Skip to content

AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition (ICRA 2021)

Notifications You must be signed in to change notification settings

HCPLab-SYSU/AUE-CRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition

Implementation of paper:

Pipeline

Environment

Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3

Usage

# Step 1: Train the branch of facial expression recognition
python main.py --Model ResNet-101 --Experiment EM
# Step 2: Train the branch of facial AU recognition
python main.py --Model ResNet-101 --Experiment AU --Resume_Model <yourCheckpointPath>
# Step 3: Train whole model
python main.py --Model ResNet-101 --Experiment Fuse --Resume_Model <yourCheckpointPath>

Note: At step 2 and 3, you should load the checkpoint from the previous step.

Result

Result on RAF-DB

Methods Angry Disgust Fear Happy Neutral Sad Surprised Ave. acc
DCNN-DA 78.4 64.4 62.2 91.1 80.6 81.2 84.5 77.5
WSLGRN 75.3 56.9 63.5 93.8 85.4 83.5 85.4 77.7
CP 80.0 61.0 61.0 93.0 89.0 86.0 86.0 79.4
CompactDLM 74.5 67.6 46.9 82.3 59.1 58.0 84.6 67.6
FSN 72.8 46.9 56.8 90.5 76.9 81.6 81.8 72.5
DLP-CNN 71.6 52.2 62.2 92.8 80.3 80.1 81.2 74.2
MRE-CNN 84.0 57.5 60.8 88.8 80.2 79.9 86.0 76.7
Ours 80.5 67.6 68.9 94.1 85.8 83.6 86.4 81.0

Result on SFEW2.0

Methods Angry Disgust Fear Happy Neutral Sad Surprised Ave. acc
CP 66.0 0.0 14.0 90.0 86.0 66.0 29.0 50.1
DLP-CNN - - - - - - - 51.1
IA-CNN 70.7 0.0 8.9 70.4 60.3 58.8 28.9 42.6
IL 61.0 0.0 6.4 89.0 66.2 48.0 33.3 43.4
Ours 75.3 17.4 25.5 86.3 72.1 50.7 42.1 52.8

Citation

@inproceedings{Pu2021AUE-CRL,
  author={Pu, Tao and Chen, Tianshui and Xie, Yuan and Wu, Hefeng and Lin, Liang},
  title={Au-expression knowledge constrained representation learning for facial expression recognition},
  booktitle={2021 IEEE international conference on robotics and automation (ICRA)},
  year={2021},
  pages={11154--11161},
  publisher={IEEE},
  doi={10.1109/ICRA48506.2021.9561252}
}

Contributors

For any questions, feel free to open an issue or contact us:

About

AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition (ICRA 2021)

Topics

Resources

Stars

Watchers

Forks

Languages