Skip to content
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition
Python Shell
Branch: master
Clone or download
Pull request Compare This branch is 3 commits ahead, 11 commits behind Canjie-Luo:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
demo Add files via upload Jan 9, 2019
models fix bugs Jan 18, 2019
tools fix a bug in Python 3 Jan 20, 2019
.gitignore Initial commit Jan 9, 2019
.travis.yml Update .travis.yml Jan 18, 2019
LICENSE Initial commit Jan 9, 2019
README.md Update README.md Jan 31, 2019
demo.py add CUDA option Jan 18, 2019
main.py Update main.py Jan 24, 2019
requirements.txt Update requirements.txt Jan 18, 2019
test.py add CUDA option Jan 18, 2019
train_MORAN.sh Add files via upload Jan 9, 2019

README.md

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

Python 2.7 Python 3.6
Build Status Build Status

MORAN is a network with rectification mechanism for general scene text recognition. The paper (accepted to appear in Pattern Recognition, 2019) in arXiv, final version is available now.

Here is a brief introduction in Chinese.

Recent Update

Thanks for the great help from @Christian Clauss!

Improvements of MORAN v2:

  • More stable rectification network for one-stage training
  • Replace VGG backbone by ResNet
  • Use bidirectional decoder (a trick borrowed from ASTER)
Version IIIT5K SVT IC03 IC13 SVT-P CUTE80 IC15 (1811) IC15 (2077)
MORAN v1 (curriculum training)* 91.2 88.3 95.0 92.4 76.1 77.4 74.7 68.8
MORAN v2 (one-stage training) 93.4 88.3 94.2 93.2 79.7 81.9 77.8 73.9

*The results of v1 were reported in our paper. If this project is helpful for your research, please cite our Pattern Recognition paper.

Requirements

(Welcome to develop MORAN together.)

We recommend you to use Anaconda to manage your libraries.

Or use pip to install the libraries. (Maybe the torch is different from the anaconda version. Please check carefully and fix the warnings in training stage if necessary.)

    pip install -r requirements.txt

Data Preparation

Please convert your own dataset to LMDB format by using the tool (run in Python 2.7) provided by @Baoguang Shi.

You can also download the training (NIPS 2014, CVPR 2016) and testing datasets prepared by us.

The raw pictures of testing datasets can be found here.

Training and Testing

Modify the path to dataset folder in train_MORAN.sh:

	--train_nips path_to_dataset \
	--train_cvpr path_to_dataset \
	--valroot path_to_dataset \

And start training: (manually decrease the learning rate for your task)

	sh train_MORAN.sh
  • The training process should take less than 20s for 100 iterations on a 1080Ti.

Demo

Download the model parameter file demo.pth.

Put it into root folder. Then, execute the demo.py for more visualizations.

	python demo.py

Citation

@article{cluo2019moran,
  author    = {Canjie Luo and Lianwen Jin and Zenghui Sun},
  title     = {MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition},
  journal   = {Pattern Recognition}, 
  volume    = {90}, 
  pages     = {109--118},
  year      = {2019},
  publisher = {Elsevier}
}

Acknowledgment

The repo is developed based on @Jieru Mei's crnn.pytorch and @marvis' ocr_attention. Thanks for your contribution.

Attention

The project is only free for academic research purposes.

You can’t perform that action at this time.