AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition
- AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition
IEEE International Conference on Robotics and Automation (ICRA), 2021.
Tao Pu, Tianshui Chen, Yuan Xie, Hefeng Wu, and Liang Lin.
Environment
Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3
Usage
# Step 1: Train the branch of facial expression recognition
python main.py --Model ResNet-101 --Experiment EM
# Step 2: Train the branch of facial AU recognition
python main.py --Model ResNet-101 --Experiment AU --Resume_Model <yourCheckpointPath>
# Step 3: Train whole model
python main.py --Model ResNet-101 --Experiment Fuse --Resume_Model <yourCheckpointPath>
Note: At step 2 and 3, you should load the checkpoint from the previous step.
Result
Result on RAF-DB
Methods | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprised | Ave. acc |
---|---|---|---|---|---|---|---|---|
DCNN-DA | 78.4 | 64.4 | 62.2 | 91.1 | 80.6 | 81.2 | 84.5 | 77.5 |
WSLGRN | 75.3 | 56.9 | 63.5 | 93.8 | 85.4 | 83.5 | 85.4 | 77.7 |
CP | 80.0 | 61.0 | 61.0 | 93.0 | 89.0 | 86.0 | 86.0 | 79.4 |
CompactDLM | 74.5 | 67.6 | 46.9 | 82.3 | 59.1 | 58.0 | 84.6 | 67.6 |
FSN | 72.8 | 46.9 | 56.8 | 90.5 | 76.9 | 81.6 | 81.8 | 72.5 |
DLP-CNN | 71.6 | 52.2 | 62.2 | 92.8 | 80.3 | 80.1 | 81.2 | 74.2 |
MRE-CNN | 84.0 | 57.5 | 60.8 | 88.8 | 80.2 | 79.9 | 86.0 | 76.7 |
Ours | 80.5 | 67.6 | 68.9 | 94.1 | 85.8 | 83.6 | 86.4 | 81.0 |
Result on SFEW2.0
Methods | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprised | Ave. acc |
---|---|---|---|---|---|---|---|---|
CP | 66.0 | 0.0 | 14.0 | 90.0 | 86.0 | 66.0 | 29.0 | 50.1 |
DLP-CNN | - | - | - | - | - | - | - | 51.1 |
IA-CNN | 70.7 | 0.0 | 8.9 | 70.4 | 60.3 | 58.8 | 28.9 | 42.6 |
IL | 61.0 | 0.0 | 6.4 | 89.0 | 66.2 | 48.0 | 33.3 | 43.4 |
Ours | 75.3 | 17.4 | 25.5 | 86.3 | 72.1 | 50.7 | 42.1 | 52.8 |
Citation
@article{pu2020auexpression,
title={AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition},
author={Tao Pu and Tianshui Chen and Yuan Xie and Hefeng Wu and Liang Lin},
journal={ICRA},
year={2021}
}
Contributors
For any questions, feel free to open an issue or contact us: