Permalink
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
MicroPython/lib/ST7735.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
750 lines (666 sloc)
23.5 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Driver for Sainsmart 1.8" tft display ST7735 | |
#Translated by Guy Carver from the ST7735 sample code. | |
#Display uses SPI interface. | |
#todo: Use const() | |
import pyb | |
from math import sqrt | |
@micropython.native | |
def clamp( aValue, aMin, aMax ) : | |
return max(aMin, min(aMax, aValue)) | |
@micropython.native | |
def TFTColor( aR, aG, aB ) : | |
'''Create a 16 bit rgb value from the given R,G,B from 0-255. | |
This assumes rgb 565 layout and will be incorrect for bgr.''' | |
return ((aR & 0xF8) << 8) | ((aG & 0xFC) << 3) | (aB >> 3) | |
class tft(object) : | |
'''Sainsmart tft-7735 display driver.''' | |
#TFTRotations and TFTRGB are bits to set | |
# on MADCTL to control display rotation/color layout | |
#Looking at display with pins on top. | |
#00 = upper left printing right | |
#10 = does nothing (MADCTL_ML) | |
#20 = upper left printing down (backwards) (Vertical flip) | |
#40 = upper right printing left (backwards) (X Flip) | |
#80 = lower left printing right (backwards) (Y Flip) | |
#04 = (MADCTL_MH) | |
#60 = 90 right rotation | |
#C0 = 180 right rotation | |
#A0 = 270 right rotation | |
_TFTRotations = [0x00, 0x60, 0xC0, 0xA0] | |
_TFTBGR = const(0x08) #When set color is bgr else rgb. | |
_TFTRGB = const(0x00) | |
_NOP = const(0x0) | |
_SWRESET = const(0x01) | |
_RDDID = const(0x04) | |
_RDDST = const(0x09) | |
_SLPIN = const(0x10) | |
_SLPOUT = const(0x11) | |
_PTLON = const(0x12) | |
_NORON = const(0x13) | |
_INVOFF = const(0x20) | |
_INVON = const(0x21) | |
_DISPOFF = const(0x28) | |
_DISPON = const(0x29) | |
_CASET = const(0x2A) | |
_RASET = const(0x2B) | |
_RAMWR = const(0x2C) | |
_RAMRD = const(0x2E) | |
_COLMOD = const(0x3A) | |
_MADCTL = const(0x36) | |
_FRMCTR1 = const(0xB1) | |
_FRMCTR2 = const(0xB2) | |
_FRMCTR3 = const(0xB3) | |
_INVCTR = const(0xB4) | |
_DISSET5 = const(0xB6) | |
_PWCTR1 = const(0xC0) | |
_PWCTR2 = const(0xC1) | |
_PWCTR3 = const(0xC2) | |
_PWCTR4 = const(0xC3) | |
_PWCTR5 = const(0xC4) | |
_VMCTR1 = const(0xC5) | |
_RDID1 = const(0xDA) | |
_RDID2 = const(0xDB) | |
_RDID3 = const(0xDC) | |
_RDID4 = const(0xDD) | |
_PWCTR6 = const(0xFC) | |
_GMCTRP1 = const(0xE0) | |
_GMCTRN1 = const(0xE1) | |
_BLACK = 0 | |
_RED = TFTColor(0xFF, 0x00, 0x00) | |
_MAROON = TFTColor(0x80, 0x00, 0x00) | |
_GREEN = TFTColor(0x00, 0xFF, 0x00) | |
_FOREST = TFTColor(0x00, 0x80, 0x80) | |
_BLUE = TFTColor(0x00, 0x00, 0xFF) | |
_NAVY = TFTColor(0x00, 0x00, 0x80) | |
_CYAN = TFTColor(0x00, 0xFF, 0xFF) | |
_YELLOW = TFTColor(0xFF, 0xFF, 0x00) | |
_PURPLE = TFTColor(0xFF, 0x00, 0xFF) | |
_WHITE = TFTColor(0xFF, 0xFF, 0xFF) | |
_GRAY = TFTColor(0x80, 0x80, 0x80) | |
_SCREENSIZE = (128, 160) | |
@staticmethod | |
def color( aR, aG, aB ) : | |
'''Create a 565 rgb TFTColor value''' | |
return TFTColor(aR, aG, aB) | |
def __init__( self, aLoc, aDC, aReset ) : | |
'''aLoc SPI pin location is either 1 for 'X' or 2 for 'Y'. | |
aDC is the DC pin and aReset is the reset pin.''' | |
self._size = tft._SCREENSIZE | |
self.rotate = 0 #Vertical with top toward pins. | |
self._rgb = True #color order of rgb. | |
self.dc = pyb.Pin(aDC, pyb.Pin.OUT_PP, pyb.Pin.PULL_DOWN) | |
self.reset = pyb.Pin(aReset, pyb.Pin.OUT_PP, pyb.Pin.PULL_DOWN) | |
rate = 200000 #100000000 #Set way high but will be clamped to a maximum in SPI constructor. | |
cs = "X5" if aLoc == 1 else "Y5" | |
self.cs = pyb.Pin(cs, pyb.Pin.OUT_PP, pyb.Pin.PULL_DOWN) | |
self.cs.high() | |
self.spi = pyb.SPI(aLoc, pyb.SPI.MASTER, baudrate = rate, polarity = 1, phase = 0, crc=None) | |
self.colorData = bytearray(2) | |
self.windowLocData = bytearray(4) | |
def size( self ) : | |
return self._size | |
def on( self, aTF = True ) : | |
'''Turn display on or off.''' | |
self._writecommand(_DISPON if aTF else _DISPOFF) | |
def invertcolor( self, aBool ) : | |
'''Invert the color data IE: Black = White.''' | |
self._writecommand(_INVON if aBool else _INVOFF) | |
def rgb( self, aTF = True ) : | |
'''True = rgb else bgr''' | |
self._rgb = aTF | |
self._setMADCTL() | |
def rotation( self, aRot ) : | |
'''0 - 3. Starts vertical with top toward pins and rotates 90 deg | |
clockwise each step.''' | |
if (0 <= aRot < 4): | |
rotchange = self.rotate ^ aRot | |
self.rotate = aRot | |
#If switching from vertical to horizontal swap x,y | |
# (indicated by bit 0 changing). | |
if (rotchange & 1): | |
self._size =(self._size[1], self._size[0]) | |
self._setMADCTL() | |
@micropython.native | |
def pixel( self, aPos, aColor ) : | |
'''Draw a pixel at the given position''' | |
if 0 <= aPos[0] < self._size[0] and 0 <= aPos[1] < self._size[1]: | |
self._setwindowpoint(aPos) | |
self._pushcolor(aColor) | |
def text( self, aPos, aString, aColor, aFont, aSize = 1 ) : | |
'''Draw a text at the given position. If the string reaches the end of the | |
display it is wrapped to aPos[0] on the next line. aSize may be an integer | |
which will size the font uniformly on w,h or a or any type that may be | |
indexed with [0] or [1].''' | |
if aFont == None: | |
return | |
#Make a size either from single value or 2 elements. | |
if (type(aSize) == int) or (type(aSize) == float): | |
wh = (aSize, aSize) | |
else: | |
wh = aSize | |
px, py = aPos | |
width = wh[0] * aFont["Width"] + 1 | |
for c in aString: | |
self.char((px, py), c, aColor, aFont, wh) | |
px += width | |
#We check > rather than >= to let the right (blank) edge of the | |
# character print off the right of the screen. | |
if px + width > self._size[0]: | |
py += aFont["Height"] * wh[1] + 1 | |
px = aPos[0] | |
def char( self, aPos, aChar, aColor, aFont, aSizes ) : | |
'''Draw a character at the given position using the given font and color. | |
aSizes is a tuple with x, y as integer scales indicating the | |
# of pixels to draw for each pixel in the character.''' | |
if aFont == None: | |
return | |
startchar = aFont['Start'] | |
endchar = aFont['End'] | |
ci = ord(aChar) | |
if (startchar <= ci <= endchar): | |
fontw = aFont['Width'] | |
fonth = aFont['Height'] | |
ci = (ci - startchar) * fontw | |
charA = aFont["Data"][ci:ci + fontw] | |
px = aPos[0] | |
if aSizes[0] <= 1 and aSizes[1] <= 1 : | |
for c in charA : | |
py = aPos[1] | |
for r in range(fonth) : | |
if c & 0x01 : | |
self.pixel((px, py), aColor) | |
py += 1 | |
c >>= 1 | |
px += 1 | |
else: | |
for c in charA : | |
py = aPos[1] | |
for r in range(fonth) : | |
if c & 0x01 : | |
self.fillrect((px, py), aSizes, aColor) | |
py += aSizes[1] | |
c >>= 1 | |
px += aSizes[0] | |
def line( self, aStart, aEnd, aColor ) : | |
'''Draws a line from aStart to aEnd in the given color. Vertical or horizontal | |
lines are forwarded to vline and hline.''' | |
if aStart[0] == aEnd[0]: | |
#Make sure we use the smallest y. | |
pnt = aEnd if (aEnd[1] < aStart[1]) else aStart | |
self.vline(pnt, abs(aEnd[1] - aStart[1]) + 1, aColor) | |
elif aStart[1] == aEnd[1]: | |
#Make sure we use the smallest x. | |
pnt = aEnd if aEnd[0] < aStart[0] else aStart | |
self.hline(pnt, abs(aEnd[0] - aStart[0]) + 1, aColor) | |
else: | |
px, py = aStart | |
ex, ey = aEnd | |
dx = ex - px | |
dy = ey - py | |
inx = 1 if dx > 0 else -1 | |
iny = 1 if dy > 0 else -1 | |
dx = abs(dx) | |
dy = abs(dy) | |
if (dx >= dy): | |
dy <<= 1 | |
e = dy - dx | |
dx <<= 1 | |
while (px != ex): | |
self.pixel((px, py), aColor) | |
if (e >= 0): | |
py += iny | |
e -= dx | |
e += dy | |
px += inx | |
else: | |
dx <<= 1 | |
e = dx - dy | |
dy <<= 1 | |
while (py != ey): | |
self.pixel((px, py), aColor) | |
if (e >= 0): | |
px += inx | |
e -= dy | |
e += dx | |
py += iny | |
def vline( self, aStart, aLen, aColor ) : | |
'''Draw a vertical line from aStart for aLen. aLen may be negative.''' | |
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1])) | |
stop = (start[0], clamp(start[1] + aLen, 0, self._size[1])) | |
#Make sure smallest y 1st. | |
if (stop[1] < start[1]): | |
start, stop = stop, start | |
self._setwindowloc(start, stop) | |
self._draw(aLen, aColor) | |
def hline( self, aStart, aLen, aColor ) : | |
'''Draw a horizontal line from aStart for aLen. aLen may be negative.''' | |
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1])) | |
stop = (clamp(start[0] + aLen, 0, self._size[0]), start[1]) | |
#Make sure smallest x 1st. | |
if (stop[0] < start[0]): | |
start, stop = stop, start | |
self._setwindowloc(start, stop) | |
self._draw(aLen, aColor) | |
def rect( self, aStart, aSize, aColor ) : | |
'''Draw a hollow rectangle. aStart is the smallest coordinate corner | |
and aSize is a tuple indicating width, height.''' | |
self.hline(aStart, aSize[0], aColor) | |
self.hline((aStart[0], aStart[1] + aSize[1] - 1), aSize[0], aColor) | |
self.vline(aStart, aSize[1], aColor) | |
self.vline((aStart[0] + aSize[0] - 1, aStart[1]), aSize[1], aColor) | |
def fillrect( self, aStart, aSize, aColor ) : | |
'''Draw a filled rectangle. aStart is the smallest coordinate corner | |
and aSize is a tuple indicating width, height.''' | |
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1])) | |
end = (clamp(start[0] + aSize[0] - 1, 0, self._size[0]), clamp(start[1] + aSize[1] - 1, 0, self._size[1])) | |
if (end[0] < start[0]): | |
tmp = end[0] | |
end = (start[0], end[1]) | |
start = (tmp, start[1]) | |
if (end[1] < start[1]): | |
tmp = end[1] | |
end = (end[0], start[1]) | |
start = (start[0], tmp) | |
self._setwindowloc(start, end) | |
numPixels = (end[0] - start[0] + 1) * (end[1] - start[1] + 1) | |
self._draw(numPixels, aColor) | |
def circle( self, aPos, aRadius, aColor ) : | |
'''Draw a hollow circle with the given radius and color with aPos as center.''' | |
self.colorData[0] = aColor >> 8 | |
self.colorData[1] = aColor | |
xend = int(0.7071 * aRadius) + 1 | |
rsq = aRadius * aRadius | |
for x in range(xend) : | |
y = int(sqrt(rsq - x * x)) | |
xp = aPos[0] + x | |
yp = aPos[1] + y | |
xn = aPos[0] - x | |
yn = aPos[1] - y | |
xyp = aPos[0] + y | |
yxp = aPos[1] + x | |
xyn = aPos[0] - y | |
yxn = aPos[1] - x | |
self._setwindowpoint((xp, yp)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xp, yn)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xn, yp)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xn, yn)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xyp, yxp)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xyp, yxn)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xyn, yxp)) | |
self._writedata(self.colorData) | |
self._setwindowpoint((xyn, yxn)) | |
self._writedata(self.colorData) | |
def fillcircle( self, aPos, aRadius, aColor ) : | |
'''Draw a filled circle with given radius and color with aPos as center''' | |
rsq = aRadius * aRadius | |
for x in range(aRadius) : | |
y = int(sqrt(rsq - x * x)) | |
y0 = aPos[1] - y | |
ey = y0 + y * 2 | |
y0 = clamp(y0, 0, self._size[1]) | |
ln = abs(ey - y0) + 1; | |
self.vline((aPos[0] + x, y0), ln, aColor) | |
self.vline((aPos[0] - x, y0), ln, aColor) | |
def fill( self, aColor = BLACK ) : | |
'''Fill screen with the given color.''' | |
self.fillrect((0, 0), self._size, aColor) | |
def _draw( self, aPixels, aColor ) : | |
'''Send given color to the device aPixels times.''' | |
self.colorData[0] = aColor >> 8 | |
self.colorData[1] = aColor | |
self.dc.high() | |
self.cs.low() | |
for i in range(aPixels): | |
self.spi.send(self.colorData) | |
self.cs.high() | |
def _setwindowpoint( self, aPos ) : | |
'''Set a single point for drawing a color to.''' | |
x = int(aPos[0]) | |
y = int(aPos[1]) | |
self._writecommand(_CASET) #Column address set. | |
self.windowLocData[0] = 0x00 | |
self.windowLocData[1] = x | |
self.windowLocData[2] = 0x00 | |
self.windowLocData[3] = x | |
self._writedata(self.windowLocData) | |
self._writecommand(_RASET) #Row address set. | |
self.windowLocData[1] = y | |
self.windowLocData[3] = y | |
self._writedata(self.windowLocData) | |
self._writecommand(_RAMWR) #Write to RAM. | |
def _setwindowloc( self, aPos0, aPos1 ) : | |
'''Set a rectangular area for drawing a color to.''' | |
self._writecommand(_CASET) #Column address set. | |
self.windowLocData[0] = 0x00 | |
self.windowLocData[1] = int(aPos0[0]) | |
self.windowLocData[2] = 0x00 | |
self.windowLocData[3] = int(aPos1[0]) | |
self._writedata(self.windowLocData) | |
self._writecommand(_RASET) #Row address set. | |
self.windowLocData[1] = int(aPos0[1]) | |
self.windowLocData[3] = int(aPos1[1]) | |
self._writedata(self.windowLocData) | |
self._writecommand(_RAMWR) #Write to RAM. | |
@micropython.native | |
def _writecommand( self, aCommand ) : | |
'''Write given command to the device.''' | |
self.dc.low() | |
self.cs.low() | |
self.spi.send(aCommand) | |
self.cs.high() | |
@micropython.native | |
def _writedata( self, aData ) : | |
'''Write given data to the device. This may be | |
either a single int or a bytearray of values.''' | |
self.dc.high() | |
self.cs.low() | |
self.spi.send(aData) | |
self.cs.high() | |
@micropython.native | |
def _pushcolor( self, aColor ) : | |
'''Push given color to the device.''' | |
self.colorData[0] = aColor >> 8 | |
self.colorData[1] = aColor | |
self._writedata(self.colorData) | |
@micropython.native | |
def _setMADCTL( self ) : | |
'''Set screen rotation and RGB/BGR format.''' | |
self._writecommand(_MADCTL) | |
rgb = _TFTRGB if self._rgb else _TFTBGR | |
self._writedata(tft._TFTRotations[self.rotate] | rgb) | |
@micropython.native | |
def _reset( self ) : | |
'''Reset the device.''' | |
self.dc.low() | |
self.reset.high() | |
pyb.delay(500) | |
self.reset.low() | |
pyb.delay(500) | |
self.reset.high() | |
pyb.delay(500) | |
# def initb( self ) : | |
# '''Initialize blue tab version.''' | |
# self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1) | |
# self._reset() | |
# self._writecommand(_SWRESET) #Software reset. | |
# pyb.delay(50) | |
# self._writecommand(_SLPOUT) #out of sleep mode. | |
# pyb.delay(500) | |
# | |
# data1 = bytearray(1) | |
# self._writecommand(_COLMOD) #Set color mode. | |
# data1[0] = 0x05 #16 bit color. | |
# self._writedata(data1) | |
# pyb.delay(10) | |
# | |
# data3 = bytearray([0x00, 0x06, 0x03]) #fastest refresh, 6 lines front, 3 lines back. | |
# self._writecommand(_FRMCTR1) #Frame rate control. | |
# self._writedata(data3) | |
# pyb.delay(10) | |
# | |
# self._writecommand(_MADCTL) | |
# data1[0] = 0x08 #row address/col address, bottom to top refresh | |
# self._writedata(data1) | |
# | |
# data2 = bytearray(2) | |
# self._writecommand(_DISSET5) #Display settings | |
# data2[0] = 0x15 #1 clock cycle nonoverlap, 2 cycle gate rise, 3 cycle oscil, equalize | |
# data2[1] = 0x02 #fix on VTL | |
# self._writedata(data2) | |
# | |
# self._writecommand(_INVCTR) #Display inversion control | |
# data1[0] = 0x00 #Line inversion. | |
# self._writedata(data1) | |
# | |
# self._writecommand(_PWCTR1) #Power control | |
# data2[0] = 0x02 #GVDD = 4.7V | |
# data2[1] = 0x70 #1.0uA | |
# self._writedata(data2) | |
# pyb.delay(10) | |
# | |
# self._writecommand(_PWCTR2) #Power control | |
# data1[0] = 0x05 #VGH = 14.7V, VGL = -7.35V | |
# self._writedata(data1) | |
# | |
# self._writecommand(_PWCTR3) #Power control | |
# data2[0] = 0x01 #Opamp current small | |
# data2[1] = 0x02 #Boost frequency | |
# self._writedata(data2) | |
# | |
# self._writecommand(_VMCTR1) #Power control | |
# data2[0] = 0x3C #VCOMH = 4V | |
# data2[1] = 0x38 #VCOML = -1.1V | |
# self._writedata(data2) | |
# pyb.delay(10) | |
# | |
# self._writecommand(_PWCTR6) #Power control | |
# data2[0] = 0x11 | |
# data2[1] = 0x15 | |
# self._writedata(data2) | |
# | |
# #These different values don't seem to make a difference. | |
## dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f, | |
## 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10]) | |
# dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29, | |
# 0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10]) | |
# self._writecommand(_GMCTRP1) | |
# self._writedata(dataGMCTRP) | |
# | |
## dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30, | |
## 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10]) | |
# dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e, | |
# 0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10]) | |
# self._writecommand(_GMCTRN1) | |
# self._writedata(dataGMCTRN) | |
# pyb.delay(10) | |
# | |
# self._writecommand(_CASET) #Column address set. | |
# self.windowLocData[0] = 0x00 | |
# self.windowLocData[1] = 2 #Start at column 2 | |
# self.windowLocData[2] = 0x00 | |
# self.windowLocData[3] = self._size[0] - 1 | |
# self._writedata(self.windowLocData) | |
# | |
# self._writecommand(_RASET) #Row address set. | |
# self.windowLocData[1] = 1 #Start at row 2. | |
# self.windowLocData[3] = self._size[1] - 1 | |
# self._writedata(self.windowLocData) | |
# | |
# self._writecommand(_NORON) #Normal display on. | |
# pyb.delay(10) | |
# | |
# self._writecommand(_RAMWR) | |
# pyb.delay(500) | |
# | |
# self._writecommand(_DISPON) | |
# self.cs.high() | |
# pyb.delay(500) | |
# | |
# def initr( self ) : | |
# '''Initialize a red tab version.''' | |
# self._reset() | |
# | |
# self._writecommand(_SWRESET) #Software reset. | |
# pyb.delay(150) | |
# self._writecommand(_SLPOUT) #out of sleep mode. | |
# pyb.delay(500) | |
# | |
# data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back. | |
# self._writecommand(_FRMCTR1) #Frame rate control. | |
# self._writedata(data3) | |
# | |
# self._writecommand(_FRMCTR2) #Frame rate control. | |
# self._writedata(data3) | |
# | |
# data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d]) | |
# self._writecommand(_FRMCTR3) #Frame rate control. | |
# self._writedata(data6) | |
# pyb.delay(10) | |
# | |
# data1 = bytearray(1) | |
# self._writecommand(_INVCTR) #Display inversion control | |
# data1[0] = 0x07 #Line inversion. | |
# self._writedata(data1) | |
# | |
# self._writecommand(_PWCTR1) #Power control | |
# data3[0] = 0xA2 | |
# data3[1] = 0x02 | |
# data3[2] = 0x84 | |
# self._writedata(data3) | |
# | |
# self._writecommand(_PWCTR2) #Power control | |
# data1[0] = 0xC5 #VGH = 14.7V, VGL = -7.35V | |
# self._writedata(data1) | |
# | |
# data2 = bytearray(2) | |
# self._writecommand(_PWCTR3) #Power control | |
# data2[0] = 0x0A #Opamp current small | |
# data2[1] = 0x00 #Boost frequency | |
# self._writedata(data2) | |
# | |
# self._writecommand(_PWCTR4) #Power control | |
# data2[0] = 0x8A #Opamp current small | |
# data2[1] = 0x2A #Boost frequency | |
# self._writedata(data2) | |
# | |
# self._writecommand(_PWCTR5) #Power control | |
# data2[0] = 0x8A #Opamp current small | |
# data2[1] = 0xEE #Boost frequency | |
# self._writedata(data2) | |
# | |
# self._writecommand(_VMCTR1) #Power control | |
# data1[0] = 0x0E | |
# self._writedata(data1) | |
# | |
# self._writecommand(_INVOFF) | |
# | |
# self._writecommand(_MADCTL) #Power control | |
# data1[0] = 0xC8 | |
# self._writedata(data1) | |
# | |
# self._writecommand(_COLMOD) | |
# data1[0] = 0x05 | |
# self._writedata(data1) | |
# | |
# self._writecommand(_CASET) #Column address set. | |
# self.windowLocData[0] = 0x00 | |
# self.windowLocData[1] = 0x00 | |
# self.windowLocData[2] = 0x00 | |
# self.windowLocData[3] = self._size[0] - 1 | |
# self._writedata(self.windowLocData) | |
# | |
# self._writecommand(_RASET) #Row address set. | |
# self.windowLocData[3] = self._size[1] - 1 | |
# self._writedata(self.windowLocData) | |
# | |
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f, | |
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10]) | |
# self._writecommand(_GMCTRP1) | |
# self._writedata(dataGMCTRP) | |
# | |
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30, | |
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10]) | |
# self._writecommand(_GMCTRN1) | |
# self._writedata(dataGMCTRN) | |
# pyb.delay(10) | |
# | |
# self._writecommand(_DISPON) | |
# pyb.delay(100) | |
# | |
# self._writecommand(_NORON) #Normal display on. | |
# pyb.delay(10) | |
# | |
# self.cs.high() | |
@micropython.native | |
def initg( self ) : | |
'''Initialize a green tab version.''' | |
self._reset() | |
self._writecommand(_SWRESET) #Software reset. | |
pyb.delay(150) | |
self._writecommand(_SLPOUT) #out of sleep mode. | |
pyb.delay(255) | |
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back. | |
self._writecommand(_FRMCTR1) #Frame rate control. | |
self._writedata(data3) | |
self._writecommand(_FRMCTR2) #Frame rate control. | |
self._writedata(data3) | |
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d]) | |
self._writecommand(_FRMCTR3) #Frame rate control. | |
self._writedata(data6) | |
pyb.delay(10) | |
self._writecommand(_INVCTR) #Display inversion control | |
self._writedata(0x07) | |
self._writecommand(_PWCTR1) #Power control | |
data3[0] = 0xA2 | |
data3[1] = 0x02 | |
data3[2] = 0x84 | |
self._writedata(data3) | |
self._writecommand(_PWCTR2) #Power control | |
self._writedata(0xC5) | |
data2 = bytearray(2) | |
self._writecommand(_PWCTR3) #Power control | |
data2[0] = 0x0A #Opamp current small | |
data2[1] = 0x00 #Boost frequency | |
self._writedata(data2) | |
self._writecommand(_PWCTR4) #Power control | |
data2[0] = 0x8A #Opamp current small | |
data2[1] = 0x2A #Boost frequency | |
self._writedata(data2) | |
self._writecommand(_PWCTR5) #Power control | |
data2[0] = 0x8A #Opamp current small | |
data2[1] = 0xEE #Boost frequency | |
self._writedata(data2) | |
self._writecommand(_VMCTR1) #Power control | |
self._writedata(0x0E) | |
self._writecommand(_INVOFF) | |
self._setMADCTL() | |
self._writecommand(_COLMOD) | |
self._writedata(0x05) | |
self._writecommand(_CASET) #Column address set. | |
self.windowLocData[0] = 0x00 | |
self.windowLocData[1] = 0x01 #Start at row/column 1. | |
self.windowLocData[2] = 0x00 | |
self.windowLocData[3] = self._size[0] - 1 | |
self._writedata(self.windowLocData) | |
self._writecommand(_RASET) #Row address set. | |
self.windowLocData[3] = self._size[1] - 1 | |
self._writedata(self.windowLocData) | |
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29, | |
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10]) | |
self._writecommand(_GMCTRP1) | |
self._writedata(dataGMCTRP) | |
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e, | |
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10]) | |
self._writecommand(_GMCTRN1) | |
self._writedata(dataGMCTRN) | |
self._writecommand(_NORON) #Normal display on. | |
pyb.delay(10) | |
self._writecommand(_DISPON) | |
pyb.delay(100) | |
self.cs.high() | |
#def maker( ) : | |
# t = tft(1, "X1", "X2") | |
# print("Initializing") | |
# t.initr() | |
# t.fill(0) | |
# return t | |
# | |
#def makeb( ) : | |
# t = tft(1, "X1", "X2") | |
# print("Initializing") | |
# t.initb() | |
# t.fill(0) | |
# return t | |
# | |
#def makeg( ) : | |
# t = tft(1, "X1", "X2") | |
# print("Initializing") | |
# t.initg() | |
## t.fill(0) | |
# return t |