
Face Recognition: Methods and Applications
Hasham Asad
Department of Computer Science & IT, University of Lahore, Lahore, Pakistan
Hasham Asad

Abstract

Faces have been the main focus when it comes to recognition for a human being. The machine
on the other hand failed to perceive plains like a human mind does and thus it's harder for a
machine to recognize a face then on top of that recognize whose face it is. Image processing
has been a hardware demanding job for machines and a lengthy and tiring process for humans,
but with the recent improvements in hardware and software image recognition is no longer a
thing of the past.

The goal of this research is to present a simple and efficient face recognition model that is
easier to develop and improve upon.

The most important part of an image recognition system is obtaining the dataset, for this
research in question a custom data set of a class containing almost 22 university students is
used, to show the ability of the model to be extended into a face recognition based attendance
system. Good high definition camera is the basic requirement. The photos must be different in
different lighting conditions, different angles of class and different backgrounds.

The model used face recognition is the pre trained Yolov8m object detection model. Which is
well documented and easy to train. Altho the model is based on object detection but ignoring the
facial features and considering faces as 2 dimensional objects it can perform just as well. The
model is trained on 100 epochs and a dataset of 859 png with 22 different faces. The number is
achieved by rotating the images 3 sides 90, 180 1nd 270.

A removing duplication algorithm is used to remove duplication in images and furthermore
median filter is applied for the removal of noise and histogram is used for contrast equalization.

Keyword: face detection, yolo, image processing

mailto:70120545@student.uol.edu.pk


Introduction

Facial recognition technology has become a cornerstone of modern security systems, social
media platforms, and user authentication processes. The ability to accurately and efficiently
identify individuals based on their facial features holds significant promise for applications
ranging from surveillance and access control to personalized user experiences. Recent
advancements in deep learning and computer vision have paved the way for more robust and
precise facial recognition models. Among these advancements, the YOLO (You Only Look
Once) family of models has emerged as a powerful framework for real-time object detection and
recognition.

In this research paper, we explore the development and implementation of a facial recognition
model based on the YOLOv8 architecture. YOLOv8, the latest iteration in the YOLO series,
introduces several enhancements over its predecessors, including improved accuracy, faster
processing speeds, and more efficient handling of small and densely packed objects. These
characteristics make YOLOv8 particularly well-suited for the task of facial recognition, where
precision and speed are paramount.
Our study aims to harness the capabilities of YOLOv8 to create a facial recognition system that
can operate effectively in diverse and dynamic environments. We address key challenges such
as varying lighting conditions, occlusions, and differences in facial expressions. Additionally, we
evaluate the model's performance against existing facial recognition benchmarks to determine
its viability for real-world applications.
Through this research, we contribute to the growing body of knowledge in the field of facial
recognition by demonstrating how state-of-the-art object detection models like YOLOv8 can be
adapted and optimized for identifying human faces with high accuracy and efficiency. This paper
presents a comprehensive overview of our methodology, experimental results, and potential
future directions for enhancing the model's capabilities.



Literature Review

The literature found for face detection provides a variety of different ideas for the performance,
optimization and more accurate predictions, making the model both fast and accurate.
Firstly to improve the dataset, the quality of the images it is suggested to use a median filter in
order to reduce noise in an image and use histogram for the contrast balacement of different
images.
Viola P and Jones M rectangular suggested a feature detection method which is widely used for
its efficiency and effectiveness. According to them there are three kinds of rectangle features;

● Two rectangle features is the difference between the sums of the pixels within two
rectangular regions.

● A three rectangle feature computes the sum within two outside rectangles subtracted
from the sum in a center rectangle.

● Four rectangles compute the difference between diagonal pairs of rectangles.

A simple edge detection can be used to differentiate the background d from the face and then
the background can be removed forming a smaller image and processing time.

Using a face feature picking algorithm then using that to identify the mood of the person can
also be performed.

This research is also based on Viola and Jones framework. They propose to extend the
framework by training different cascades individually for each view and then use them as a
whole like figure. They propose the following structure for better performance.

WFS Tree-Structure Detector

Pyramid structure adopts coarse-to-fine strategy to handle pose variance



And following algorithm is used



Methodology

The Data:

The pictures were obtained from a wide variety of tours and classes with different lighting
conditions, backgrounds and locations. The total number was summed up to be about 214.

Rotating:

These images where rotating to 3 angles for a larger dataset and variety of pictures, using
following python code,

from PIL import Image

import os

def rotate_and_save(img, save_path_prefix):

for angle in [0, 90, 180, 270]:

rotated_img = img.rotate(angle, expand=True)

save_path = f"{save_path_prefix}_rotated_{angle}_Image.png"

rotated_img.save(save_path)

save_directory = ''

images_directory = ''

def open_images_in_directory(directory):

files = os.listdir(directory)

image_files = [file for file in files if

file.lower().endswith(('.jpg', 'jpeg', '.png'))]

for image_file in image_files:

image_path = os.path.join(directory, image_file)

save_path = os.path.join(save_directory,

os.path.splitext(image_file)[0])

img = Image.open(image_path)

rotate_and_save(img, save_path)

open_images_in_directory(images_directory)



Removing Duplicates:

import os

from PIL import Image

import imagehash

def find_duplicates(directory):

hashes = {}

duplicates = []

for root, dirs, files in os.walk(directory):

for file in files:

if file.endswith(".jpg") or file.endswith(".png"):

file_path = os.path.join(root, file)

with open(file_path, 'rb') as f:

try:

image = Image.open(f)

hash_value = str(imagehash.average_hash(image))

if hash_value in hashes:

duplicates.append(file_path)

else:

hashes[hash_value] = file_path

except Exception as e:

print(f"Error processing {file_path}: {e}")

return duplicates

def delete_duplicates(duplicates):

for duplicate in duplicates:

os.remove(duplicate)

print(f"{duplicate} Deleted")

if __name__ == '__main__':

directory = ''

duplicates = find_duplicates(directory)

if duplicates:

delete_duplicates(duplicates)

else:

print("No Duplicates")



File Conversion:

The pictures shot from an iphone are transferred with the extension of heic while other pictures
include jpg and jpeg so to uniform the extension they are al converted into png.

from PIL import Image

import os

from pillow_heif import register_heif_opener

def convert_heic_to_png(heic_path, png_path):

register_heif_opener()

try:

with Image.open(heic_path) as heic_img:

heic_img.convert('RGB').save(png_path, formate='PNG')

except Exception as e:

print(e)

heic_directory = ""

png_directory = ""

img_path = ""

for file in os.listdir(img_path):

if file.endswith('.HEIC') or file.endswith(('.heic', 'jpg', 'jpeg')):

heic_path = os.path.join(heic_directory, file)

png_path = os.path.join(png_directory, os.path.splitext(file)[0] +

".png")

convert_heic_to_png(heic_path, png_path)



Numbering

All the images are numbered for the ease of png file aligning with txt files.
import os

import glob

def rename_img_files(directory):

os.chdir(directory)

png_files = glob.glob('*.png')

png_files.sort()

for index, filename in enumerate(png_files):

new_name = f"{index + 1}.png"

os.rename(filename, new_name)

print(f"Renamed {filename} to {new_name}")

img_directory_path = ''

rename_img_files(img_directory_path)

Dependencies:

Following dependencies are required when training the yolo model

● Pip
● Python
● Conda (env management)
● ultralytics



Training:

Yolov8 can be directly trained from the command line by passing following parameters

yolo task=detect mode=train model=yolov8m.pt data=data_custom.yaml epoch=100 imgsz=640

Or you can right the following python code

from ultralytics import YOLO

mode = YOLO("yolov8m.pt")

results = mode.train(data="/kaggle/input/yaml-file-for-yolo-training/data_custom.yaml",
epochs=100, imgsz=640)

Yolov8m is the name of pretrained model, where m stands for medium and other types include
yolov8n and yolov8s

Yaml file is used, with the following structure:

train: <path_of_train_folder>

val: <path_of_val_folder>

nc: <number_of_classes>

names: [

“Array of classes”

]

In my case it looked as as shown below



train: /kaggle/input/850-label-png-yolo-22-classesfacesdetection/train

val: /kaggle/input/val-data-for-yolo-4-png-with-labels/val

nc: 27

names: [

"Muhammad Abdullah",

"Raheeb Gill",

"Hasham Asad",

"Muaz Asim",

"Hamza Khalid",

"Bilal Munir",

"Ali Ahmed",

"Mustafa Raja",

"Bilal Ch",

"Hasham Mukhtar",

"Abdullah Arshad",

"Ghulam Mujtaba",

"Zaid Atif",

"Sahar Arif",

"Anmol Nisar",

"Sahil Kumar",

"Umar Niazi",

"Jannat Sameer",

"Faizan Rasul",

"Bakhtawar Asad",

"Rumaiha",

"Rizwan Ghuri",

"Rizwan Ghuriw",

"G",

"Mustafa RajaW",

"Hasham AsadW",

"Hamza KhalidW"

]



Performance:

Start

Loads all the images.

Starts with the cls loss of 3.517 box loss of 1.646 and dfl loss 1.32

On 27 epochs trained the loss drops to 0.509 for cls, 0.9817 for box and 1.009 for dfl



Half way through the cls loss is 0.4144, box loss is 0.8432 and dfl loss 0.9637



At the last run the losses are as fallows box 0.5968 , cls 0.2572 an dfl 0.8815

The model was fully trained with up to 94% accuracy.



After the training the folder contains following files

data_custom.yaml
runs
train
val
yolov8m.pt

Weights contains the best.pt model which act as a custom trained model and can use to predict
faces on the given img.

Prediction:

yolo task=detect mode=predict model=path_to_best.pt show=True conf=0.5 source=filepath.png

Or write a python script passing the same parameters.

The predicted image will be stored inside run/detect/predict
Some of the examples are



One with a little less people



And 1 in a class setting and inverted

References:

● https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_F
ast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Sim
ple-and-Fast-Face-Detection-System-Based-on-Edges.pdf

● Awais-Jumani/publication/Face_Detection_and_Recognition_System_for_Enhancing_Se
curity_Measures_Using_Artificial_Intelligence_System

● ieeexplore.ieee.org/stamp/stamp.jsp
● Ibrahim-Ali-Mohammed/An-Exploratory-Study-Into-The-Face-Detection-And-Recognition

-System-To-Strengthen-Security-Precautions-Using-An-Artificial-Intelligence-System
● https://rogerioferis.com/ClassMarch10/HomeworkVectorBoosting

https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_Fast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Simple-and-Fast-Face-Detection-System-Based-on-Edges.pdf
https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_Fast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Simple-and-Fast-Face-Detection-System-Based-on-Edges.pdf
https://www.researchgate.net/profile/Anila-Satish/publication/225292501_Simple_and_Fast_Face_Detection_System_Based_on_Edges/links/09e414fd75a23d2c1b000000/Simple-and-Fast-Face-Detection-System-Based-on-Edges.pdf
https://www.researchgate.net/profile/Awais-Jumani/publication/340183601_Face_Detection_and_Recognition_System_for_Enhancing_Security_Measures_Using_Artificial_Intelligence_System/links/5e7cc982a6fdcc139c089bc4/Face-Detection-and-Recognition-System-for-Enhancing-Security-Measures-Using-Artificial-Intelligence-System.pdf
https://www.researchgate.net/profile/Awais-Jumani/publication/340183601_Face_Detection_and_Recognition_System_for_Enhancing_Security_Measures_Using_Artificial_Intelligence_System/links/5e7cc982a6fdcc139c089bc4/Face-Detection-and-Recognition-System-for-Enhancing-Security-Measures-Using-Artificial-Intelligence-System.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044848
https://www.researchgate.net/profile/Ibrahim-Ali-Mohammed-3/publication/377153749_An_Exploratory_Study_Into_The_Face_Detection_And_Recognition_System_To_Strengthen_Security_Precautions_Using_An_Artificial_Intelligence_System/links/659751882468df72d3fad095/An-Exploratory-Study-Into-The-Face-Detection-And-Recognition-System-To-Strengthen-Security-Precautions-Using-An-Artificial-Intelligence-System.pdf
https://www.researchgate.net/profile/Ibrahim-Ali-Mohammed-3/publication/377153749_An_Exploratory_Study_Into_The_Face_Detection_And_Recognition_System_To_Strengthen_Security_Precautions_Using_An_Artificial_Intelligence_System/links/659751882468df72d3fad095/An-Exploratory-Study-Into-The-Face-Detection-And-Recognition-System-To-Strengthen-Security-Precautions-Using-An-Artificial-Intelligence-System.pdf
https://rogerioferis.com/ClassMarch10/HomeworkVectorBoosting.pdf



