JClustering developer manual

José Maria Mateos
jmmateos@mce.hggm.es

May 29, 2014

Contents
1 Introduction 1
2 General class architecture 2
3 Implementing a ClusteringTechnique 3

3.1 Returning additional information 6
4 Implementing a ClusteringMetric 7
5 Automatic class detection 8
6 Behavior of the Cluster object 8
7 Reference 9
1 Introduction

This document explains how to develop new clustering algorithms using the jClus-
tering APL. If you just want to use this software, please refer to the user manual
(https://github.com/HGGM-LIM/jclustering/blob/master/doc/
user_manual .pdf?raw=true).

This guide expects the developer to be familiar with the ImageJ class structure, as
the basic concepts will not be explained here. For more details regarding plugin
development under Imagel, please refer to http://imagingbook.files.
wordpress.com/2013/06/tutoriall7l.pdf.

https://github.com/HGGM-LIM/jclustering/blob/master/doc/user_manual.pdf?raw=true
https://github.com/HGGM-LIM/jclustering/blob/master/doc/user_manual.pdf?raw=true
http://imagingbook.files.wordpress.com/2013/06/tutorial171.pdf
http://imagingbook.files.wordpress.com/2013/06/tutorial171.pdf

Starting from version 1.2.4, the latest API documentation is attached to each re-
lease. Please download that copy of the API as it is the most useful resource for
developers, apart from this guide.

jClustering is offered as a Maven project from its main github page. It automati-
cally downloads all the dependencies (except the fastICA library, which will need
to be downloaded from its main page — check the user manual) and creates a . jar
file.

2 General class architecture

The following image (figure 1) is a reproduction of the one used in the PLOS ONE
paper describing this tool (see section 7).

ImagePlusH
g P Cluster Cluster
ImageStack Each Cluster stores
TACs with similar
Imagel reads all the temporal behaviour,
image data into an as defined by the
ImageStack object. ClusteringTechnique.
| J
Encapsulates the ImageStack
for easier data access ClusteringTechnique
ClusteringMetric
ImagePlusHypIterator Computes a distance between
. two given TACs. A
Returns all the image TACs ClusteringTechnigue may
sequentially. optionally re-use these objects.
Analyzes the image TACs and assigns
them to Cluster objects.

Figure 1: jClustering class structure and relationships.

We can sum up briefly what the presented class structures wants to achieve. As
this tool is intended to be used in dynamic images (2D + time or 3D + time), the

ImagePlus object will contain a ImageStack will all the slices and temporal
information (ImageJ uses a 3D matrix to store 4D images). As there are no im-
mediate methods to retrieve the time-activity curve (TAC) for a given voxel (that
is, the array of different gray scale intensities of that voxel through the time axis),
the ITmagePlusHyp object encapsulates the original ImagePlus and adds a
getTAC (int x, int y, int slice) method that allows to access that
data very easily. However, the direct use of get Tac is strongly discouraged. In-
stead, this object implements the Tt erable interface using the ImagePlusHyplterator
class and returns, one by one, all the voxels in the image using objects of the class
Voxel, which includes the original voxel coordinates and the TAC as publicly
accessible class fields.

This iterator will check whether a given voxel has been masked (the value is 0.0
through all the frames) and will not return it, diminishing the complexity of the
clustering problem to solve!. In any case, you are free to use the get TAC (int
x, 1int y, int slice) method at your own risk.

If you want to implement a new clustering technique using jClustering, it is very
likely you only need to extend the ClusteringTechnique abstract class. This
class provides the necessary methods for the clustering operation as well as refer-
ences to the objects that will be used to represent the different clusters (via an array
of Cluster objects). If you want instead to implement a function that computes
the distance between two given TACs and that can be reused between different
ClusteringTechnique objects, extend the ClusteringMetric class in-
stead.

3 Implementing a ClusteringTechnique

The ClusteringTechnique abstract class contains internal references to the
following objects:

e An ImagePlusHyp named ip. This is the main object you are going to
read data from (typically via the provided ImagePlusHypIlterator).

e A ClusteringMetric named metric. Depending on the type of al-
gorithm that you are implementing, you might not need to worry about this

!Utilities for masking dynamic studies have been published as part of the LIM tools ImageJ plugin
available at https://github.com/HGGM-LIM/limtools. The particulars of this process
are outside the scope of this document.

https://github.com/HGGM-LIM/limtools

reference. Currently, the only implementation that uses different distances is
k-means.

e A JPanel named jp. If you need to implement some configuration options,
this is the object that you need to use to add different GUI elements.

e An ArrayList<Cluster> named clusters. This object has already
been initialized for you and you only need to add new Cluster objects to
it.

There is only one method that you must implement in your algorithm: process ().
This method must fill in the clusters object according to your local algorithm.
Also, your class must belong to the jclustering.techniques package in
order to be found by the automatic class detection algorithm (see section 5 for
more information on this).

Check the code example shown on listing 1. It provides a very simple algorithm
consisting on grouping together those voxels with TACs that peak at the same
time.

Listing 1: Your first ClusteringTechnique.

package jclustering.techniques;

import jclustering.Voxel;
import static jclustering.MathUtils.getMaxIndex;

public class SampleTechnique extends ClusteringTechnique {

@Override
public void process () {
for (Voxel v : ip) |
// Find the maximum index
// +1, min cluster = 1.
int n = getMaxIndex(v.tac) + 1;
// Add this voxel to its cluster
addTACtoCluster (v, n);

This code uses the getMaxIndex (double [] tac) methodfromthe jclustering.MathUtils

class, which provides misc mathematical utilities. This method returns the index of
the tac array that contains the maximum value. With this value (plus 1, as there

is no cluster 0), we can call the method addTACtoCluster (Voxel v, int

n), that automatically takes care of the rest of the cluster addition process.

In case we want to add a selector in order to use some of the existing metrics (which
we can then access through the met ric object), we only need a little extra bit of
code (check Listing 2) as there is an addMetricsToJPanel (JPanel Jp)
method that takes care of most of the operation. Other GUI components must be
fully implemented to work (though there are several static helper methods in the

GUIUt1ils class.

Listing 2: A ClusteringTechnique that includes a ClusteringMetric

selector.

package jclustering.techniques;

import java.awt.event.ItemEvent;

import javax.swing.JPanel;

import jclustering.Voxel;

import static jclustering.MathUtils.getMaxIndex;

public class SampleTechnique extends ClusteringTechnique {

@Override
public void process () {
for (Voxel v : ip) {
// Find the maximum index
// +1, min_cluster = 1.
int n = getMaxIndex(v.tac) + 1;
// Add this voxel to its cluster
addTACtoCluster (v, n);

@Override

protected JPanel makeConfig() {
JPanel Jp = new JPanel ();
addMetricsToJdPanel (Jjp);
return jp;

QOverride
public void itemStateChanged (ItemEvent arg0) {
super.itemStateChanged(arg0) ;

3.1 Returning additional information

After the clusters object has been correctly filled, jClustering takes care of
everything else and saves the results to a file and shows the resulting clusters on
screen (please refer to the user manual for more information on this). However,
this approach might not be enough for all the information that we want to provide
after our algorithm finishes.

Consider the PCA ClusteringTechnique implementation (https://github.
com/HGGM-LIM/ jclustering/blob/master/src/main/java/jclustering/
techniques/PCA. java). This technique shows an additional image on screen;

it uses the very specific RealMatrix2IJ (RealMatrix rm, int [] dim,
ImagePlusHyp ip, boolean skip._noisy, String name) method, but

any ImagePlus object can be created and shown on screen at any point during

the process () implementation.

However, it also stores in a file additional information (in this case, the values
of the principal components found). Internally, the ClusteringTechnique
class also contains the object String [] additionalInfo, which defaults
to a null reference. If this algorithm needs to save on file some extra numerical
values, this is the string that needs to be used. Consider the following code sample
from the PCA . java file (code listing):

Listing 3: Code sample that allows to save extra information

// Fill in the additionalInfo array.
additionalInfo = new String[2];
additionalInfo[0] = "pca_vectors";
StringBuilder sb = new StringBuilder();
int rows = svdv.getRowDimension();
for (int i1 = 0; 1 < rows; i++) {
double [] row = svdv.getRow (1i);
sb.append (Arrays.toString (row)) ;
sb.append ("\n") ;
}
// Remove brackets
String temp = sb.toString(
Al

7
temp = temp.replace("[", "");
temp = temp.replace("1", "");
additionalInfo[l] = temp;

This string array is expected to be of even length. The 7 positions contain the initial
name of the file (it will be completed using a timestamp and the . txt extension)

https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/techniques/PCA.java
https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/techniques/PCA.java
https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/techniques/PCA.java

and the 7 + 1 contain the actual information that will be saved to that file.

4 Implementing a ClusteringMetric

A ClusteringMetric is used inside a ClusteringTechnique that calls
internally the methods of its metric object. It is a very simple object used to
compute the distance between two given TACs while at the same time allow for fu-
ture code reusing. Currently, the k-means and the leader-follower implementations
allow to use different metrics.

The only method that must be implemented is double distance (double
[] a, double [] b), which returns the distance between TACs a and b.
There is a void init () method that can be used as a constructor to initialize
the objects that will be used in each distance call.

As a sample, let’s take a look at the correlation implementation (https://github.
com/HGGM-LIM/ jclustering/blob/master/src/main/java/jclustering/
metrics/Correlation. java) in code listings 4.

Listing 4: Correlation metric.

package jclustering.metrics;

import java.util.Arrays;

import org.apache.commons.math3.stat.
correlation.PearsonsCorrelation;

public class Correlation extends ClusteringMetric {
private PearsonsCorrelation pc;
@Override

public double distance (double[] centroid, double[] data)
{

double corr;

if (Arrays.equals(centroid, data)) {
// Same contents, do not compute the correlation
corr = 0.0;
} else ({
// Turn a correlation score into a distance
corr = 1.0 - pc.correlation(centroid, data);

https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/metrics/Correlation.java
https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/metrics/Correlation.java
https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/metrics/Correlation.java

if (!Double.isNaN(corr)) return corr;
else return Double.MAX_ VALUE;

}

@Override
public void init () {
pc = new PearsonsCorrelation();

}

As you can see, this implementation uses the init () method to initialize the
PearsonsCorrelation object that is used in the calls to distance. This
method is called just once when the ClusteringMetric is initialized inside
the ClusteringTechnique.

5 Automatic class detection

Techniques and metrics are added automatically to their respective selectors thanks

to class autodetection methods (getClusteringTechnique and getClusteringMetric
inUtils. java(https://github.com/HGGM-LIM/ jclustering/blob/
master/src/main/java/jclustering/Utils. java)). This allows new

developers to implement directly their own classes and they will be available from

the main window the next time jClustering is run.

6 Behavior of the Cluster object

The Cluster object behaves in two different ways depending on how it is initial-
ized. This reflects the two different ways it may work during an iterative clustering
process:

1. The centroid for the cluster may be fixed at creation time and does not change
when a new voxel is added.

2. The centroid for the cluster is modified with each voxel addition.

https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/Utils.java
https://github.com/HGGM-LIM/jclustering/blob/master/src/main/java/jclustering/Utils.java

The first behavior is characteristic of k-means, for instance, while the second one
belongs to other approaches such as leader-follower. In order to avoid implement-
ing two different Cluster objects, it was decided that the constructor would de-
fine how this object behaves.

1. If the constructor is called with a double [] parameter that represents the
centroid TAC, it will be fixed.

2. If the constructor is called with no parameters or with a Voxel object, the
centroid will be modified with each addition, computing the new mean TAC.

7 Reference

Mateos-Pérez JM, Garcia-Villalba C, Pascau J, Desco M, Vaquero JJ (2013) jClus-
tering, an Open Framework for the Development of 4D Clustering Algorithms.
PLoS ONE 8(8): €70797. doi:10.1371/journal.pone.0070797. Available at http:
//www.plosone.org/article/info%3Adoi%2F10.1371%2F journal.
pone.0070797.

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0070797
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0070797
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0070797

	Introduction
	General class architecture
	Implementing a ClusteringTechnique
	Returning additional information

	Implementing a ClusteringMetric
	Automatic class detection
	Behavior of the Cluster object
	Reference

