Face Recognition: Methods and Applications

Hasham Asad
Department of Computer Science & IT, University of Lahore, Lahore, Pakistan
Hasham Asad

Abstract

Faces have been the main focus when it comes to recognition for a human being. The machine
on the other hand failed to perceive plains like a human mind does and thus it's harder for a
machine to recognize a face then on top of that recognize whose face it is. Image processing
has been a hardware demanding job for machines and a lengthy and tiring process for humans,
but with the recent improvements in hardware and software image recognition is no longer a
thing of the past.

The goal of this research is to present a simple and efficient face recognition model that is
easier to develop and improve upon.

The most important part of an image recognition system is obtaining the dataset, for this
research in question a custom data set of a class containing almost 22 university students is
used, to show the ability of the model to be extended into a face recognition based attendance
system. Good high definition camera is the basic requirement. The photos must be different in
different lighting conditions, different angles of class and different backgrounds.

The model used face recognition is the pre trained Yolov8m object detection model. Which is
well documented and easy to train. Altho the model is based on object detection but ignoring the
facial features and considering faces as 2 dimensional objects it can perform just as well. The
model is trained on 100 epochs and a dataset of 859 png with 22 different faces. The number is
achieved by rotating the images 3 sides 90, 180 1nd 270.

A removing duplication algorithm is used to remove duplication in images and furthermore
median filter is applied for the removal of noise and histogram is used for contrast equalization.

Keyword: face detection, yolo, image processing

mailto:70120545@student.uol.edu.pk

Introduction

Facial recognition technology has become a cornerstone of modern security systems, social
media platforms, and user authentication processes. The ability to accurately and efficiently
identify individuals based on their facial features holds significant promise for applications
ranging from surveillance and access control to personalized user experiences. Recent
advancements in deep learning and computer vision have paved the way for more robust and
precise facial recognition models. Among these advancements, the YOLO (You Only Look
Once) family of models has emerged as a powerful framework for real-time object detection and
recognition.

In this research paper, we explore the development and implementation of a facial recognition
model based on the YOLOvV8 architecture. YOLOvVS8, the latest iteration in the YOLO series,
introduces several enhancements over its predecessors, including improved accuracy, faster
processing speeds, and more efficient handling of small and densely packed objects. These
characteristics make YOLOvV8 particularly well-suited for the task of facial recognition, where
precision and speed are paramount.

Our study aims to harness the capabilities of YOLOVS to create a facial recognition system that
can operate effectively in diverse and dynamic environments. We address key challenges such
as varying lighting conditions, occlusions, and differences in facial expressions. Additionally, we
evaluate the model's performance against existing facial recognition benchmarks to determine
its viability for real-world applications.

Through this research, we contribute to the growing body of knowledge in the field of facial
recognition by demonstrating how state-of-the-art object detection models like YOLOv8 can be
adapted and optimized for identifying human faces with high accuracy and efficiency. This paper
presents a comprehensive overview of our methodology, experimental results, and potential
future directions for enhancing the model's capabilities.

Literature Review

The literature found for face detection provides a variety of different ideas for the performance,
optimization and more accurate predictions, making the model both fast and accurate.
Firstly to improve the dataset, the quality of the images it is suggested to use a median filter in
order to reduce noise in an image and use histogram for the contrast balacement of different
images.
Viola P and Jones M rectangular suggested a feature detection method which is widely used for
its efficiency and effectiveness. According to them there are three kinds of rectangle features;
e Two rectangle features is the difference between the sums of the pixels within two
rectangular regions.
e A three rectangle feature computes the sum within two outside rectangles subtracted
from the sum in a center rectangle.
e Four rectangles compute the difference between diagonal pairs of rectangles.

A simple edge detection can be used to differentiate the background d from the face and then
the background can be removed forming a smaller image and processing time.

Using a face feature picking algorithm then using that to identify the mood of the person can
also be performed.

This research is also based on Viola and Jones framework. They propose to extend the
framework by training different cascades individually for each view and then use them as a
whole like figure. They propose the following structure for better performance.

WEFS Tree-Structure Detector

Pyramid structure adopts coarse-to-fine strategy to handle pose variance

(a) Parallel Cascades (b) Pyrammd (c) Tree

17
1
7

AR

And following algorithm is used

0. (Input) Given a sample x and the constructed
tree detector 7.
1. (Initialization) Set the node list L empty; push the
root node of 7 into L; empty the output list O.
2. (WFS procedure)
While L 1s not empty, do
® Pop the first node d from L.
@ C(alculate the determinative vector G“)(x),
where G (x) = [gl““ (x),...,g'?" (x)]
® Fort=1,...n:
If gx)=1
Get the #-th child node s; of d
If s; 1s a leaf node
Push /;, the label of s;, into the list O.
Else
Push s; into the list L.
End if
End if
End for

End do
3. (Output) Output all labels 1n the list O for sample x.

Methodology

The Data:

The pictures were obtained from a wide variety of tours and classes with different lighting
conditions, backgrounds and locations. The total number was summed up to be about 214.

Rotating:

These images where rotating to 3 angles for a larger dataset and variety of pictures, using
following python code,

from PIL import Image

import os

rotate and save(img, save path prefix):
for angle in [0, 90, 180, 270]:
rotated img = img.rotate (angle, expand=)

save path = f"{save path prefix} rotated

angle} Image.png"
rotated img.save (save path)

L)

save directory =

T

images directory =

open images in directory (directory) :

files = os.listdir (directory)

image files = [file for file in files if

file.lower () .endswith (('.Jjpg', jpeg '.png')) 1]

for image file in image files:
image path = os.path.join (directory, image file)
save path = os.path.join(save directory,
.splitext (image file) [0])
img = Image.open (image path)

rotate and save (img, save path)

open images in directory(images directory)

Removing Duplicates:

import os
from PIL import Image

import imagehash

find duplicates (directory) :
hashes = {}
duplicates = []

for root, dirs, files in os.walk(directory) :
for file in files:
if file.endswith(".jpg") file.endswith (" .png") :
file path = os.path.join(root, file)
with open(file path, 'rb') as f:
try:
image = Image.open (f)
hash value = str (imagehash.average hash (image))
if hash value in hashes:
duplicates.append(file path)
ale@s
hashes[hash value] = file path
except Exception as e:

print (f"Error processing {file path

return duplicates

delete duplicates(duplicates):
for duplicate in duplicates:
os.remove (duplicate)
print (f" {duplicate} Deleted")

if name == _main

T .

L]

directory =
duplicates = find duplicates (directory)
if duplicates:

delete duplicates (duplicates)
else:

print ("No Duplicates")

File Conversion:

The pictures shot from an iphone are transferred with the extension of heic while other pictures
include jpg and jpeg so to uniform the extension they are al converted into png.

from PIL import Image
from pillow heif import register heif opener

convert heic to png(heic path, png path):
register heif opener ()
try:
with Image.open (heic path) as heic img:
heic img.convert ('RGB') .save (png path, formate='PNG')
:cept Exception as e:
print (e)

won

heic directory =
png directory = ""

img path = ""

for file in os.listdir (img_path):

if file.endswith('.HEIC'") file.endswith (('.heic', 'Jjpg
heic path = os.path.join(heic directory, file)

png path = os.path.join(png directory, os.path.splitext(file) [0] +

" . pﬂg")
convert heic to png(heic path, png path)

Numbering

All the images are numbered for the ease of png file aligning with txt files.
import os

import glob

rename img files (directory) :

os.chdir (directory)

png files = glob.glob('*.png')

png files.sort ()

for index, filename in enumerate (png files):
new name = f£"{index + 1}.png"
os.rename (filename, new name)

print (f"Renamed {filename} to {new name}")

img directory path = ''

rename img files (img directory path)

Dependencies:

Following dependencies are required when training the yolo model

Pip

Python

Conda (env management)
ultralytics

Training:

Yolov8 can be directly trained from the command line by passing following parameters

yolo task=detect mode=train model=yolov8m.pt data=data_custom.yaml epoch=100 imgsz=640
Or you can right the following python code

from ultralytics import YOLO

mode = YOLO("yolov8m.pt")

results = mode.train(data="/kaggle/input/yaml-file-for-yolo-training/data_custom.yaml",
epochs=100, imgsz=640)

Yolov8m is the name of pretrained model, where m stands for medium and other types include
yolov8n and yolov8s

Yaml file is used, with the following structure:

: <path of train folder>

: <path of val folder>

: <number of classes>

[

“Array of classes”

]

In my case it looked as as shown below

/kaggle/input/850-1label-png-yolo-22-classesfacesdetection/train

/kaggle/input/val-data-for-yolo-4-png-with-labels/val

277

[
"Muhammad Abdullah",
"Raheeb Gill",
"Hasham Asad",
"Muaz Asim",
"Hamza Khalid",
"Bilal Munir",
"Ali Ahmed",
"Mustafa Raja",
"Bilal Ch",
"Hasham Mukhtar",
"Abdullah Arshad",
"Ghulam Mujtaba",
"Zaid Atif",
"Sahar Arif",
"Anmol Nisar",
"Sahil Kumar",
"Umar Niazi",
"Jannat Sameer",
"Faizan Rasul",
"Bakhtawar Asad",
"Rumaiha",
"Rizwan Ghuri",
"Rizwan Ghuriw",
"G,
"Mustafa Rajaw",
"Hasham AsadW",
"Hamza KhalidW"

Performance:

Start

Loads all the images.

Transferred 465/475 items from pretrained weights
TensorBeard: Start with 'tensorboard --logdir runs/detect/train2', view at http://localhost:6006/

wandb: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)
wandb: You can find your API key in your browser here: https://wandb.ai/fauthorize
wandb: Paste an API key from your profile and hit enter, or press ctrlsc to quit:

wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc
wandb version 0.17.0 is available! To upgrade, please run: $ pip install wandb --upgrade

Tracking run with wandb version 0.16.6

Run data is saved locally in /kaggle/working/wandb/run-20240521 23593@-5tapmdi2
Syncing run train2 to Weights & Biases (docs)

View project at https://wandb.ai/karbonion/YOLOv8

View run at https://wandb.ai/karbonion/YOLOv8/runs/5tapmdi2

Freezing layer 'model.22.dfl.conv.weight'

AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...

Downloading https://github.com/ultralytics/assets/releases/download/v8.2.8/yolov8n.pt to 'yolov8n.pt'...

1e0% | ININEIEEM| .23v/6.23M [00:00<00:00, 72.6MB/s]
AMP: checks passed

train: Scanning /kaggle/input/850-label-png-yolo-22-classesfacesdetection/train/labels... 469 images, © backgrounds, @ corrup
t: 5% [N | 469/859 [00:12<88:17, 22.51it/s]

Starts with the cls loss of 3.517 box loss of 1.646 and dfl loss 1.32

trmfmn Semmmamm Jrmsile M (EEE-lahele srpayrle-atocl nssesFrened shastanm fraim labele. . . 858 Amese,. B Esekmrevmis. 6 cerrom
t: 10e%| INNNNENEEE| sso/559 [@0:24<@0:00, 35.16it/s]

train: WARNING 2o Cache directory /fkaggle/input/85@-label-png-yoclo-22-classesfacesdetection/train is not writeable, cache not s
aved.

albumentations: Blur(p=8.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.081, clip_lim
it=(1, 4.@), tile_grid_size=(8, 8))

val: Scanning /kaggle/input/val-data-for-yolo-4-png-with-labels/val/labels... 4 images, @ backgrounds, © corrupt: 1% || NINEEEN
Bl 2/2 [@e:68<00:00, 12.66it/s]

val: WARNING 2 Cache directory /kaggle/input/val-data-for-yolo-4-png-with-labels/val is not writeable, cache not saved.

Plotting labels to runs/detect/train2/labels.jpg...

optimizer: 'optimizer=auto’ found, ignoring 'lr@=0.81"' and 'momentum=@.937" and determining best 'optimizer', "1lr@' and 'momen
tum' automatically...

optimizer: AdamW(lr=0.800323, momentum=@.9) with parameter groups 77 weight(decay=08.@), 84 weight(decay=0.0005), 83 bias(decay
=9.0)

TensorBoard: model graph wvisualization added

Image sizes 642 train, 640 wal

Using 2 dataloader workers

Logging results to runs/detect/train2

Starting training for 180 epochs...

Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
1/100 7.326 1.646 3.517 1.32 152 c4e: 1e0%|[[HNNNENEENE] s:/54 [e1:54<ee:00, 2.11s/it]
Class Images Tnstances Box(P R mapse maApse-95): 100%| [IIIEENEN 1/1 [ee:ez<c0:00,
2.48s/it]
all 4 52 8.117 8.391 8.124 a.0842
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
2/100 7.256 1.276 2.212 1.@96 174 c4e: 100%|[[HNNNENEEE| s:/52 [e1:51<ee:e0, 2.07s/it]
Class Images Tnstances Box(P R mapse maAPse-95): 100%| [IEIENEN 1/1 [ee:ee<se:e0, 1
1.31it/s]
all 4 52 8.453 @.484 8.497 @.376
Epach GPU_mem box_loss cls_loss dfl_loss Instances Size
3/100 7.116G 1.24 1.877 1.102 222 sa0: se%| [IHEEH | 3e/54 [@@:56<P0:48, 2.8@s/it]

On 27 epochs trained the loss drops to 0.509 for cls, 0.9817 for box and 1.009 for dfl

21/109 7.2G 1.833
Class Images

all 4

Epoch GPU_mem box_loss
22/109 7.21G 1.e24
Class Images

all 4

Epoch GPU_mem box_loss
23/100 7.27G 1.001
Class Images

all 4

Epoch GPU_mem box_loss
24/100 7.26 1.088
Class Images

all 4

Epoch GPU_mem box_loss
25/100 7.18G 8.9912
Class Images

all 4

Epoch GPU_mem box_loss
26/100 7.246 8.9927
Class Images

all 4

Epoch GPU_mem box_loss
27/109 7.26G 0.9817

44/188 7.22G 8.8773
Class Images

all 4

Epoch GPU_mem box_loss
45/18a 7.21G 9.8651
Class Images

all 4

Epoch GPU_mem box_loss
46/100 7.2G 8.8741
Class Images

all 4

Epoch GPU_mem box_loss
a7/18a 7.21G 9.8522
Class Images

all 4

Epoch GPU_mem box_loss
48/100 7.25G 9.8643
Class Images

all 4

Epoch GPU_mem box_loss
49/100 7.18G 9.8519
Class Images

all 4

Epoch GPU_mem box_loss
58/100 7.18G 9.8438

0.5678
Instances
62

cls_loss

©.5489
Instances
62

cls_loss

8.5379
Instances
62

cls_loss

8.5353
Instances
62

cls_loss

8.5313
Instances
62

cls_loss

8.5318
Instances
62

cls_loss
9.509

cls loss

@.4332
Instances
62

cls_loss

@.4285
Instances
62

cls_loss

@.4264
Instances
62

cls_loss

@.4187
Instances
62

cls_loss

@.4246
Instances
62

cls_loss

9.4158
Instances
62

cls_loss
@.4144

1.032
Box(P
9.942

df1_loss

1.021
Box(P
9.909

df1_loss

1.921
Box (P
8.949

df1_loss

1.921
Box (P
8.929

dfl_loss
1.817
Box (P
0.934

dfl_loss
1.821
Box (P
©.896

dfl_loss
1.909

is 0.4144, box

©8.9738
Box(P
0.96

dfl_loss
©8.9629
Box (P
0.96

dfl_loss
©.9663
Box(P
8.927

dfl_loss
©.9562
Box (P
0.93

dfl_loss

©.9628
Box(P
8.921

dfl_loss

9.954
Box(P
0.904

dfl_loss
©8.9637

157

0.974

Instances

142
R
09.991

Instances

147
R
8.94

Instances

242
R
8.973

Instances

227
R
0.555

Instances

96
R
0.977

Instances
337

188

8.925

Instances
167

R

@9.%e1

Instances

202
R
8.991

Instances

181
R
©9.959

Instances

172
R
0.969

Instances

165
R
9.57

Instances
270

640:

mAP50
9.991

Size

640:

mAP50
9.995

Size

648:

mAP5©
8.995

Size

648:

mAP5@
8.995

Size

648:

mAP50
0.988

Size

648:

mAP50
0.984

Size

640:

100% | INNNMEEN| s2/54 [o1:50<00:00,

2.04s/it]

mapse-95): 10e%| NN 1/1 [ee0:ce<ee:0e, 11.

9.765

100% | INNNIEEN| s2/54 [o1:48<00:00,

2.01s/it]

mapse-95): 10e%| NN 1/1 [e0:cecee:ee, 13.

9.786

2.87s/it]

100% | [IHNNEENEIE| s2/52 [e1:51<00:00,
mapse-95): 1e0%| [NEEEEER
8.767

100% | [INNNEENEIE| s2/52 [o1:45<00:00,

1.97s/it]

mapse-95): 10e%|[NNIIMEEIN 1/1 [e0:ce<ee:00, 12.

0.763

2.89s/it]

100% | [INNNIIEIN| s2/52 [o1:52<00:00,
marse-95) - 100%| | HNNENEER
8.751

100% | [INNNIIIEN| s2/52 [o1:53<00:00,

2.10s/it]

wAP56-95) : 100%| [IINNINEIEE| 1/1 [e0:00<00:08, 11.

@.761

oas | INNNNEEEN | s1/54 ro1:44<00:08,

2.73s/it]

1/1 [00:00<00:00, 13.

1/1 [00:00<00:00, 12.

67it/s]

35it/s]

25it/s]

95it/s]

84it/s]

26it/s]

loss is 0.8432 and dfl loss 0.9637

648:

mAP5@
9.995

Size

648:

mAP5@

@.933

Size

mAP5@

9.993

Size

mAP50

@.988

Size

mAP5@
9.993

Size

640:

mAP5@
@.933

Size

648:

100% | INNNNIIIIN| s2/54 [01:26<e0:00, 1.98s/it]

mAP50-95): 108%|
9.833

100% | [INNNNIIIIN| s2/54 [e1:56<e0:00, 2.15s/it]

mAP58-95): 10e%|
9.832

100% | [NNNIII| s2/54 [1:54<e0:00,

2.12s/it]

mapse-95) : 100%| [ININENENEN| 1/1 [(oo:00<00:00, 12.

9.835

100% | [INNNIEI| s2/54 [01:51<e0:00,

2.065/it]

wAP5e-95) : 100%| [N 1/1 [(¢0:00<00:00, 13.

9.826

100% | [NNNIEII| s2/54 [e1:50<ee:00,

2.05s/it]

mapse-95): 100%| [IINNINENEN| 1/1 (eo:0e<e0:00, 7.

9.846

100% | INNNNIIIIN| s2/54 [01:51<ee:00, 2.06s/it]

mAP58-95): 10e%|
9.833

13%|. | 7/54 [@0:09¢00:59, 1.26s/it]

| 1/1 [ee:ea<e0:00, 12.

| 1/1 [ee:ee<e0:00, 12.

| 1/1 [ee:ee<e0:00, 13.

86it/s]

86it/s]

84it/s]

21it/s]

98it/s]

30it/s]

At the last run the losses are as fallows box 0.5968 , cls 0.2572 an dfl 0.8815

Epoch box_loss cls_loss dfl_loss Instances Size
95/100 7.176 0.6102 0.2665 0.8879 o1 cae: 100%|[INNNNEIMME| s:/52 [o1:52<00:00, 2.095/it]
Class Images Instances Box(P R mapse mapse-95): 1ee | [N 1/1 [ee:ee<eo:e0, 12.99it/s]
all a 62 0.957 0.959 0.993 0.874
Epoch box_loss cls_loss dfl_loss Instances Size
96/100 7.186 9.6058 0.2636 0.8902 95 c4e: 100%| [INNNNEIIE| s:/52 [e1:56<0e:e0, 2.15s/it]
Class Images Instances Box (P R mAPS@ mAPS@-95): 100%| | 1/1 [e0:00<00:00, 13.66it/s]
all a 62 0.958 0.959 0.993 0.873
Epoch box_loss cls_loss dfl_loss Instances Size
97/100 7.176 9.6057 0.2664 0.8859 108 c4e: 100%| [INNNNEIIE| s:/52 [01:51<0e:00, 2.07s/it]
Class Images Instances Box (P R mAPS@ mAPS@-95): 100%| | 1/1 [ee:0e<e0:00, 10.21it/s]
all 4 62 0.943 0.969 9.993 9.872
Epoch box_loss cls_loss dfl_loss Instances size
98/100 7.26 0.5936 6.2603 0.8798 86 c40: 100% | INNNNEIEIN) 52/54 [01:52<00:00, 2.09s/it]
Class Imeges Instances Box (P R mAPS@ mAPSB-95): 180%| | 1/1 [ee:00<00:08, 12.52it/s]
all 4 62 0.955 0.965 9.993 0.874
Epoch box loss cls loss dfl loss Instances size
99/100 7.176 0.5976 0.2632 0.8802 134 640: 100% | NNNNEEIIN| s54/52 [e1:55<e0:e0, 2.14s/it]
Class Images Instances Box (P R mapse mapse-95): 100%|[IENENEN 1/1 (eo:ce<eo:00, 13.08it/s]
all 4 62 0.953 0.965 9.993 0.872
Epoch box loss cls loss dfl loss Instances size
100,100 7.186 0.5908 9.2572 0.8815 91 cse: 100%| [INNNNEIIE| s:/s2 [e1:51<0e:00, 2.06s/it]
Class Images Instances Box (P R mapse mapse-95): 100% | [NINENENEN 1/1 [eo:ce<ce:08, 11.87it/s]
all a 62 0.952 0.964 9.993 0.867

The model was fully trained with up to 94% accuracy.

AesuLls saveu Lo runs/aetect/Trains

Run history: Run summary:
Ir/pg0 - Ir/pg0 1e-05
Ir/pg1 Il Ir/pg 1e-05
Ir/pg2 - Ir/pg2 1e-05
metrics/mAPSO(B) SR AR E L EE R] metrics/mAPS0(B) 0995
metrics/mAPS0-95(8) —sssnessssseeeenlIINNNNINENNNENENEE cvic/mAPSO-95(@) 08832
metrics/precision(8) . ananninlineslIEsls il s iees = BN metrics/precisian(B) 0.94073
metrics/recall(8) - eI el s A = NN N metrics/recall(B) 098763
model/GFLOPs _ model/GFLOPs 79,149
model/parameters _ model/parameters 25871953
model/speed_PyTorch(ms) _ model/speed_PyTorch(ms) 106.903
train/box_loss [! train/box_loss 059084
train/cls_loss | - train/cls_loss 025718
train/dfl_loss I train/dfl_loss 08815
val/box_loss [val/box_loss 0.58056
valfcls_loss = valfcls_loss 02774

val/dfi_loss | SE= val/dfl_loss 0.87203

180 epochs completed in 3.191 hours.
Optimizer stripped from runs/detect/train2/weights/last.pt, 52.1MB
Optimizer stripped from runs/detect/train2/weights/best.pt, 52.1MB

Validating runs/detect/train2/weights/best.pt...

Ultral, YOLOvE.2.19 &' Python-3.10.13 torch-2.1.2 CUDA:@ (Tesla T4, 15182MiB)
Model ry (fused): 218 layers, 25855393 parameters, @ gradients, 78.8 GFLOPs
Class Images Instances Box (P R mAPse mAP5@-95): 100%| [EIMMENEN] 1/1 [ee:0e<ee:ee, 8.73it/s]
all 4 62 0.941 0.988 9.995 0.883
Muhammad Abdullah 4 4 0.954 1 9.995 0.894
Raheeb Gill 4 4 0.954 1 9.995 0.908
Hasham Asad 4 3 0.958 1 8.995 @.846
Muaz Asim 4 4 8.975 1 9.995 0.911
Hamza Khalid 4 2 0.952 1 9.995 0.808
Bilal Munir 4 4 0.904 1 8.995 0.87
Ali Ahmed 4 4 1 0.916 9.995 0.874
Mustafa Raja 4 4 0.954 1 9.995 0.925
Bilal ch 4 1 09.903 1 8.995 @.995
Hasham Mukhtar 4 1 0.868 1 9.995 0.796
Abdullah Arshad 4 1 08.965 1 9.955 0.995
Ghulam Mujtaba 4 4 1 9.852 8.995 @.846
Zaid Atif 4 4 1 0.985 9.995 0.834
Sahar Arif 4 4 0.903 1 9.9595 0.869
Anmol Nisar 4 3 08.935 1 8.995 @.844
Sahil Kumar 4 4 0.943 1 9.995 0.85
Jannat Sameer 4 3 08.915 1 9.9595 0.895
Faizan Rasul 4 4 0.917 1 8.995 @.865
Rumaiha 4 1 0.866 1 9.995 0.895
Rizwan Ghuri 4 3 0.949 1 9.9595 0.942

Speed: @.3ms preprocess, 15.5ms inference, ©.@ms loss, 1.2ms postprocess per image
Results saved to runs/detect/train2

After the training the folder contains following files

data_custom.yaml

runs

train

val

yolov8m.pt

Weights contains the best.pt model which act as a custom trained model and can use to predict

faces on the given img.

Prediction:

yolo task=detect mode=predict model=path_to_best.pt show=True conf=0.5 source=filepath.png
Or write a python script passing the same parameters.

The predicted image will be stored inside run/detect/predict
Some of the examples are

At

il =
T : 4
I
5 = 1
% §

ey 7 3 o
e L NS
£ S
4
5 ~ Y = 2 -
= =fre/- = S
= s —r s e

And 1 in a class setting and inverted

Y,
g Bilal ch 0,94
h N 78

[

2¥ v il

Sahil Kumcr 0.91

Ty
S 1\ 1

References:

e https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_F
ast Face Detection System Based on Edges/links/09e414fd75a23d2¢c1b000000/Sim
ple-and-Fast-Face-Detection-System-Based-on-Edges.pdf

e Awais-Jumani/publication/Face Detection and Recognition System for Enhancing Se
curity Measures_Using_Artificial_Intelligence_System
ieeexplore.ieee.org/stamp/stamp.jsp
Ibrahim-Ali-Mohammed/An-Exploratory-Study-Into-The-Face-Detection-And-Recognition
-System-To-Strengthen-Security-Precautions-Using-An-Artificial-Intelligence-System

e htips://rogerioferis.com/ClassMarch10/HomeworkVectorBoosting

https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_Fast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Simple-and-Fast-Face-Detection-System-Based-on-Edges.pdf
https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_Fast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Simple-and-Fast-Face-Detection-System-Based-on-Edges.pdf
https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_Fast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Simple-and-Fast-Face-Detection-System-Based-on-Edges.pdf
https://www.researchgate.net/profile/Awais-Jumani/publication/340183601_Face_Detection_and_Recognition_System_for_Enhancing_Security_Measures_Using_Artificial_Intelligence_System/links/5e7cc982a6fdcc139c089bc4/Face-Detection-and-Recognition-System-for-Enhancing-Security-Measures-Using-Artificial-Intelligence-System.pdf
https://www.researchgate.net/profile/Awais-Jumani/publication/340183601_Face_Detection_and_Recognition_System_for_Enhancing_Security_Measures_Using_Artificial_Intelligence_System/links/5e7cc982a6fdcc139c089bc4/Face-Detection-and-Recognition-System-for-Enhancing-Security-Measures-Using-Artificial-Intelligence-System.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044848
https://www.researchgate.net/profile/Ibrahim-Ali-Mohammed-3/publication/377153749_An_Exploratory_Study_Into_The_Face_Detection_And_Recognition_System_To_Strengthen_Security_Precautions_Using_An_Artificial_Intelligence_System/links/659751882468df72d3fad095/An-Exploratory-Study-Into-The-Face-Detection-And-Recognition-System-To-Strengthen-Security-Precautions-Using-An-Artificial-Intelligence-System.pdf
https://www.researchgate.net/profile/Ibrahim-Ali-Mohammed-3/publication/377153749_An_Exploratory_Study_Into_The_Face_Detection_And_Recognition_System_To_Strengthen_Security_Precautions_Using_An_Artificial_Intelligence_System/links/659751882468df72d3fad095/An-Exploratory-Study-Into-The-Face-Detection-And-Recognition-System-To-Strengthen-Security-Precautions-Using-An-Artificial-Intelligence-System.pdf
https://rogerioferis.com/ClassMarch10/HomeworkVectorBoosting.pdf

