTRP)
#
## dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
## 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
# dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
# 0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
# self._writecommand(_GMCTRN1)
# self._writedata(dataGMCTRN)
# pyb.delay(10)
#
# self._writecommand(_CASET) #Column address set.
# self.windowLocData[0] = 0x00
# self.windowLocData[1] = 2 #Start at column 2
# self.windowLocData[2] = 0x00
# self.windowLocData[3] = self._size[0] - 1
# self._writedata(self.windowLocData)
#
# self._writecommand(_RASET) #Row address set.
# self.windowLocData[1] = 1 #Start at row 2.
# self.windowLocData[3] = self._size[1] - 1
# self._writedata(self.windowLocData)
#
# self._writecommand(_NORON) #Normal display on.
# pyb.delay(10)
#
# self._writecommand(_RAMWR)
# pyb.delay(500)
#
# self._writecommand(_DISPON)
# self.cs.high()
# pyb.delay(500)
#
# def initr( self ) :
# '''Initialize a red tab version.'''
# self._reset()
#
# self._writecommand(_SWRESET) #Software reset.
# pyb.delay(150)
# self._writecommand(_SLPOUT) #out of sleep mode.
# pyb.delay(500)
#
# data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
# self._writecommand(_FRMCTR1) #Frame rate control.
# self._writedata(data3)
#
# self._writecommand(_FRMCTR2) #Frame rate control.
# self._writedata(data3)
#
# data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
# self._writecommand(_FRMCTR3) #Frame rate control.
# self._writedata(data6)
# pyb.delay(10)
#
# data1 = bytearray(1)
# self._writecommand(_INVCTR) #Display inversion control
# data1[0] = 0x07 #Line inversion.
# self._writedata(data1)
#
# self._writecommand(_PWCTR1) #Power control
# data3[0] = 0xA2
# data3[1] = 0x02
# data3[2] = 0x84
# self._writedata(data3)
#
# self._writecommand(_PWCTR2) #Power control
# data1[0] = 0xC5 #VGH = 14.7V, VGL = -7.35V
# self._writedata(data1)
#
# data2 = bytearray(2)
# self._writecommand(_PWCTR3) #Power control
# data2[0] = 0x0A #Opamp current small
# data2[1] = 0x00 #Boost frequency
# self._writedata(data2)
#
# self._writecommand(_PWCTR4) #Power control
# data2[0] = 0x8A #Opamp current small
# data2[1] = 0x2A #Boost frequency
# self._writedata(data2)
#
# self._writecommand(_PWCTR5) #Power control
# data2[0] = 0x8A #Opamp current small
# data2[1] = 0xEE #Boost frequency
# self._writedata(data2)
#
# self._writecommand(_VMCTR1) #Power control
# data1[0] = 0x0E
# self._writedata(data1)
#
# self._writecommand(_INVOFF)
#
# self._writecommand(_MADCTL) #Power control
# data1[0] = 0xC8
# self._writedata(data1)
#
# self._writecommand(_COLMOD)
# data1[0] = 0x05
# self._writedata(data1)
#
# self._writecommand(_CASET) #Column address set.
# self.windowLocData[0] = 0x00
# self.windowLocData[1] = 0x00
# self.windowLocData[2] = 0x00
# self.windowLocData[3] = self._size[0] - 1
# self._writedata(self.windowLocData)
#
# self._writecommand(_RASET) #Row address set.
# self.windowLocData[3] = self._size[1] - 1
# self._writedata(self.windowLocData)
#
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
# self._writecommand(_GMCTRP1)
# self._writedata(dataGMCTRP)
#
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
# self._writecommand(_GMCTRN1)
# self._writedata(dataGMCTRN)
# pyb.delay(10)
#
# self._writecommand(_DISPON)
# pyb.delay(100)
#
# self._writecommand(_NORON) #Normal display on.
# pyb.delay(10)
#
# self.cs.high()
@micropython.native
def initg( self ) :
'''Initialize a green tab version.'''
self._reset()
self._writecommand(_SWRESET) #Software reset.
pyb.delay(150)
self._writecommand(_SLPOUT) #out of sleep mode.
pyb.delay(255)
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(_FRMCTR1) #Frame rate control.
self._writedata(data3)
self._writecommand(_FRMCTR2) #Frame rate control.
self._writedata(data3)
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
self._writecommand(_FRMCTR3) #Frame rate control.
self._writedata(data6)
pyb.delay(10)
self._writecommand(_INVCTR) #Display inversion control
self._writedata(0x07)
self._writecommand(_PWCTR1) #Power control
data3[0] = 0xA2
data3[1] = 0x02
data3[2] = 0x84
self._writedata(data3)
self._writecommand(_PWCTR2) #Power control
self._writedata(0xC5)
data2 = bytearray(2)
self._writecommand(_PWCTR3) #Power control
data2[0] = 0x0A #Opamp current small
data2[1] = 0x00 #Boost frequency
self._writedata(data2)
self._writecommand(_PWCTR4) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0x2A #Boost frequency
self._writedata(data2)
self._writecommand(_PWCTR5) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0xEE #Boost frequency
self._writedata(data2)
self._writecommand(_VMCTR1) #Power control
self._writedata(0x0E)
self._writecommand(_INVOFF)
self._setMADCTL()
self._writecommand(_COLMOD)
self._writedata(0x05)
self._writecommand(_CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x01 #Start at row/column 1.
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(_RASET) #Row address set.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(_GMCTRP1)
self._writedata(dataGMCTRP)
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(_GMCTRN1)
self._writedata(dataGMCTRN)
self._writecommand(_NORON) #Normal display on.
pyb.delay(10)
self._writecommand(_DISPON)
pyb.delay(100)
self.cs.high()
#def maker( ) :
# t = tft(1, "X1", "X2")
# print("Initializing")
# t.initr()
# t.fill(0)
# return t
#
#def makeb( ) :
# t = tft(1, "X1", "X2")
# print("Initializing")
# t.initb()
# t.fill(0)
# return t
#
#def makeg( ) :
# t = tft(1, "X1", "X2")
# print("Initializing")
# t.initg()
## t.fill(0)
# return t