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Abstract:
This review is devotedto thediscussionof the parallelexisting betweenfour-dimensionalgaugetheoriesand two-dimensionalsigma models.

We usesigma modelsasa laboratoryallowing us to investigatesuchissuesastheoperatorproductexpansionbeyondperturbationtheory,vacuum
condensates,low-energytheoremsandothernon-perturbativeaspects.All thesequestionsareintensively discussedin thecurrent literature,andwe
give a critical analysisof thesituation. In particular, it is explainedthat, contraryto recentclaims, one can definetheoperatorproduct expansion
beyondperturbationtheory in aperfectlyconsistentway, with no ambiguities.

The secondpartof thereview representsa detaileddiscussionof thesupersymmetric0(3) sigma model. After asimple descriptionof themodel
we concentrateon instantons.The instanton-basedmethod for calculating the exact Gell-Mann—Low function and bifermionic condensatesis
described.An analogueof this methodhasbeenpreviouslyusedby us in four-dimensionalYang—Mills theories.Herewe try to elucidateall aspects
of the method in simplified conditions. The basic points are: (i) the instantonmeasurefrom purely classicalanalysis; (ii) a non-renormalization
theorem in self-dualexternalfields; (iü) existenceof vacuumcondensatesandtheir compatibility with supersymmetry.

Pursuingpedagogicalpurposeswe use muchspacefor technicaldetailsandcomputations.
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1. Introduction

Most concentratedefforts are now invested in non-Abelian Yang—Mills theories. The dynamics
inherent to thesetheoriesis rich andunusual.Suffice it to mentionsuch phenomenaas confinementof
colour, dimensionaltransmutation,spontaneousbreaking of chiral symmetry,etc. Unfortunately, in
spite of considerableprogress,we are still far from a completeunderstandingof thesephenomena.It
has becomeclear that they are somehowrelated to a complicatedvacuumstructure.However, the
investigationof this vacuumstructureturned out to be a notoriouslydifficult task.

To get a new insight into the problemtheoristsoften simplify the original theory.For instance,they
neglectfermions,or considerthe largeN limit, or even—quitea radical step—substitutethe original
Yang—Mills theory by some simple model which only partly imitates the characteristicfeaturesof
non-Abeliandynamics.This, of course,shifts the emphasisaway from reality, but, simultaneously,gives
more freedom for theoretical manoeuvreand reveals new aspectsof the theory such as hidden
parametersand symmetries.Moreover, such toy models serve sometimes as perfect theoretical
laboratoriesto test methodsand approachesdevelopedfor solving actual problemsin actual physics.

As noted first by Polyakov [1], there exists a deeply rooted analogybetween four-dimensional
Yang—Mills theoriesand two-dimensionalsigmamodels.Indeed,sigma models,first proposed25 years
ago [2], servedto implement the idea of spontaneouschiral symmetry breakingin times precedingthe
discoveryof QCD. Two yearsafter the discoveryof asymptoticfreedomin QCD it was shown [1] that
the coupling constantof 0(N) sigmamodelsin two dimensions,falls off at short distancesas well. As
for non-trivial topological solutionsof classicalfield equationsin QCD and in the 0(3) sigma model,
they were obtainedsimultaneously[3,4]. Moreover, instantonsin the SU(N) generalizationsof the
sigmamodel(the so called CP(N-1)models)werefound for all N [5]. In thelarge N limit both theories,
0(N) and CP(N — 1), were exactly solved [1,6,7]. As a result it becamepossibleto understandin the
languageof two-dimensionalmodels,the role of instantonsin the formationof the physicalspectrum,to
formulatethe U(1) problem, to obtain a masslessvectorgaugefield as a boundstateof original fields,
andso on [7].

Motivatedby theseobservationswe will discussheresomenon-perturbativeeffects in the framework
of sigmamodels.Morespecifically,we concentrateon problemsof currentinterestin QCD, suchas the
status of the Wilson operatorexpansion (OPE) outside perturbation theory, vacuum condensates,
low-energy theorems,instantons.In manycasesinterest in the correspondingproblemsin QCD stems
from the so-calledQCD sum rules [8]. It might be worth emphasizingfrom the very beginningthat the
paperadds very little, if at all, to the understandingof thedynamicsof two-dimensionalmodels.Instead
we will use sigma modelsas a safe theoreticalframework to analyseunder simplified conditionssome
problemsof practicalimportance— anddispute— in QCD.

This reviewis organizedas follows. We start in section2 with a review of the basic featuresof 0(N)
sigma modelsthat setsup the framework for all subsequentconsiderationsand, hopefully, makesthe
paperself-contained.

In section3 we proceedto the discussionof the Wilson operatorexpansion(OPE) [9]. We touch
upon severalinterrelatedbut not identicalaspectsof the problem:the mathematicalformulation of the
OPE, its physical meaning, and, finally, non-perturbativevacuum expectationsof local operators.
Among other things, we emphasizethat consistentOPE necessarilycalls for the introduction of an
auxiliary parameter,the normalizationpoint ~ of the operatorsconsidered.Once this is done,both the
coefficient functionsandthe vacuumcondensatesareunambiguouslydefined.Our overall conclusionis
that the OPEis well definedoutsideperturbationtheory.Moreover, sigmamodelswith largeN beara
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close resemblanceto QCD as far as numericalsare concerned.Namely, the ~ dependenceof vacuum
condensatesis weak (undera reasonablechoice of ~) and can be neglectednumerically to a valid
approximation.It might be worth noting that the statusof OPEhasbeenrecently the subjectof some
discussionandcontroversy[10—13].We presentan analysisof the problemsas raisedin refs. [11,12] and
try to explain how the puzzlesmentionedthereare resolved.

The nextsectionis devotedto the issueof anomalyin the traceof the energy-momentumtensor.By
using the exact solution of the 0(N) model in the large N limit we demonstratethat the anomaly
determinesthe massesof physical particles. A similar relationhas beenassertedto hold within QCD
[14].

In section5.1 we discusslow-energy theoremswhich relatelow-energyscatteringamplitudesto the
non-perturbativevacuumexpectationvalues of someoperators.We demonstratethat the theoremsdo
reproducethe exactanswerknownin thesigmamodelsfor largeN. This is all the moregratifying since,
in QCD,similar theoremsserveas an importantandsometimesuniquesourceof dynamicalinformation
[15].

The samesectiontreatsthe so calledU(1) problem[16]in CP(N — 1) models.In QCD this problemis
a key issue in understandingthe mechanismfor the generationof the ij’ mass,On the technical side,
one studiesthe low-energy behaviourof correlation functions induced by operatorsof topological
chargedensity.We analysea similar correlationfunction in the sigmamodel anddemonstratethat the
generalpicturedevelopedin QCD is confirmed.

Finally, we turn in section6 to the supersymmetric0(3) sigmamodelproposedin refs. [17,18]. The
constructionand basic propertiesof the model are first reviewed. We then makeuse of instanton
calculusto evaluatethe exactGelI-Mann—Lowfunction for this theory.To a greatextentthe derivation
runsparallel to that of ref. [19] where the completebeta function of the supersymmetricYang—Mills
theory has beenfound. However, thereare somenovel pointsas well and,what is moreimportantfor
our presentpurposes,the considerationof two-dimensionalmodelsallows us to elucidatesomepoints
(the pedagogicalaspectis essential).

2. The 0(N) model in the large N limit

In this sectionwe givea brief review of the 0(N) sigmamodelandits generalizations.Thesemodels
havebeenexhaustivelystudiedandtheir solutionsin the large N limit aredescribedfor instancein refs.
[6,7]~’.We do not assume,however, the readerto be familiar with thesepapersandtry to summarize
the obtainedresults.

The 0(N) sigmamodel in (1 + 1) space-timeis atheory of N fields o~(a = 1, . . . N) definedon the
unit sphere:

ffa(x)o.a(x).. 1. (1)

They transformaccordingto the vector representationof the group 0(N). The Lagrangianis chosento
be of the following form

* An excellentintroduction to CP (N — 1) model (N —* c~)is given by Coleman[20].

** If not statedotherwise,all expressionsrefer to Euclideanspace-time.
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= N (0~) (~a(x)) (2)

At first sight this is the theory with no interaction.This is, of course,not so. Onecan easily convince
oneselfthat, upon solving the constraint(1) with respectto oneof the field componentswe arrive at a
non-trivial interaction between the remaining components.Within the framework of perturbation
theory it is describedby verticeswith 4, 6, 8 etc. legs. The quantityfin eq. (2) plays the role of the
coupling constant.The exact solution is, however,not exhaustedby perturbationtheory. Thus, for
N = 3 (andonly for N = 3) the classical field equationsadmit solutionswith finite action— the instantons
[3] (seesection 6). Moreover, non-perturbativeeffects take place for N� 3 as well, i.e. they do not
dependon the existenceof instantons.We shall demonstratethis by consideringthe large N limit
(N-~).

Before plunging into solving the theory in this limit it is convenientto changethe normalizationof
the u field and to accountfor the constraint(1) by virtue of aLagrangemultiplier a(x). The actionSE,
andthe generatingfunctional for the GreenfunctionsZE[J] in Euclideanspace-time,can bewritten as

SE[O-, a] = d~x{c9 ü.a(X) ô.a(x)_~2 (~~.a~a(X)_.Ni)} (3)

and

ZE[J] = J fJ Du(x) Da(x) exp{-SE+ Jd2xja (x) ~a (x)}. (4)

The N112 factor in front of a(x) is chosenfor convenience.The action (3) is bilinear in a-(x), and,
therefore,the functional integral overu is readily calculable:

ZE[J] = J H Da(x)exP{-Seff+~jd2xfa(x)[2 a(x)/’s~/~,T~]~}’

(5)
N a(x)

5e~= __Trln[_ô2+~.~]— f d~x—~—a(x).

Here 1~_~92+a(x)/V~J)is a symbolic notation for the Green function of the operator [_~2+

a(x)/\/N]. The crucial point is that for ZE[J] thereexists a stationarypoint in a(x). As a result, the
remainingfunctional integralcan be readily doneusingthe saddle-pointtechnique.Becauseof Lorentz
invariance,the stationaryvalue of a(x) (if it exists) is actually independentof x. Let us denotethis
constantby \/N m2. Then

a(x) = “SIN m2+ aqu(x).

Deviationsaqu(x) from the stationarypoint (a~= VN m2) describequantumfluctuationsof the a field.
We expand5eff in aqu assumingthe fluctuationsto be small.Then
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Tr ln(—a2+ m2)— J d2x + N (~1)~’~Tn 1 _~~“ — ~ I d2x a
2 2f 2 k=t k L_

82~m2VN~1 2f J

(6)

The first two termsin the expansionare inessentialconstants,andtheywill be omittedfor a while. We
next transformthe term linear in aqu(x):

1 ]det\/Nf 1
= ~J ~

1 12 fd
2p I VNf

2

= 2 (0~— a
2 + m2 0) j d x aqu(x) = 3 (~)2 ~2 + m2~ j d x aqu(x).

The integral over momentawhich emergesherecalls for a regularization.To this end we introducea
cut-off momentumM

0,

~d
2p I 1

1M~
J (2~)2p2+m2~4~ n2.

Moreover, for the procedureto be consistentwith the existenceof the saddle-point,the expansionof
the effective action (6) should contain no term linear in aqu. This is indeedthe caseprovided that m
satisfiesthe relation

11 M~
- = — In —.f

4IT m2

Of course,onecan introducean effectivecoupling constantf(
1a) insteadof the bareonef, and then

I I 1a
2

(7)

Two commentson the meaningof eq. (7) are in order. First, eq. (7) implies that the theory is
asymptoticallyfree. Indeed,for fixed m andM

0—sc1~the barecouplingconstantvanishes,f—*0. Second,
it demonstratesthe so-calleddimensionaltransmutation,which correspondsto theoccurrenceof amass
parameterm whosedependenceon the couplingconstantis non-analytical:

m
2 M~exp(—4irlf).

Let us now turn to the next termsin the expansionin aqu of Sert. The bilinear term

S~= — ~Tr[
82~ m2~] = — d

2x d2yaqu(x)T(x— y)aqu(y)
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describesthe propagationof a “particles”. Their propagator,evidently,reducesto

D~(p)= —2/1(p),

where1(p) is the Fourier transformof 1(x —

f d2q 1 1 1 Vp2+4m2+Vp2
1(p) = A(p) i = — _________ ln ______ —. (8)

~ (2rr)2(q2+ m2)[(p + q)2+ m2] 2ir Vp2(p2+ 4m2) \/p2+ 4m2—Vp2

The function D~(p)has,however,no poles in p2 and only a cut starting at p2 = —4m2therefore,
strictly speaking,the a field doesnot correspondto any real particle.

Knowing the propagatorD~(p)onecan easily calculateZ[J] with the helpof perturbationtheory.
It is convenientto formulatethe result in terms of Feynmandiagrams(fig. 1). The theory describesthe
propagationof N massive particles with Green function Dab(p) = oabI(p2 + m2) (fig. la), the pro-
pagationof the a “particle” with GreenfunctionD~(p)= —2/A(p)(fig. ib) andalsotheir interaction,
characterizedby the vertex Tab = ~(1/VN)~’~ (fig. ic). In the leading N approximationgraphslike
thosedepictedin fig. 2 arealreadyaccountedfor in D~(p).To avoid doublecountingoneshouldthen
not includethem explicitly. The sameis true for graphsof the tadpoletype (fig. 3).

The perturbationtheory constructedaboveessentiallydiffers from that appearingin the original
formulation of the model (1), (2). First and foremost, the former incorporatesexplicitly the leading
non-perturbativeeffect, the generationof a massfor the o- particles(and an increasein their number,
from N — 1 up to N). Second,the structureof the correspondingFeynmandiagramsbecomesmuch
simpler and this is alsoan importantadvantage.Indeed,sincethe a “particle” is asinglet with respect
to the 0(N) group, each termof the 1/N expansionis determinednow by afinite numberof Feynman
graphs.In particular,the leadingterm is fixed by the tree diagramsalone(seeabove).

(a) ~ae

(b) ~——_— ) .-

P ~ A(p)

(c) r°~ 1~a~

Fig. I. Feynman rules in the0(N) sigma model.

---0--- + ---0---o-~f...
Fig. 2. One-particle reducable diagrams which are accounted for in Fig. 3. Tadpoles, not to be included in the Feynman diagrams for ~
the a propagator, and a fields.
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3. Operator expansionand vacuum condensates

In this sectionwe addressourselvesto the central issue of the presentreview, namely, the statusof
the operatorexpansion(OPE) beyondperturbationtheory.

The general idea behind the OPE in asymptotically free field theoriesis as follows. Becauseof
asymptotic freedomsmall size fluctuationsare well under theoreticalcontrol. First, thereare pertur-
bative fluctuationswhose effect is characterizedby a small running coupling constant.Second,there
exist, as a rule, classicalsolutionsandquantumfluctuationsaroundthem.Their effect is exponentialin
the inversecouplingconstant.However, it canbe calculatedexactly, if needed,as longas thesize of the
fluctuationsremainssmall.

Thus,the first stepin constructingOPEis to integrateover the smallsize fluctuationsexplicitly. The
result of the integrationis a kind of effective Lagrangian,or a set of termswith various numbersof
external legs. This is, however,not the final answerfor the physical amplitude.To find it we needto
account as well for large-scalefluctuations. With respectto the large-scalefluctuationsthe effective
Lagrangianobtainedat the first step materializesas a set of operators.The matrix elementsof these
operatorsdependupon largedistancedynamics.For instance,in QCD, theyare generallyspeaking,not
known. On the other hand, in sigma models(at leastin the largeN limit) all relevantmatrix elements
arecalculable(seebelow).

We haveso far introducedone massscale,~t. Namely, we assumethat an explicit integrationover
fluctuationsof sizesp ~ is performed.The massscale~ must be chosenin such a way that the
runningcouplingconstantis smallat this massscale.

If we haveno other massparameter— for instance,if we deal with a vacuum-to-vacuumtransition—

thenthe proceduresketchedaboveis of little practicalvaluesince all infinite seriesof matrix elements
mustbe summedup in order to get the physicalamplitude.

Therefore, one usually considersa case where there is anotherlarge external scale, say, the
momentumtransfer,q ~‘ ~t. Then, the coefficient functionsfor the various operatorsas determinedat
the first stage—throughintegrationover small-sizefluctuations—areinversepowersof (q/~).One can
then cut the seriesoff keepingonly the first few terms.

Clearly enough,the choice of ~ais not unique. As far as the coupling constantis small, ~.ecan be
varied.Whathappensthen?The physicalamplitudesdo not dependon ~ at all. Thus by changing~.t we

just redistributethe contributionsbetweenthe matrix elementsandthe coefficient functions.The matrix
elementsinclude, amongother things, effects of perturbativefluctuationswith size p > j~. Thus,for
practicalpurposesit is desirableto choose~i as small as possible— within the alloweddomain.Thenthe
relative weight of “trivial”, i.e. perturbative contributions, and “non-trivial”, i.e. large-scalenon-
perturbativecontributions,is tilted in favour of the latter.

In the caseof QCD it turns out to be possibleto choose~t in such a way that the vacuummatrix
elementsare grosslydominated[8,21] by non-perturbativefluctuations.For practicalpurposesonecan
keep the ~edependenceonly in log factorsassociatedwith anomalousdimensionsand neglect‘.the
perturbativecontribution to the matrix elements.In otherwords,to a good approximation,the effectof
perturbationtheory is absorbedinto the coefficient functions while the non-perturbativeeffects are
accountedthrough the non-trivial vacuum expectationvalues of various operators.This simplified
procedureconstitutesthe basis of the so-calledQCD sum rule method,which hasbeen successfully
appliedover the past five yearsto the studyof the hadronicspectrum.

This numericalsituationis certainlynot universalandsuitedfor all field theories.For example,there
is no point to discussnon-perturbativeeffectsin QED. Thewholebusinesswith the OPE in this caseis
the redistributionof perturbationtheory betweencoefficient functionsandmatrix elements.
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Despitethe phenomenologicalsuccessof the QCD sum rules, thereexist a few questionswhich call
for further theoretical consideration.For example, non-perturbativeeffects are exponential in the
inverse coupling constant. Is it then consistentto deal with them without summing up the whole
perturbativeseries?

We will studybelowsomeof theseproblemswithin 0(N) sigmamodelsat largeN. The advantageof
thesemodelsis that theycan besolvedexplicitly andonecan confrontexpectationsbasedon OPEwith
the exactanswer.

It is amazingto find out that sigmamodelsdo imitate the basic featuresof QCD. Namely, in the
leading 1/N approximationone can forget about the ~t dependenceof the matrix elements.On the
other hand, to deal with more subtlequestions,arising in next orders in 1/N, one must adhereto the
generalprocedureandintroducethe normalizationpoint ~.

It is worth mentioninghere that OPE in two-dimensional(or simple four-dimensional)modelshas
beenstudiedin recentpapers[10—13].The authorsof severalpublicationshavearrivedat a conclusion
that OPE is invalid or, at least,that there exist seriousdifficulties in the formulation of a consistent
procedure.Although, later on, some of them have changedtheir standpoint,we feel that some
questionswhich havenot yet receivedduetreatmentdo remain.The mostcommonandseriousmistake
is that one forgetsabout the necessityof introducing a normalization point. We share with David
110] his conclusionon the validity andsimplicity of the OPEin the leading1/N order.

3.1. Vacuumcondensatesin the 0(N) sigmamodel in the leading 1/N approximation

In this section we start a systematicdiscussionof problemsrelevantto OPE in the 0(N) sigma
models. In particular, in this section we identify non-perturbativecontributionsto vacuum matrix
elements.

In section 2 it was shown that the a field developsa non-vanishingvacuum expectationvalue.
Namely, to leadingorder

(OIa(x)I0) VNm2= \/NM~exp(—41T/f).

Quantumcorrectionsto thisexpressionaresuppressedas powersof 1/N, andwill be discussedlater on.
Herethe only importantmatteris that in no way theycan destroythe condensate.Condensationof the
a field automaticallyentailsvacuumcondensatesfor other fields. In particular,dueto theequationsof
motion,we have:

a VN
(a~o-)2= —u t92o- = —u u = —a ~,

and, therefore,

(0[f(a~o-)2I0)= —Nm2. (9)

The vacuum expectationvalues of the products[f(ôw~)2]”are also non-vanishingand, in the leading

1/N approximation,theyfactorize[22]
(0I[f(awu)2]’~I0) = [_Nm2]k. (10)
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At first sight eq. (9) seemsstrangesince,in Euclideanspace-time,f(dMo-)2 is a positive-definite operator
while its vacuummatrix elementhappensto be negative.To explain this paradoxit is worth recalling
that the operator(ô~o-)2is actually a singular object and calls for an accuratedefinition. Generally
speaking,regularizationdestroysthe positivity condition. Let us commenton this assertionin more
detail.

To set forth the problem in more contrastingtermswe startfrom a rough calculationwhich reduces
to the following. The productof field aMu(x) a~u(x)is substitutedby the correspondingGreenfunction
takenat coinciding points,i.e.

(0!f(a~u)2~0)= fN J dp (11)

Cutting the integralat the upper limit of integration,P2rnax = fL2 we get

2 f(
12)N 2 2 IL

2 f(ji)N 2 2(OLf(IL) (a~u)L. 0) = (IL - m in = IL - Nm
m 4ir

f~)N2N24~/f (12)

4ir

Correctionsto this relationwhich are associatedwith the exchangeof the a “particle” are proportional
to (1/N) to somepositive power. Therefore,calculationof the (3,~u)2condensatein the leading 1/N
approximationbeginsandends just at the first step.The result is representableas a sum of two terms.
The first oneis regularin f andcan be obtainedin perturbationtheory.Thiscorrespondsto theoriginal
formulationof thetheory with masslessa- particles.The secondterm is entirely dueto the phenomenon
of dimensional transmutationand generationof the mass gap. This term is non-analytical in the
coupling constantand explicitly non-perturbativein nature.The origins of thesetwo terms are quite
differentandthey cannotbe confusedwith eachother.Thereis no problemwith thesign of the vacuum
matrix elementsincethe total sum (12) is obviouslypositive.

In QCD, naively definedvacuumexpectationvaluesof local operatorsarealsorepresentableassums
of infinite terms, regularin the couplingconstant(they are proportionalto (.IL2)~2)togetherwith finite
terms,associatedwith non-perturbativeeffects. Moreover, in 4-dimensionalgaugetheories,the number
of regular terms is infinite, and the question that facesus is then: “how can one separatea finite
non-perturbativecontribution from an infinite number of infinitely large terms?” Pragmatically, the
questionbecomeseven more acute in the light of recentattemptsto find vacuumcondensatesfrom
latticeMonteCarlo simulationsof gluodynamics[23].Furthercomplicationsaredueto the fact that the
seriesof regulartermsis usuallyfactoriallydivergent.Sometimesonecanevenhearassertionaccording
to which an adequatemethod of summationof divergentseries will reproducethe non-perturbative
contribution.

We seethat the2-dimensionalsigmamodel in the leading1/N order is muchsimpler thanQCD and,
still, the example consideredis quite instructive. It definitely shows that the non-perturbativecon-
tribution can by no meansemergefrom summingtermswhich areregularin thecouplingconstant.As a
matterof fact thereareno termsto be summedover since,in this approximation,(0~f(a~u)2~0)contains
a single perturbativeterm. Moreover, we will introducea regularizationwhich will ensurethe absence
of any perturbationtheory contribution to this vacuumcondensate.
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To this end,we must give a formal definition of the singular product8~u(x)a~a-(x).As one of the
possibledefinitions let us acceptthe following

(OIôwa-*1(0) a~o~(0)I0)= jim (0JT{a~o.a(x)ô~Ua(0)}I0) (13)

wherethe symbol T denotesthe Dyson T-ordering.This ordering is defined in Minkowski space-time
and, therefore,the matrix elementsin eq. (13) are to be understoodas referredto Minkowski space.
Then

(0IT{8~a-a(x) ô~ub(y)}I0)= (0~T{a-~(x)ub(y)}IO) + ô(x0- Yo) [ôoua(x)a-b(y)].
dx~ay~

Using the canonicalcommutationrelationwe get

(0lT{a~a-a(x) a~a-b (y)}~0)= 8ab J ~ ~ 2 jô0~
2)(x—

(2ir) p—rn

~ab {~ôt2~(x- y) + ln m2Ix~2 + 0(Ix - y~2lnlx - ~I)}- ~ab ôt2~(x- y). (14)

The quadraticallydivergentterm proportionalto IL2 in eq. (12) correspondsto the deltafunction in eq.
(14), ô~2~(x— y), takenat the coinciding points(x = y). As comparedwith the naive calculationoutlined
abovethereappearsan extra commutatorterm which cancelsthe ôt2~(x— y) term (or, what is just the
same,IL2). As a result, the vacuumexpectationvalue (in Minkowski space)turns out to be

(0[18~oaa~u*hI0)= limf(IxI) (0~T{a~o~(x)c9~o~(0)}I0)= Nm2,

f(IxI) 41T/ln(1/m2Ixj2),

in complete correspondencewith the Euclidean matrix element (9). The adopted regularization
procedure(seeeq. (13)) makesthe operatorf(a,~o-)2well-definedbut it simultaneouslyeliminates its
positivedefinitenessso that the negativesign in eq. (9) should not causeany surprise.

One might doubt that the regularizationproposedabove is the best one and look for a more apt
regularization. In particular, it seemsmore natural to define (0[f(8~u)2I0) in terms of a functional
integral.More specifically, onemay introducethe generatingfunctional

ZE[J, ip] = J fl Da-(x) Da(x)exp{_~Jd2x [(1 + ~)(8~u)2+~ (a-2(x)_ 1)]

+ f d2xfa(x) a-a(X)} (15)

andcalculatethe vacuumaverageusingthe conventionalformula
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- ~(0~(a~a-)2I0)= 1 ~ ZE[J, ~] . (16)
ZE[J, ~]~i~s

In the operatorlanguagesuch an averagingcorrespondsusually to the Wick T-productin which (in
contradistinctionto the Dyson T-product) one can freely transposethe symbols of derivatives and
T-ordering without adding commutators.Therefore it seems,at first sight, that the regularization
procedure(16) would bring usbackto the naivecalculations(11)—(12).

This is not so. As well knownfrom non-relativisticquantummechanics(see,for instance,thebook of
FeynmanandHibbs [24])variation over a sourcecoupledto kinetic energyis a rathersubtlebusiness.
In appendix A it is shownthat the consistenttreatmentof the functional integralactually leadsto an
answer identical to eq. (14), i.e. to the result stemming from the Dyson T-product. Thus, the
perturbativecontribution in the vacuumexpectationvalue (OIf(3Mo-)210)vanishes,at leastin the leading
N approximation.

3.2. The operatorexpansionin the limit N -~ ~

Here we shall prove that the naive OPE is valid in the limit N —* ~. But at first a few words about
perturbationtheory in 0(N) modelsare in order. The interrelationbetweenperturbativeandnon-
perturbative effects in the model is, in a sense,opposite to what happensin the Higgs model.
Perturbationtheory in 0(N) modelscan be developedin severaldistinct ways. We can, for instance,
solve the additional conditionwith respectto oneof the components,say, a-N

UNVN/fffU, i1,2,...,N—1

andsubstituteit in the original Lagrangian

= ~ [a~a-’ a~a-~+ (~—a-ia-~)1(a-k 8Ma-)(a- a~a-1)}

= ~ a~a-’~
1~+ a-’o~~ (-L~a-2)fl} a~uk. (17)

If the couplingconstantf is small, the secondterm in eq. (17) can be treatedas a perturbation.Then,to
zeroth order in the coupling constant,the vacuumexpectationvalue of the Nth field componentis
non-vanishing

(0Ia-N~0)= VN/f

while oscillationsof the orthogonalcomponentsa-, correspondto Goldstonebosons

= ago-’ 3~u’.

From the discussion in section 2 it is clear that the exact solution has nothing to do with the
perturbativescenario:the vacuumturns out to be non-degenerateandthereare no Goldstonebosonsat
all. The spectrumconsists of N massiveparticles (this correspondsto one particle more than the
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numberof independentdynamical fields in the Lagrangian(17)). Therefore, perturbationtheory as
sketchedabove is constructedover a spontaneously-brokenvacuum while the exact solution cor-
respondsto the restorationof the 0(N) symmetry*. It seemsinteresting to checkwhether one can
reproducethe results of the exact solution using the operatorexpansion in this quite non-trivial
situation.

Beforeturningdirectly to the operatorexpansionwe must ascertainthe valuesof matrix elementsof
variousoperatorsover the physical vacuum.The resultsof section2 imply that

(fcria-k) =

(fa~a-ia~k)=_g~,o~m2/2,i,k= 1,...,N—1.

Moreover, since the a- field is dimensionless,the number of operatorsof any given dimension is
infinitely large, and even the calculation of a single power correction in two-dimensionaltheories
requires the summationof infinitely many matrix elements.These matrix elementsfactorize in the
leadingN approximation,for instance

~ (ô a-)2)= (o.2)Pt ((a~a-)2).

The factorizationproperty means,in particular, that the vacuumexpectationvalues of operatorswith
0(N) indicescontractedin an unfavourableway aresmall. For example:

(a-t ô~a-’a-k a~a-k)= (a-1a-k) (a a-l a~a-k)=

and,becauseof this, the analysissimplifiesgreatly.
To circumvent some technical complicationswe shall deal, however, not with the a-, fields but

introduceinsteadnew variables j, ** such that [6a]

In terms of thesevariables the action acquiresthe form standard for non-linear chiral models,

,,~

[1+

At the sametime, the set of relationsobtainedfor the vacuummeanvaluesof the a- fields reducesto

(0I~f4,~~”0) = 8k, (0~fa~’a~4~’10) = —~m2g,~,,8°’,

together with a factorization property for more complex operators.
* A detailed analysis of the 0(N) symmetry from this point of view is carried out in ref. [61.
** Appendix B demonstrateshow onecan operate directly with the original fields o~.



116 V.A.Not,ikoi, eta!., Two-dimensionalsigmamodels: modellingnon-perturbativeeffectsin quantum chronsodynamics

In further computations we shall need, as an input, the operator expansion for the ~ field
propagator.The latter is readily constructed. The moststraightforwardandconvenientmethodfor that
purposeis to use the externalfield technique.We split ~ into two pieces,

411 = ci + q1,

where c1 is a c-numberexternal field, satisfying the classicalequationsof motion, while q’ standfor a
small (quantum)fluctuation over the classicalbackground.The part of the Lagrangianbilinear in q1
describes the propagation of waves in the external field c(x):

~(2) 2(1 + Ac2)2{(a~q)2— 2A (8 c)2 q2 - 8A (a~q’)qk + 12A2 (ÔMC)2cick ik

whereA = f/4N. This expressionfor ,~(2)implies that the correlationfunction (—i) (0~T{q’(x)q’~(y)}~0)is
representablein theform

Dtt’(x, y) = (x~{[~2+M2(c)] 8” + iA~(c)?P
5. + B”(c)}~

5(1+ Ac2)2~y). (18)

Here x) denotesthe eigenstateof the coordinateoperator,X~x)= x~x),(hereaftercaretsover letters
mark operators),(x~y)= 6(x — y), ~?P

5.is the momentumoperator,(x~~P~y)= —i a~5(x— y). Moreover,
the coefficientsA, B, M are functionsof the classicalfield c(X)

M
2(c)= —2A(a~c)2/(1+ Ac2);

A’~(c)= 4A[c a~c
8th + (c” 3~c

1— c’ a~ck)]/(1+ Ac2);

Bik(C) = 12A2 + 4A (1+ Ac2)2 a~[(f~)3].

It is helpful to rewrite the propagatorin the momentumrepresentation:

D~”(q)= Jd2xe~’~(xIDtkIO) = Jd2x (xle”~”DIk ~

= Id2x(x~ 1 0). (19)
-~

In deriving thisformula we haveexploitedsomeevident relations,of the type

e~”~~)= ~ y); ~ ~ = 1 etc.

If the external momentum q2 is much larger than all otherdimensionalparameters,we can expand
D”(q) in a series in 1/q2:
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Dil~(q)=[1+Ac2(0)]2{~8I~ ~

+ a~A~— B”‘] —~-4~(2a,~A~+ A’~A~’)+.. .}. (20)

Here the following relations are used:

f d2x (xIF[c(~)]I0) = F[c(0)] Jd~x(x~0)= F[c(0)],

Jd2x(xI?P,~F[c(k)]l0) = F[c(0)] f d2x ia,. 8t21(x)=0,

F[c(~)] ~ = ~ F[c(X)] — iô~~F[c~k)],

whereF[c(~)] is an arbitraryfunctional of the field c~).
The expansion (20) evidently realizes(in the tree approximation)the operatorexpansionfor the

two-point function

D~(q)= —i Jd2x ~ T{41’ (x) cb” (0)},

provided that the functions M2(c), A(c), B(c) are identified with the operatorsM2(41), A(çb), B(41).
Next, we sandwich eq. (20) betweenthe bra and ket statesof the physical vacuum. The rules for
calculationof vacuumaveragesas formulatedabove,allow us to find all matrix elements,namely:

(Oj(1+A412)jO)=4,

(01M2[41110)= m2,

(0IA~[41]I0) = 0,

(0IA~A~I0)(OIBIO) rn2.

Thus, for large Euclidean momenta q2 ~ m2 the 41 field propagator behaves as

D”(q) 48”4(l—-+...
q2-*o* q\ q

One can check that the first powercorrection indeedcorrespondsto a one-particleexcitation with
massm. We shall turn, however,to anotherproblem— the main subjectof this section— andanalysethe
correlationfunction S(q2)

S(q2)= (-i) Jd2x ~ T{j~(x),j~(0)}, (21)
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where

Is = 2f~[(x)= 4NA (s9~41)2/(1+ A412)2.

Let us concentratefirst on treediagrams.At this level the sourceJ. is expandedup to termslinear in the
quantumfield q’. Since c’(x) is a solution of the classical field equationsthe expressionfor the source
j
5(x) can be written as a full derivative,

= -8NA ~ [i +~Ac2)2q]’

The two-point function (21) can thenbe rewrittenas

S~°~(q
2)= (8NA)2 qaq~ J d2x (xl (1+ Ac2)2ôuC {[(~ + q)2 + M2] Oik

+iA~(~+q)~+B”}5a~c”0).

Expandingnow S(q2)in 1/q2, andtransposingtheP~.operatorsto the left-mostposition (by consecutive
commuting),we arrive at an explicit expressionfor S(q2)in an externalfield:

= 64NAqaqf
3{8ac’ a0c’ (-k—~-)— ~~[aactBtk8flc’ — auc’ a

2a~c~’
8ik — auc’ A~a~a~c”]

+~-‘4~aac’[—4a~a,,8
tt’~ 8~c’+0(q6)}.

This formula describesa classof graphsdisplayedin fig. 4. To get the operatorexpansionwe substitute
c’ —~ 41’. After averagingover the vacuumstatethis cumbersomeexpressionsimplifies greatlyandwe are
left with the first bracketalone:

= S~(q)= —64N2A2qaq,s~ g,
43 ~ (i — _T) = _8N2Am2(1 — ~ (22)

The next elementof the procedureis the calculationof the loop of fig. 5 in an external field. To this
end,the sourcej~mustbe expandedto secondorder in q’(x):

j~= 8NA ,,~
2)(q).

Fig. 4. The treeapproximationfor thetwo-point function(21) in an externalfield.
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(a)

(b)

Fig. 5. One-loop diagrams for the two-point function (21) in an external field.

The one-loopcalculation is actually no more complicated than the tree calculation but the intermediate
formulae are, however,very cumbersome,and we only quote herethe answerwhich emergesafter
vacuumaveraging:

As a result, the sum of the treegraphsandof the one-loopgraphsreducesto

S~°~+ 5(1) = — g2Nf In ~-° — 2N[f + In ~ (m2 — +...). (23)

The terms in the squarebracketscan be groupedtogetherto give the effectivecoupling constant

f( 2\f~J~ ~ ~

j~q ,~ ~I1T“ q2 — ln(q2/m2)’

in full accordancewith renormalizationgroup arguments*.Let us discussnow the first term which
correspondsto a bareloop in perturbationtheory.Our aim is to get a renormalization-group-improved
expressioninsteadof In(M2

01q
2).

The point is that the quantitiescontaining a superfluous(“external”) logarithm with respectto
logarithmsgovernedby the renormalizationgroupmustbe treatedin a specialway. The correctrecipeis
the following. Prior to the final integrationone must expressthe integrandin terms of the effective
coupling constantand anomalousdimensionsand, only after that, one can perform the integration.In
our casethisrecipeimplies

2_ 2~f~P( 4~. \2 2 4irN
q ~ p2 4~’(p ) — q ~ j p2 ~ln(p2/m2))- q ln(q2/m2)

q q2

* Of course,one shouldconvinceoneselfthat theoperators at hand have vanishinganomalousdimensions.
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The final answerfor the two-point function S is representablein the form

S(q2)=_j_~~9.2) [i+~__~_+ ‘“] (1+O(f(q~))). (24)

Here all leading log terms of the type (fln(A
2/q2))~are summedover. However, the next-to-leading

termsf(f ln(A 2/q2))” arenot included.Therefore,strictly speaking,theargumentof the logarithmin eq.
(24) stays unfixed (log(q2/rn2) or log(q2/2rn2), or somethingelse?)Anyhow, eq. (24) completesthe
calculationof the operatorproductexpansionto leadingorder in 1/N.

Let us now examinethe exactexpressionfor the samequantity. From the equationsof motionsit is
clear that the correlationfunction at handcoincides(up to a normalizationfactor) with the propagator
for the a field. Namely,

S(q2)= ND~(q2)= -N 4irVq2(q2+~~/ln~ ~ ~ (25)

Expandingeq. (25) in rn2/q2 we get for largeq2

ND(u)( 2)__ 4~-N 2(1+~1+q - ln(q2/m2)+2m2/q2+ q ~ 2 q2 8 q4

4irN 2” 2m2 2m4 / 1
2 2 q ~ ~ L~°~2 2ln(q /m ) q q ln(q /m )

In other words, the OPE-basedcalculationscoincidewith the exact result to an approximationwhere
terms of order q2(m2/q2)~(In q2)5 are included but where one neglects terms suppressedby extra
powers of (log q2)5. In principle, the latter ones are easily calculable, order by order, and the
check of the operator expansion can be continued further. However, it does not seem to be
necessary.We hope that the exampleconsideredabovedemonstratesunambiguouslythat the operator
expansionis in perfectcorrespondencewith the exactcalculation.

3.3. The operatorexpansionbeyondthe leadingapproximation

In our discussion of OPE in the preceding subsection we did not explicitely introducean inter-
mediatenormalizationpoint IL2. The reason wasthat, to leading 1/N order,thereis no dependenceon
IL2~neither in the vacuumexpectationvalues of compositeoperatorsnor in the coefficient functions.
Indeed, the vacuum expectationvalue of the operator a(x) = f(3,tr)2, normalizedat the point IL2~canbe
definedin the following way (seesection3.1):

(0~f(IL)(aaa-)2l~0)= f(,p.) J ~—2
52D(p),

Euci. p<~*

where

D(p)= Jd
2x eiP Y)(0~T{a~a-a(x)8~a-a(y)}(0)

a a 2
= J d2x ~ ~—i8~(x— y) + (0~T{a-a(x) a-a(y)}(0)~= ~ m 2’ (26)axaayu .‘ p—rn
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and

f(J2)= 4~./ln(,u2/rn 2)

As a result

(0~)(a~a-)2I~10) = ~ 2 f~)~ ln = m2

and this doesnot dependon IL2.
Sincethe vacuumexpectationvaluesof all otheroperatorsfactorizeto leading 1/N orderandreduce

to somepowersof (f(&r)2), theydo not dependon IL2 either.
However, this is not the generalcase.Indeed,evenin the previousexample the operator(8aa-)2~,.

dependson /L2 through the log factor. As is well known, this logarithmic dependenceon IL2 can be
removedby an appropriatemultiplicative redifinition of theoperator.

But, generallyspreaking,matrix elementscan dependon the normalization point IL2 accordingto
somepowerof IL2. A few yearsagowe haveshown [21]that instantoneffectsin QCD do inducesuch a
powerdependenceof the vacuumexpectationvaluesandof the coefficient functions.

In this sectionwe demonstratethat, in the a- model, this power dependencedoes emergein the
next-to-leadingorder in 1/N. Indeed, let us considerthe matrix elementof the operatora2IM. By
definition

(a2I~) J
2D~(p),

Euct. p<,a

where

1Y~(p)= if d
2xe~(0~T{a(x),a(0)}~0)= (2i~ O~2~(p)(a)2+ D~(p). (27)

The first term in eq. (27) with 8~21(p)correspondsto the factorizedpiecein the vacuumexpectation
valueof the operatora2. To leadingorder in 1/N, the answerfor (a) is known,

(a)=VNm2.

To next-to-leadingorder,thereare 1/N correctionsto (a) but, at this moment,the factorizedterm (a)2
is not interestingto us.

As for the non-factorized(connected)part in thevacuumexpectationvalueof T{a(x) a(0)}, it hasan
extra factor 1/N as comparedwith (a)2. Thus, in order to calculate the non-factorizedcontribution
(a2)~’tin the next-to-leadingorder, it is sufficient to know D~(p)to leadingorder:

D~(p)IEUCj= 4~Vp2~2+ 4m2)/ In Vp2+ 4m2 + Vp~
Vp2+4m2_ Vp2



122 V.A. Norikor etal., Two-dimensionalsigma models: modellingnon-perturbatireeffectsin quantumchrornodynamics

Moreover, it is convenientto use the substitution:

~= [~i+~+ ~]4.

As a result,

(a2l~1 = (-ma) J ~ (x - 1)2 1

______ (28)

A(JL)= [~ji+~A+\j~]4.

The value of this integralcan bewritten in termsof the specialfunction Ei(x)

(a2l,
2)~= (—m

4){Ei[ln A(jt)] + Ei[—ln A(jt)] —2ln In A(JL) — 2C} (29)

whereC = 0.57721 . . . is the Eulerconstant.
To comparethis exactformulawith the operatorproductexpansionwe shouldconsiderlargevalues

of IL2~ namely IL2~rn2. Indeed,only for such IL2 the coefficients in OPE are calculable using a
perturbationtheoryexpansionwith a smallexpansionparameter,f(~t)/4ir= 1/In(j~2/m2).Of course,all
operatorsin this OPEshouldbe normalizedat the samepoint IL2. In this limit eq. (29) takesthe form

= —2IL4[e~Ei(L)] — ~IL2m2 + 2m4[C + In L—!+~]+ o(), (30)

where

4
~ —1 ~ —Lr~[T1 .~-.

— ~ ~,e ~ —~ L~~1
L-*oo n=O

To interpret various terms in eq. (30) let uscompareit with the generalOPE for the T-productof
two renorm-invariantcurrentsj(x), 1(0):

i J d2x eiPx T{j(x)j(0)} = C
0(p

2,IL2)1 + C
1(p

2, IL2) a(0)l~+ C
2(p

2,IL2) (a(0) a(0))~+... (31)

wherethecoefficientsC~dependon IL2 andp2. As explainedabove, thereis actuallyno dependenceon
IL2 to leadingorderin 1/N, neitherin the coefficientsC~nor in the matrix elementsof the operators.To
next-to-leadingorder the non-trivial dependenceon IL2 in thematrix element(a2I~)~(seeeq. (30)) is to
be compensatedby a similar dependenceon IL2 appearingin other termsin the right-handside of eq.
(31). (The vacuum-to-vacuummatrix elementof the operatorequality (31) hasno dependenceon IL2 if
the current j(x) is renorm-invariant.)

Let us check this cancellationin more detail. It is clear that the term ~~IL4in (a2lM)’” should be
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compensatedby appropriate terms in Co(p2,IL2)(OI1IIO). We have not performed the calculation
explicitly but it is quite evident that such a dependenceon IL2 does arise in Co(p2,IL2) through
perturbativediagramssince, only the region with internal line off-shellness �IL2, is accountedfor in
Co(p2, IL2). Moreover, theterm rn2~2in the vacuumexpectationfunction(a2)nt mustbe compensatedby
similar terms in the vacuumexpectationvalueof C

1(p
2,IL2)a~.In this case,theIL2 factorcomesfrom the

perturbativecontributionto thecoefficient Ci(p2,IL2) andthe rn2 factorcomesfrom the non-perturbative
contribution to the matrix element(0~a~0).Finally, thereare a few terms—rn4. It is quite clear that
tn4/ln(ji4/rn4), m4/1n2(IL4/rn4),andm4 In ln(IL4/rn4) representtheanomalousdimensionof theoperatora2L.

to next-to-leadingorderin 1/N. Indeed,if someoperatorU(IL) hasanon-vanishinganomalousdimensiony
to next-to-leadingorder in 1/N, then

~(~= C(~,,ã)C(ji)

where

101) 10.’)

C(j~i)nsexpJ df~-~=exp~J df(~+ao+aif+~)

102) 101)

= (js independentfactor)x exp{~(a.ilnf(~)+aof(IL)+~a
1f

2(/i)+..

= (j~ independentfactor){1 + ~(a
1 lnf(IL)+ aof(IL)+ ~a1f~(j~)+. .

f(/2) = 41T/ln(u
2/m2).

Comparingthis generalformulawith eq. (30), we canidentify the coefficientsa_
1, a0, a1 associatedwith

the anomalousdimensionof a
2 to

a_
1= —2, a0 = —1/4’n-, a1 = 1/41T

2.

As usual,this logarithmic dependenceon IL2 in the matrix element is compensatedby an analogous
dependencepresentin the coefficient function C

2(p
2, IL2).

Thus,at the nextorder in 1/N, the coefficient functionsin OPEdependon IL2 in a rathernon-trivial
way (in particular, C,(p2, IL2) contain terms~ IL4). However, in the vacuummatrix elementof an
operatorequality it is possibleto rearrangethe IL-dependenttermsin such a way that the total answer
doesnot dependon IL at all.

Let us note that the 1/N perturbativecorrectionsto the coefficient C
0(p

2, IL2) contain an infinite
numberof terms —(J/47r)”, in contrastto what happensin the leading 1/N approximation.This series
divergesbadly, a featurewhich is rathercommonto field theories(factorial divergency).

* The coefficients in front of the powerterms (,~4,~2) depend, generally speaking, on the procedure used for separating large and small

momenta (subtraction procedure). We have used above a cut-off by virtue of a step function. Another cut-off would give a different answer.
Moreover, for instance the dimensional regularization doesnot givesuch power terms at all (seebelow). One should choosea certain procedure and
follow it in all the calculationsof matrix elementsandcoefficient functions.The log ~cterms are independentof regularization, at least in the leadinglog
approximation.
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Thus, we haveconvincedourselvesthat to next order in 1/N, a normalizationpoint IL2 has to be
introducedand, therefore,that the matrix elementsof compositeoperatorsreceivecontributionsfrom
both “true non-perturbative”fluctuationsandfrom perturbativefluctuations.If this phenomenonhad
beenpresentalreadyto leadingorder, the studyof non-perturbativeeffectsusingOPE would be much
moredifficult (but, even in this case,the formal validity of OPE is beyondany doubt).

A similarsituationoccursin QCD. Namely,from a generalpoint of view, the intermediatescaleIL2 is
a necessaryelementof OPEbut thereexists aregion of IL where,on the one hand,the QCD coupling
constanta

5(IL) is small enoughand,on the otherhand,the dependenceon IL of thevacuumexpectation
valueis numericallynegligible. (Someestimatescan be found in ref. [8].)

To concludethis sectionwe would like to comparethe resultsoutlined abovewith thoseof David,
who was the first to considerthe matrix elementof the operatora

2beyondleadingorder [10,111.
According to ref. [11] there is no unambiguousway to define vacuum expectationvalues of

compositeoperatorsin the next-to-leadingapproximation and, therefore,the mathematicalstatusof
OPEbeyondperturbationtheory is unclear.Our generalconclusionis just the opposite.

if oneis willing to go into a moredetailedcomparisonof ref. [11]andof the presentapproach,afew
hints might behelpful. Ref. [11]exploitsdimensionalregularizations.For this reasonthereare no terms
proportional to IL4 or m2~2in the matrix elementof a2 (comparewith eq. (30)), only the terms
proportional to m4 arekept in ref. [11]. As we haveexplainedabove,the IL2 dependenceof the m4 term
is associatedwith the anomalousdimension of the operator a2 in the next-to-leading1/N ap-
proximation.Although in ref. [11]the normalizationpoint IL is not introducedexplicitly, it is clear that
the 11�term in the dimensionalregularizationprocedureof ref. [11]plays the samerole as ln(IL2/m2) in
our presentation.Then, the limit e—~()is equivalentto the limit ln(IL2/m2)—*x and, as a result the
terms —rn4/ln(IL2/rn2) and rn4/ln2(IL2/rn2) are unseenin ref. [11]. The situation with leading effect due
to theanomalousdimension,namely,—In ln(IL2/m2), is more interesting.Indeed,it is easyto checkthatthe
factor In ln(IL2/m2) correspondsto the In e term in the dimensional-regularization(DR) scheme

2 C,-12 1 1,12 1

I I — I HP.. ‘ ~ I ~.±P...~ 2)_e ‘ — m~[—In — C + 0(e)]n nm2_ J p2 ln(p2/rn2) J p2 p ln(p2/m2)~o �

Following the usualprescriptionof the DR scheme,David hastried to calculatethe limit e-~()for (a2)l,
andhasobservedthat this limit dependson theway � tendsto zero.This was the groundfor the claims
that the vacuumexpectationvalue of a2 cannotbe definedunambiguously.It is true that In � hasa
branchpoint at � = 0 and thereforethat ln(�+ iO) � ln(�— iO). But the validity of OPE cannotsuffer
from this fact. Only renorm-invariantproductsC,(~)(C,(,p))havea physicalmeaningand thus do not
dependon the auxiliary parameterIL2 or �. The majority of compositeoperatorsC, doesdependon IL
andthis dependencecannotbe eliminatedby any subtractionprocedure.if onestill wishesto get rid of
the log log IL (or log �) terms, onemay multiply the operatorC, by the inverseanomalous-dimension
factor exp(—5df y(f )/j3(f )) = 1— (2/N)ln In(JL4/m4). Once this is done, the product
exp(—f df y(f )/f3(f)) C is invariant undervariation of the normalizationpoint andthe limit IL —~ ~ (or
� —* 0) becomesmeaningfulandunambiguous.Thus, the puzzleof ref. [11] is actually an artifact of the
procedureusedin this paper.

it is worth noting that thereare a few other recentpapers(e.g. [12])which claim difficulties for the
OPEbeyondperturbationtheory.We observethat, in eachcase,the realcauseof the trouble is actually
one and the same,i.e. the non-introductionof the IL2 scale. Once this is done, there are generally
speaking,no problemswith OPE.

A detailedcomparativeanalysisof OPEin simplemodelsand in QCD is given in ref. [25].
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4. Anomaliesin the traceof the energy-momentumtensor

In QCD the questionof the influenceof non-perturbativefluctuationson thevacuumenergydensity
�vac is of greatinterest.The readermaybe acquaintedwith works [26]wherean attempthasbeenmade
to investigatethe formation of a bag starting directly from instantonswhich correspondto the only
non-perturbativefluctuationsknown in QCD. It has been assumed[26] that ~vac < 0 while, inside all
hadrons,a phasetransition takesplace andthe energyof thevacuumfluctuationsvanishes(the energy
is measuredfrom its perturbative value; just this non-perturbativecontribution is important for
hadronicphysics).

If so, the volume energydensityinside hadronsis higher than in the “pure” vacuumby an amount

lEvaci. In the bagmodellanguage,the volume energydensityis describedphenomenologicallyby the bag
constant B. Accepting the hypothesis of ref. [26], one may conclude that meson massesm are
proportionalto l�vaclh/4.On the otherhand, the vacuumenergyis proportional to the gluon condensate
[8]. Indeed,Lorentz invarianceimplies

(0!O~,,I0)= 8g., �s,~j~

whereO~standsfor the energy-momentumtensor.Accountingfor the conformalanomalywe arrive at

�vac(OIO~I0) (0~~G~,,G~pI0) (32)
4 32ir

where b0 is the first coefficient of the Gell-Mann—Lowfunction, b0 = ~ — ~
It turns out howeverthat, substitutingthe numericalvalue of the gluon condensateextractedfrom

the QCD sum rules,we get a numberfor the vacuumenergyI�vacl exceedingthe generallyaccepted
value of B by a factor of 10 to 20 [27,15]. Moreover, eq. (32) shows that, in multicolour chromo-
dynamics,the non-perturbativecontribution to ~vacl growsas N~.On the other hand, mesonmasses
shouldbe essentiallyN~independent.

Thesefactshaveled to the following conclusion:the vacuumenergyand the differencebetweenthe
energiesoutsideandinside a hadronaredistinct quantitiesand,moreover, �vacl~‘ B [27,15].

Of course, in the 0(N) sigma model thereis no needto introduce a bag and to calculateparticle
masses in terms of B. The massesare knowndirectly. In the exactly solvablemodel we would like to
checkthat the non-perturbativecontributioncan be distinguishedagainsta backgroundof divergences,
that it is determinedby the anomaly,etc..

At first, we shall calculatethe vacuumenergystartingfrom theexpression(6) for the effectiveaction5eff The latter is strongly divergent and calls for a regularization.The point-splitting regularization
acceptedin section3.1 doesnot seemto be convenientin the caseat handand we shall switch hereto
the Pauli—Villars method.Theneq. (6) can be rewritten as:

S~ff= N2 ~ TrIn[_a2+ ~

(33)

~C,”0, ~C~rn~0; C
01, m0=0.
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The coefficients C1 and C2 are

2 2
— m2 ~ — rn~

~ 2 2~ ‘—P2 2 2~m1—m2

The regulatormassesrn1,2 are to be put to infinity at the very end.
The vacuumenergydensityturns out to be

V2�vac
5eff = C, Trln(—82+ m~+m2)_~m2V

2

N m1rn2 m2+m
—— 2 2 2~ V2,8rrrn1—m2 m1+m

where V2 = f d
2x= L~T. We haveusedthe following expressionfor the couplingconstant

1 1 1 m~+rn2 m~ m~+rn2
2 + 2

21n 2 2f
41T~ m m

1—m2

which is obtainedfrom the extremalitycondition on the action (33), at the point a = ‘IN m
2

The equationfor the vacuumenergy found above is, unfortunately, too complicated.To clarify its
meaninglet us rewrite eq. (34) for the specialcaseof equalregulatormassesm~=M2, m~=M2x and
x-~ 1. Thenthe vacuumenergycan be written as a sum of two terms

�vac= (-M2+ m2). (35)
8ir

It is now quite clear that the first term is connectedwith perturbativefluctuationsin the vacuumwhile
the secondoneis dueto non-perturbativefluctuations.

Indeed,the perturbativecalculationscorrespondto a non-stablevacuumwith a = 0, and

Nm~rn~ m~___ Np.i. 1/ — — — _________1 _________ / A i2�vac 2~.’effa=0 2

2ifl 2
8’rrm1—m2 m, ml=M

2x 8ir
ml=M2

x-it

Thereforethe non-perturbativecontribution to the vacuumenergyreducesto

1N2
�vac — �vac= — m

Oil-

Now we would like to rederive this result usingthe conformal anomalyfor the energy-momentum
tensorO~.The regularizedexperssionfor O~,correspondingto the action (33), is
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where 0.2 stand for the regulator fields, o.~= o~a.The trace of the regularized tensor O~,.is
non-vanishing

2 —

O~—~C,~

First of all, let us check that the matrix elementof O~.over the true vacuumstate reducesto �vac.

Indeed

(0IO~I0)=~ ~mt ~ lri “~IIm:= 2�vac,

which is in full correspondencewith the generalexpression

�vac= ~(0IO,~,~l0).

We are now in a position to examine the hypothesisacceptedin QCD, accordingto which the
non-perturbativepieceof fyac is equalto the non-perturbativecontribution in the anomalyfor O,~.

Indeed,due to the “heavy” regulatorfields the traceof the normalizedenergy-momentumtensoris
non-zero.Moreover, we usually deal with matrix elementsof O~.over “light” statesor (what is the
same)with expectationvaluesof O~.in “light” externalfields ae~~t(x)anda-e~~(x).In the caseat hand
thereareonly two non-vanishingtermsof this type

bR — NM2+VN ext+~(1

It is instructiveto rewrite thisequality in the operatorform

,~R — r’ L T~ . r’ — A~2 . i~” —
— A..jU ~ L-,. a ‘.—t — — IVI L.a —

M-.oo 41T 4ir

In the approximationconsidered,the coefficient functionsaredeterminedby perturbationtheory and
non-perturbativeeffectsareexpectedto behiddenin the matrix elementsof operators.

Thereforethe coefficient C1 of theunit operatorhasto representthewholeperturbativecontribution
to the vacuumenergy.We seethat this is really the case,

C1=_~M2=2�~.

Sincewe havealreadycheckedthat ~(0IO~0)reducesto the total vacuumenergy,the non-perturbative

contributionto Eva,, is exhaustedby the non-perturbativepart of the anomaly.This can be seenexplicitly

Ca(OIalO) = (~~) (‘IN m
2) = f~-rn2 = 2�~’. (36)

Thus,our hypothesisis confirmed.
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~

Fig. 6. The average value of O,,~,over theone-particle state.

Notice alsothat the ratio of the a--particle massesto the non-perturbativepart of I�vac1 is small,

2 8ir

m /I�vacln.p.t.= -~-———~ 0.

Moreover, we shall now check that, if thereis no explicit mass parameterin the Lagrangian,the
anomalyin O~.fixes the massof the particle. It is worth recallingthat, in QCD, the assertiondoesnot
seemto be quite trivial. It is difficult to imagine that, say,the whole nucleonmassis associatedwith
gluons. However, in the chiral limit [14]

2m~= (Nto~IN)= (NI — b
0a5G

2IN).

Of course,this result is a strict consequenceof the equationsof motion. Nevertheless,it is in conflict
with intuition andwe would like to convincethe readerof its validity by examiningexplicit examples
which admit an exactsolution.

The 0(N) sigmamodelgives ussuch an opportunity. Let uscalculate(with the helpof the standard
Feynmanrules) the matrix elementof the anomalyOp,. = (\/N/4ir)a betweenthe statescorresponding
to a- particles.A single glanceat fig. 6 is sufficient to graspthat

(oIO~,Icr”)= (u*2I ~—~~‘-‘-a1o~’)(~-~-)(~~.=) D~(0)

whereD~”~(0)is the a field propagator.The expressionfor D~(p2)is quotedin eq. (8), and

D(a)(0)= —8irm2.

As a result,

(o~IO~,Io”)=
5ab 2m

2. (37)

Thus, the mechanicalmassof the o- particles is indeeddeterminedby the conformal anomaly.

5. Low-energytheorems

Low-energytheoremsin field theory were inventedalmostas long agoas field theory itself. Suffice it
to recall the Low theorems(e.g. [28])for photonbremsstrahlungandfor photonscatteringoff hadrons
in the low-frequencylimit.
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As a rule, the low-energy theoremsreduceto certainrelationsbetweenamplitudeswith different
numbersof soft externallines (particles).Suchrelationsappearas a reflection of somesymmetry— exact
or approximate— which exist in the theory.For instance,theLow theoremsmentionedabovestemfrom
the gaugeinvarianceof electromagneticinteractions.

Searchfor symmetriesand for the constraintswhich they imposeon various matrix elementsis of
special importancein QCD. indeed, the correspondingresults which are based on the general
propertiesof the theory are independentof our ignoranceof the confining dynamicsand often yield
unique pieces of information, mostly on glueball physics, which are inaccessible in any other way. They
arealso valuablein their purely theoreticalaspect,servingas a spring-boardfor new constructionsand
investigations(seee.g. [15]).

Apart from the well-known classical PCAC theoremsthere exists a set of low-energy relations
specific to QCD. As a matter of fact, theserelations realize the Ward identitieswhich reflect the
following propertiesof the theory

(i) scaleinvarianceat the classicallevel; O~.� 0 only dueto the quantumanomaly;
(ii) invarianceundersimultaneousy~rotationsof all quark fields, q—~exp(i(a/2)y5)q,accompaniedby

acompensatingtransformationof theso-called0 term (0-~0 + a).
Both points haveparallels in sigma modelsand we shall examinethem in the remainderof this

section.

5.1. ScaleWard identities

If the quark massesareswitchedoff andthereis no massparameterin the Lagrangian,one can get
the following elegantrelation[29]

lirn i J dx e’~(OIT{r(x) r(0)}I0)COflfl,,C,,,d -d~(0IrI0) (38)

where ‘r(x) is the trace of the energy-momentum tensor, T(x)= 0~.= ~ and d~
denotesthe (normal) dimensionof the operator i- (in chromodynamicsd~ 4). A derivation of this
formula, as well as its generalizations,arepresentedin refs. [29,15, 30]. The perturbativecontribution
is assumedto be subtractedfrom both the right- andleft-handsides of eq. (38).

The scaleWard identity in the 0(N) sigma model superficially looks just the same.The concrete
form of r(x) is, of course,different,

J~ 2’IN
T = (0p.,.~,)crmodet = — 4ii- (t9~.’a-) = -~j-——a(x)

andd0 is equalto 2, not 4. The proof is straightforward.
Considerthe correlationfunction of two T’S, normalizedin the following way

= J d
2x (0IT{f(ö~,o(x))2, f(a~,a-(0))2}I0) (39)

(the Euclideannotation is usedhere and below). First, we redefine the field variables,a- = (1/Vf)ê,
a = c~(actually,return to the original definition, seeeq. (2)), so that the action goes into
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SE = -k-- J d2x t(a~o)2 + (~2— N)}.

Varying the generatingfunctionalZEwith respectto (—1/2f) we, evidently,get the vacuumexpectation
value((a~ö)2):

V ~(1/2f) = (f(a~a-)2)= -Nm2= NM2o e4~.

As discussedin detail in appendixA (seealso section3.1), under such a definition, the perturbative
contributionin thevacuumexpectationvaluevanishesprovided thatonetakesinto accountthefact that
the measureof the functionalintegrationdependson the source(1/f in the caseat hand).

The secondvariation of ZE yields 2(0):

[~(i/2f)]2 = J d2x (0lT{(d~ê(x))2,(a~(0))2}I0)=

On the otherhand, differentiatingthe explicit expressionfor m2over (—1/2f) we arrive at

d(_~
2f)m_S~m.

Hence,,~(0)= —8ii-Nrn
2, and this completesthe proof of the theorem.

It is interestingto noticethat, in the 0(N) sigmamodel, theperturbationtheory contributionto £(0)
automaticallyvanishesafter accountingfor the f dependenceof the measureof integrationover the a-
fields. This fact hasbeenalreadyusedabove.

We are now able to check in a direct way that the low-energy theorem thus obtainedis indeed
correct.Suffice it to notice that .~(q2) ND~(q2)and that the propagatorD’~”~(q2)is known in the
leadingN approximation.Taking the limit q2/m2—~0 in eq. (8) we get

D(a)(0)=_8~rn2 and 2(0)=—8irNm2,

in perfectagreementwith eq. (38).

5.2. The U(1) problemin QCD and in CP(N — 1) models

The so-calledtopologicalcharge

plays an importantrole in quantumchromodynamics.As for 0(N) sigma modelswith N � 3, such a
notion cannotbe introduced(thereis no non-trivial topology).Still we would like to havea simple toy
examplethat would allow us to testvariousrelationsfor topological chargederived in QCD. To this
endwe turn to a new classof sigmamodels,namely,to CP(N — 1) models.
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First of all, a few words on their structure.These models describeN complex scalar fields a-”
(a = 1,. . . , N), “living” on a sphere

= N/2f

(thebar standsfor complexconjugation),and an auxiliary real field A,,.The action is usuallychosenin

the following way [5,6]:

SE= Jd2x{~,.ua~,.a-a+~(~~“a-”i~v)}

(40)

= a,.

This expressionis obviously invariantunder global SU(N) transformationsof thea-” fields. Thereis an
extra—no less evident—symmetryof 5E, namely, a local U(1) symmetry.Really, the action of the
CP(N — 1) modeldiffers from that of scalarelectrodynamicsonly by the absenceof the kinetic term for
the vector field A,.’. The latteris gaugeinvariant by itself.

Since the action (40) containsno derivativesof A,. it can be fully eliminated,writing:

A,. = ~J~(~a 3’,.a-a — ~a 8,.u”)nsi~~&a,.a-a.

This relationis a consequenceof the equationsof motion.
For any valuesof N, CP(N — 1) modelsadmit instantonsolutions[5] (for a nice reviewsee the book

[31]).Weshall return to this ussuein section6, andall that we needhereis the integraldeterminingthe
topologicalcharge,

= ~ J d2x�,.~.~,.A,, —~ f d2x �,,~~ ~a-a

It is ratherobviousthat Q is fixed by the asymptoticbehaviourof the field. For configurationswith
finite action,0 necessarilytakesintegervalueslabelling distinct topologicalclassesof fields.

The CP(N — 1) sigmamodelscan be solved in the limit N—~ just in the samevein as it was done
with the 0(N) models [6,7]. Leaving asidethe correspondingderivationwe formulatethe Feynman
rulesfor excitationsoverthe physical vacuum.

The propagationfunctionsof the a- anda fields, aswell as the vertex functionT’~,describingtheir
interaction,do not differ from the caseof the 0(N) modelsandhavethe form

Dab (p2) = (~a(~)a-b (_~))= p2~rn2~

D(a)(p2) = (a(p) a(—p)) —A~1(p), (41)

Tab = — 1
5ab

‘IN
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The auxiliary vector field A,. becomesa dynamical field (the effective Lagrangian acquires the
correspondingkinetic term). Its propagationfunction in the Lorentzgaugeis

D,,~(p)= ~ — p,,p~/p2]DA(p2),
(42)

D~= (p2+4rn2)A(p)—1/ir.

Onecan easily convinceoneselfthat DA(p2) hasa poleat p2 = 0. Thus, A,, indeedbecomesa gauge
field, a “photon”. it interactswith a- particlesaccordingto thestandardrulesprovidedthat oneascribes
to thea particlesthe “charge” —1/VN.

In the CP(N — 1) models,just as in the 0(N) models,there is a condensateof the a field. In other
words, the matrix elementsof a over the physicalvacuumis non-vanishing,

(0Ia(x)I0~= (01- (a,.a-a)(a,.a-~0)= ‘IN m2.

We shall not repeat,however,the analysisof section 3, nor shall we discussthe consequencesof this
analysis.Instead,we shall dwell on the topologicalcharge.

At first, let us recall why the operatorof topological chargedensityseemsto be so important in
QCD. Introducing the source

j 3t~sG”

andconsideringthe two-point function

P(q2)= i J d~xe’~(oIT{i~(x)j~(0)}I0), (43)

we convince ourselvesthat the value P(q2= 0) is, generallyspeaking,non-vanishingin pure gluo-
dynamics.Following Witten [32] we can write that it is proportionalto the secondderivative of the
vacuumenergydensity, over the vacuumangIe 0. If we switch on light quarkstwo new effects will
emerge.First of all, the correlation function P(q2) will vanish at q2 = 0 becausej~.becomesthe full
derivativeof a gaugeinvariant operator,

j~=a,,j~, j5,. = ~ ~y,.y
5q.

q = u,d,s

Second, there appearsa light pseudoscalarstate in the spectrum, the ,~ meson, which gives a
contribution in the correlation function P(q

2). Explaining the first effect by the presenceof the ~‘

mesonwe arrive at the relation
:2 2 —

j ,
1rn ~ — ~ v’-’) pure gluodynamics

(44)
(0[j~I,i’) = if,1.p,,..
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Thus,the solutionof the famousU(1) problem[16] is directly associatedwith the valueof P(q2= 0) in
puregluodynamics.

In ref. [15] we haveassumedthat the both two-point functions, (44) andits scalarcounterpart,

i J dx ~i~x(0IT{~~sG2(x),~! G2(0)}I0)

are in puregluodynamicsbasicallydeterminedfor low q2 by field configurationswith definite duality. If
so,

—P(0) i J d~x(0IT{4~.1G2(x),~ G2(0)} = ~ (~-~G~) (45)

wherewe haveusedthe low-energy theorem(38). As a result, the following massformulaemerges[15]

f2 2 ~=_/~ ~ f~’a
J n’~’t’~ j.~ \‘) ~‘Jo IT

Empirically it is quite successfull,at leastwithin the numericaluncertaintiesexistingat present.
Within the framework of the CP(N — 1) model,one can calculateP(q2= 0) in the absenceof quarks

andthen introducefermions andfind masslesspseudoscalars.Finally, one can convinceoneselfthat a
SU(N)-singletmesonacquiresa massin agreementwith eq. (44). This work hasbeencarriedout in ref.
[7]. Herewe shall concentrateon a relation analogousto (45). The questionsto be answeredare: “Is
thereany parallel with QCD in this point?” and “If thereis, how far doesit extend?”

The correctrelativenormalizationof the scalarandof the pseudoscalarcurrentsin CP(N — 1) models
is fixed by the self-duality equation

~lJ,.o~”=

Hence,we may choose,for instance,

= ~ ~a-a

= ±i�,.,.~4.’a-”~a-”.

Thesecombinationsarerelatedwith the a and A,. fields by virtueof the equationsof motion

Js(X) = ~‘s/Na(x),

j~(x)= ~VN �,.~.a,.A~(x).

It follows that the two-point functions inducedby j. andj,. reduce to propagationfunctions of the

correspondingfields. In Euclideanspace-timewe have

S(q2)= Jd2xe~(T{js(x)j
5(0)}) =
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P(q2)= Jd2x e~(T{j~(x)j~(0)})= ~N(q2~ - q,.q~)~ = ~Nq2D~(q2).

Although D~(q)is a gauge-dependentquantity, the correlation function P is, of course, gauge
invariant. Introducing explicit expressions for D~”~andD~we get (at q2 = 0):

S(0) = —Nirm2,

P(0) = 3Nirm2, (46)

S(0)/P(0)= —~.

We see that 5(0) and P(0) are rather close to eachother, however,the sign of the ratio S(0)/P(0)is
oppositeto theonefound in thecaseof QCD. (Noticethat relations(45), referring to QCD, are written
in Minkowski space,while eq. (46) correspondsto Euclideanspace.Going back to Minkowski space
changesthe sign of P.) This fact— the differencein signs— is rather striking but it could be foreseen from
the very beginning. Indeed, there is a deep difference betweenQCD and the model considered.
Namely, the non-perturbative contribution to the vacuum energy is negative in QCDand positive in
sigma models:

boa~
[Evac]QCD = (0l G~,,G~PI0)< 0,

32IT

[Evac] ~ modet = m2> 0.

Therefore,the valuesof the scalarcorrelatorsat q2 = 0 arealso different:

S(O)ocD> 0, S(0)cp(N_t)<0.

On the other hand, the value of P(0)(
00 fermions) is connectedwith the contribution of a real physical

particle and,hence,is unambiguouslyfixed in both cases.
Summarizing,our hypothesison the dominanceof definite-dualityfluctuationsis literally invalid in

the CP(N— 1) models. On the other hand we see that the ratio S(0)/P(0) is still of order unity.
Therefore,the predictionof ref. [15]for P(O)QCD maybe consideredto be a good estimate.

6. Supersymmetric sigma models

Supersymmetric(SUSY) theories[33] (for an exhaustivereview see [34] or the books [35]) have
attractedmuch attention in recentyears.While their ultimate relevanceto Nature has not been
establishedyet the greatimpact which theyhaveproducedon theoreticalphysics is indisputable.The
aspectwhich hasbeen investigatedmost thoroughly, and which exhibited some novel and striking
features, is the SUSY perturbativeexpansion.Indeedthe very first applications of SUSY models
revealedremarkablecancellationsamongvariousgraphs. This line of developmentculminatedin the
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derivationof non-renormalizationtheoremswhich, in somecases,prove the vanishingof all radiative
corrections.The well-known exampleof this kind is the non-renormalizationof the so calledF terms.
The merecancellationof all radiativecorrectionsin certainmassterms is at the origin of the hopethat
SUSY modelswill eventuallyresolvethe masshierarchyproblemof weak interactions.

While perturbationtheory exhauststhe contentof weakcouplingmodels,SUSY theorieswith strong
interactionsposefurther problems.In view of the simplicity of the perturbativeseriesall the non-trivial
dynamics becomesin such theoriesthe realm of non-perturbativephysics.In particular,non-pertur-
bativeeffectsarea central issuefor supersymmetriccompositemodelsof elementaryparticles.

At first sight, andbasingourselveson experiencegainedwith ordinaryQCD, thereis little hopefor a
substantialprogressin the field of non-perturbativeeffects.Indeed,adecadeof intensestudiesin QCD
has actually left us with instantons as the single example of non-perturbativefluctuations fully
understoodtheoretically.It follows that to managenon-perturbativeeffectsin QCD, onehasat present
to rely heavilyon instantonbasedmodelsof the physicalvacuum.While thereexist a few well-educated
andadvancedattemptsof this kind, decisiveargumentsshowingwhy instantonsshouldbe the ultimate
answerfor the vacuumwavefunction arestill lacking.

Quite unexpectedly,a recentdevelopmentindicatesthat instantonscan be used in a very different
fashion in supersymmetrictheories. Thus, the very existenceof instantonsas a mathematicalcon-
struction (i.e. the existenceof instantonsof arbitrary small size)is sufficient for the calculationof the
Gell-Mann—Low function to all ordersin the coupling constant.Moreover,one can determinesome
vacuumcondensates.Loosely speaking,the trick is to combineinstantoncalculus with somegeneral
propertiesof the theory such as renormalizabilityor the existenceof Ward identities.

In more detail, in the caseof the /3 function, one addressesoneself to the considerationof the
vacuumenergyin the presenceof an instantonof arbitrarysmall size. Onecan then prove a general
theorem stating that radiative correctionsto the vacuumenergycancel in the presenceof a self-dual
externalfield (instanton).The theoremshowsa closeresemblancewith the well-known theoremon the
vanishingof all radiativecorrectionsto the vacuumenergyin SUSY perturbationtheory.However,the
generalrule has an exception.Namely, the zero modesshouldbe consideredseparatelyandthey do
contributeto the (differential) vacuumenergy.Thus,one finds an exact and non-vanishingresult for
somephysicalquantity.It isquite straightforwardthentoconvertthiscalculationinto thecalculationof the
/3 function.

In the caseof vacuumcondensates,one startswith an amplitudewhich is dominatedby instantonsat
short distances.The Ward identitiesallow then to extendthe resultobtainedto the caseof any distance,
andthis fixes the vacuumcondensate.

The purposeof this section is to presentagaintheseideasand to elaborateupon them using the
simpler exampleoffered by a two-dimensionalSUSY a- model. In the first part of the reviewwe have
had alreadythe chanceto arguethat a- modelslook very similar to 4-dimensionalgaugetheories.This
sectionprovidesa freshsupportto this statement.The material is organizedin the following form. First
we investigate classical solutions, or instantons,in the 0(3) sigma model [4] and introduce its
supersymmetricextension[17,18] to show how onecan calculatetheexactGell-Mann—Lowfunction(to
all orders in the coupling constant)in supersymmetricmodels [19,64, 53]. Our main purpose is to
presentas simpleasurveyaspossiblefor amethodproposedin ref. [19]in thecontextof supersymmetric
gluodynamics,andtoprovethevalidity of assertionswhichseemfar lessobviousin gluodynamics.We make
no apologiesfor concentratingon this concreteaspectof supersymmetryandinstantoncalculus— other
aspectsarediscussedin detail elsewhere.

The literatureon supersymmetryis very rich. Evenlimiting ourselvesto the caseof two-dimensional
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SUSY modelswe arestill left with a very largenumberof papers.We quoteonly papersdirectly related
to the contentof the presentreview, andour list of referencesthus doesnot pretendto be completein
any way.

6.1. Supersymmetricgeneralizationof the sigma model

We skip the descriptionof the ordinary 0(3) sigmamodel in the hopethat the readerhasalreadya
generalidea from section2. The specific propertiesof this modelarereviewedin thebook [31].

The most straightforwardprocedurefor constructingthe supersymmetricvariant seemsto be the
following [17,18]. Insteadof the real field, oneintroducesa real superfieldN”

N”(x, 9)” a-”(x)+ ~ja(x)+l~0Fa(x) (47)

where 0 is a two-componentMajorana(real) spinor, ui” is a fermion field andF” is an auxilary boson
field. Unlike in the four-dimensional theory, the Majorana representationin two dimensions is
realizableboth in Minkowski andEuclideanspaces.Therefore,we can write down the Lagrangianin
termsof N” for both versionsof the theory.For definitenesslet usconsiderfirst the pseudo-Euclidean
version[17] (for a treatmentin Euclideanspaceseeref. [181).The gammamatricesare chosenas

y°=a-2, y
5=ia-

1 (48)

theyare purely imaginaryandsatisfythe standardalgebraof gammamatrices.In eq. (47) 0 = 0)’°.The

action of the supersymmetricmodel is a direct generalizationof the action $ (a,,a-”)
2d2x:

S = ~ J d2x ~d20~ ~aN”~i
3N” (49)

where ~,. is the so-calledsupercovariantderivative,

= a/aoa — i(y~0)~8,. (50)

and the coupling constant is denotedby g
2 in order to distinguish it from the constant f of the

non-supersymmetricvariant (seesection2).
The constrainta-a

0.a= 1 now becomes

Na(x,0)Na(x,0)=1. (51)

The readerwill readilyconvincehimself/herselfthat, in the componentform, the supersymmetricmodel
reducesto

S= ~ J d
2x [(a,,u”)2+ ~ i~~”a,.~”+ F2]. (52)

Moreover, expansionof eq. (51) in 0 yields threeconstraints

a-2=1, rnji0, a-F”~ii/i. (53)
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As expected,derivativesfrom the F field areabsentandthis implies in turn that the F field can be
eliminatedaltogetherby virtue of the equationsof motion.

Derivation of theseequationsin the caseat hand calls for special care since we must take the
constraintsinto account.Thesimplestway to do this is to introducecorrespondingLagrangemultipliers.
Leavingthis problem as an exercisewe presenthereonly the final answer

(_
15ab + a-”o~’)a

2a” — oh/i” iy 8,,1/JI~= 0,

(,5ab — ~ iy” ô,.~jb + ~(~fr) ~fr”= 0, (54)

F” i(çfrl/J)U”

In termsof the physicalfields the action becomes

S= -~ Jd2x [~(a,.a-” )2 + ~ ~ iIçl”’ + 1(~,)2] (55)

We pausehereto makea few commentsaboutthe explicit and “hidden” symmetriesof the action
(55). First of all, the global 0(3) symmetry is built in. There are threegeneratorscorrespondingto
rotationsin isospacearoundthe first, secondand the third axes. Moreover, the use of the superfield
formalism guaranteessupersymmetry,i.e. the invariance of the action with respect to the trans-
formations

&r”�çl”’, ~ç1”’=—iy~�ô,,a-”. (56)

Indeed,

= ~ Jd~x{ —8,, ((t9,,0”) (j,fra)) — ~ (~)(~a~) ~ }

andthe secondterm reducesto a full derivativebecauseof the constraint~i”a” = 0.
The correspondingconservedsupercurrentis

5,. = (8Aa-”) yA),~~,a (57)

It is instructive to check its conservationexplicitly

a,.S~= (8Ao”) yAj~fra + ~

= ~ (ÔAa-”) yA ~ (~b) - a-b ~ i~) ~ (58)

=

Herewe haveusedeqs. (53), (54) and the fact that (

1frayM~frb) ~/,,a= _i~(~a~fra)~
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The supercurrent5” exists for an arbitrary group 0(N), and not only for 0(3). What is more
surprising,the 0(3) model (andonly this one)possessesan extendedsupersymmetryalgebra.Namely,
in this caseonecan find an extra conservedsupercurrent[17]

= ~ a~a-by~ (59)

The generalreasonfor the appearanceof an n = 2 superalgebrain the 0(3) model was elucidatedby
Zumino [36].

Below, the extendedsuperalgebrawill be realizedexplicitly in termsof complexchiral superfields.
In addition,thereis a conservedvector current

j~’~ (60)

2g

andits chiral partner,axial-vectorcurrent

f~5_~~abca-a~pmyy5
1/jc (61)

Both involve the e symbol and hencehaveno analoguesfor N > 3. Notice that, at this point, the
parallel with supersymmetricgluodynamics is not absolutesince, in the latter theory, there is no
colour-singletconservedvectorcurrent.

The action is invariant under transformationsgeneratedby the currents (57), (59), (60), the
correspondingsymmetriesbeing exact and unbroken,even at the quantum level. As for the chiral
symmetry, it is valid only at the classical level and it is destroyedby a quantumanomaly, just in the
sameway as in QCD.

Let us discussthis issuein more detailsinceits treatmentin the literature is rather fragmentaryand
since, on the otherhand, the derivationof the anomalyis not as trivial as it might seemat first sight.

(i) Naiveconservation.
Differentiating f”

5 gives

= ~~{(8,.a-) ~by~y5~c + a-~(~b~) yS~c — a-~~y5J~f}

(62)
abc

= —i ~ {8,.aa y~yS~/,,c— ia-”y5~Y(çd/i)}.

Moreover, since a-2 = I thevectors8,.o-” and a-” are orthogonalto eachotherin isospace;we have

= �“~a-’~(X),~e(X)

where pe(X) is an auxiliary isovector.Substitutingthis relation in the right-handside of eq. (62), and
recallingthat o-~/,= 0, we find that the first term vanishes.

The secondterm is identically zerobecauseof the propertiesof theGrassmannnumbers.Indeed,let
us fix the axesin isospacein such a way that, at a given point x, the vectoro(x) reducesto (0, 0, a-3).
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Thenthe constrainta-”l/i” = 0 implies 1/13(x) = 0 andwe are left with

ç~1y5~/,2(ç~1çj,1+ l)2~2)

Since we aredealingwith real two-componentspinors

,1 ii it—ti ~2 f2 ~2_
~a3~y_~i, ‘Pa’/’$’Py

(ii) Axial anomaly.
As it is well-knownin QCD, formal manipulationswith the equationsof motionmay lead to a wrong

conclusionsincethe theory mustbe first regularizedandsomeof the symmetriesof the classicalaction
can then disappear.Such a situation is actually realized with the axial current. There exist various
methodsof regularization— however, the simplest one in the caseat hand is the introduction of an
auxiliary heavy fermion field R (with massM

0)

Ji~G = — ~abca-a{~by~75~,c — ~by~y5Rc}

The divergenceof the currentis no morevanishingbut, instead,

= ~ 2iMo�a~a-~R~ysRc. (63)

The remainderof the derivationdoesnot basicallydiffer from that of the triangleanomalyin QCD (the
anomalyis howevernow diangle,as discussedlater).We start by inspectingthe matrix elementsof the
operatorM0Ry

5Rbetweenall statescontainingonly light fields, andwe sort them out trying to identify
a matrix elementwhichdoesnot vanishwith M

0—* ~.If the searchis successfultheanomalydoesexist.
What particularmatrix elementis relevant?Simpledimensionalargumentswill promptus the answer.

It is technically convenientto considerthe propagationof the fermionR in an external(background)
a- field. Then

c9,.J”
5(x) = — 2iMo�”~a-”(x)i Tr~.,[y5G’~(x,x)] (64)

where G(x, y) is the R propagatorin the externalfield definedby

-~ [(iô,.ôab+ A~)y”— M
0ô~b]Gk(x,~)= ~ac S(x- y) (65)

Az” = ~ ô,,a-” (cf. eq. (54))

andTrL meanstakingthe traceover the Lorentz (spinor)indices.
Now, the last effort. The Greenfunction is determinedby expandingG(x, y) in a seriesin A~7.It is

sufficient to keeponly the term proportionalto (ö~A~’(x))(x — y). (Indeed,the term proportionalto
Aa,,b(X) would give zero being contractedwith the e symbol in eq. (64); A~’(x)A~(x)ns0;all other
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terms of the expansionare of a higher dimensionality and thereforetheir contributionvanisheswith
M0-~).

Thus, we are actuallydealingwith a diangle anomaly(fig. 7). Playing a bit with eq. (64) (for details
see the reviewpaper[37])yields

= ~ ~ a-~ô,.a-b8,,a-c. (66)

Insteadof dealingwith the original fields a-” andcli” it is moreconvenientin manyrespectsto work with
unconstrainedfields— and this is the last point to be discussedin this subsection.Since the a- fields
“live” on a unit spherethereis a very naturalway of introducingnew independentvariables,namely,
stereographicprojection [4] (fig. 8). We trade three constrainedfields a-’, a-

2, a-3 (p.2 = 1) for two
independentvariables~, ~2, the correspondingtransformationlaw beingclear from fig. 8:

~_ 2~, 2_ 2~2 31i4~2
a-~ 2 2 ‘ a-~ 2 2 ‘ a-~ 2 2

~1~2+1 ~1~2+1 ~t~2+l

Then q, and ~2 are combinedin a complexfield ~,

4,=Req~+iIm~,nsq,l+iq,
2. (68)

The fermionic analogueof eq. (67) is readily derivedby virtue of supersymmetry,

I 2Re~P2Re~[ç~*~P+h.c.]
~ —1+~* (1+~~)2

2_ 21m ‘P2Im~ [~*1If+hc1 69
(1+~*)2 ‘ (

— (1+~*)2~ 2

pole
2

Fig. 7. Heavy-fermionloop determining the anomaly in the diver- Fig. 8. The unit sphereo.2 = 1 is mappedinto a plane (g,, ~ by
genceof theaxial-vectorcurrent~ (For a definition of P” seeeqs. meansof a stereographicprojection.
(61), (63).)
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where iI~ is a complex two-componentspinor field, which is the counterpartnerof ~.Notice that the
parametrization(67), (69) automaticallyyields a-”a-” = 1, a-”cl”’ = 0. It is worth emphasizingoncemore
that neither ~ nor IJ~possessisotopicindices.

For completenesswe give herealsothe formulae for the inversetransformation,which are however
rathertrivial

— a-1+ia-2 ~j, cl’+jcl~~gt~f-~a-2 ~ (70)

~ 1+a-3 ‘ — 1+a-3 (1+a-~)~

Thenext stepis to rewrite the Lagrangian(55) in termsof the new fields ~ and ~P.This is asimple but
rather lengthy algebraicexerciseresultingin the following Lagrangian[38]

= ~—i~[a,.~3,.çc’ + ~iiy~ a,.~1’— (a,.~)y~1P)

1 ~i(~+ a,.~— ~ ~ (71)

wherex 1 + p~.
In derivingeq. (71) we haveusedeqs.(67), (69) andthe explicit form of the gammamatrices(seeeq.

(48)). More exactly,we haveexploitedsuch generalpropertiesas (Re~1’)(y°y”)Re ~P= 0, etc.
Now, we would like to return to a fact first mentionedin ref. [17], namely that the superfield

formalism used aboveensuresan n = 1 supersymmetry;thereare, however,actually two conserved
supercurrents(eqs.(57), (59)) andthe 0(3) modelpossessesan extended(n = 2) supersymmetry.In the
original formulation of the model, eq. (49), the conservationof 5,. is implicit. After introducing the
fields ~ and ~Pwe areable to realizethe full supersymmetryexplicitly [36].

First of all we constructa complexchiral superfield I~

~JJ= co(x~h)+ V2 �a~0”~1’13(xch)+ �aj~0”O~’F(xCh) (72)

whereF is an auxiliary bosonfield, andall functions ~, ~P,F dependon the chiral argument,

(x”)~h=x” +i&y”O. (73)

Notice that theparameter0 figuring in thisexpressionis now acomplextwo-componentspinor (0 and0
are independentGrassmannvariables),while the original superfield (47) dependson the Majorana
spinor 0. Thus,we doublethe numberof fermioniccoordinates*.The actioncan be rewrittenin terms
of the superfield1 [36]

S = ~ Jd2x d20d20 ln(1 + ~ (74)

Given the answer,one can just check that, after integrationover 0 and 0 according to the standard

* One and the sameletter, 0, denotesthe real and complex spinor—we do not dare to invent a new notation for the fermionic coordinate. We

hopethat this will causeno confusion; the meaning of 0 is always clear from the context.



142 V.A. Norikor eta!.. Two-dimensionalsigmamodels: modellingnon-perturbativeeffectsin quantum chro,nodynamics

rulesof the Grassmannalgebra,we comeback (up to full derivatives)to the Lagrangian(71).
Actually, the existenceof an n = 2 supersymmetryand its explicit realization (seeeq. (74)) is not

specific to 0(3) sigmamodel. As it was notedby Zumino[36],the phenomenonis of ageneralnature.In
the 0(3) model the a- fields “live” on a sphere.Moreover, the two-dimensionalsphereis a complex
Kählermanifold (for a pedagogicdiscussionsee [39,40]). It turns out that for any Kählermanifold the
correspondingsigma modelspossessan n = 2 supersymmetry[36]. Moreover, starting from general
considerations,Zuminocouldobtain in this casean expressionfor the actionwhich is analogousto eq.
(74).

The pricewe havepayedfor havingan explicit realizationof the n = 2 supersymmetryis ratherhigh.
The 0(3) symmetrytransparentin eq. (49) is now partly hidden.Rotationsof N” aroundthe third axis
(in isospace) correspond to thefollowing infinitesimal transformationsof i~J

+i~.f~s, ~

whereö is areal parameter.The action(74) is evidentlyinvariantundersucha phaserotation.As to the
two other isotopicrotationsof N” (aroundthe first and the secondaxes),the correspondingsymmetry
manifests itself in the invariance of the action (74) under the transformations

~ + ~*~J~2 ~p+—~s~+ E(~1~)2

with a complexparameterrt.

6.2. Instantons

The configurationalspacein which the a- fields are definedis topologically equivalent(after Wick
rotation andcompactification*)to a two-dimensionalsphere.On theotherhand,in the 0(3) model the
a fields “live” on the sametwo-dimensionalsphere,(a-’)2+ (a-2)2+(a-3)2=1. Thus, thereshould exist
topologically non-equivalent classes of field configurations corresponding to topologically distinct
mappings of the two spheres on each other. It is also clear that for an 0(N) group with N> 3 all
mappings~

5N-t are topologically equivalentto the trivial oneand,hence,instantonsare absent.
The expressionfor the topological chargeq in the Euclidean0(3) sigma model is adducedin the

pioneeringpaper[4]. It reads:

q = ~— J d
2x �“‘~�,.,,a-”ô,.’a-I~8~a-c. (75)

One can easily convince oneselfthat the integral (75) indeed meetsall necessaryrequirements.To
illustrate this factwe shall show that, oncethe asymptoticsof a- is fixed, variationsof a- do not changeq.
Indeed,keepingthe termslinear in ~a-we get

* The term “Wick rotation” meansthat we are dealing with Euclideanspace.The term “compactification” roughly speakingmeansthat all

infinitely distantpointsareidentifiedwith asingle point. In otherwords,we are consideringonly suchconfigurationso-’(x) that havea uniquelimit
as x[—*~, irrespectivelyof thedirection followed.
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bq = _Jd2x�~~~~�,.v{(&ra)ô,.o-” ô,,a-’~+ 2o” 8,.(~o~)d~a-c}

= ~—Jd2X�”~�,.r{28,.[a-”(&a-b) 8~a-d]+ 3(~a-”)8,.a-b8~a-c}. (76)

Here the first term is a full derivativeand hencereducesto a surfaceintegral. This integral in turn
vanishesbecausethe distortionsof a- arelocalized,by assumption,Sa-—~0 if Ixl —~~. The secondterm is
equal to zero by itself. Indeed, the constraint a-”a-” = 1 implies that a-” 6a-” = 0, or ta-” (x) =

�“~ o”(x) V(x) wherepe(~)is someisovector.Substitutingthis relationyields

�~.2&�,.~�adea-dv0,.o~’8,,a-c= 2�,.~[V’(8,.u2)ô~a-c]= 0.

Thus, q is constantunder continuousvariations of a-, a topological characteristicthat labels the
classesof thefields. The normalizationfactor(8IT)1 is chosen[4] in sucha way that q takesonly integer
values0, ±1,±2,etc. The trivial (vacuum) field configuration o~(x)= const. evidentlycorrespondsto
q = 0.

If q � 0 it is convenientto rewrite the action in the following identicalform

S= ~ Jd~x[t9,.a-”+ ~abca-b~,.’~ 8~,u’~]2+ ~-~--~ q. (77)

Oneimmediatelyseesthat local minima of the action areobtainedwhen

= ~�“!“~a-~’�,.~a~V. (78)

This is the duality equation in the 0(3) sigma model. Its solutions, instantons,satisfy the classical
equationsof motion as well. Anti-instantonssatisfy the sameequationbut with a plus sign in the
right-handside.

Due to 0(3) invariance,the existenceof a solutionwith asymptoticsa-”(x)Ip~i..~.= a-~sywould imply
that there exist rotatedsolutionswith any asymptotics,compatiblewith the constrainto-”o” = 1 If

—~1, a-1’2 —~0 (jxI —~ oz) we shall referto theseboundaryconditionsas to thestandardones.
The one-instantonsolution satisfyingthe standardboundaryconditionshasthe form [4]

~_ 2((x—x
0)y) 22[(x—xo)xy]

a- (x—xo)
2+y2’ a- — (x—x

0)
2+y2

([ax b]nsaib
2-a2b1), (79)

where x0 and y are arbitrary 2D vectors, x0 plays the role of the instantoncentre (two collective
coordinates),y~ p is the instantonsize, and,finally, the direction of y fixes the instantonorientation
with respectto the third axis in isotopicspace.Thus,eq. (79) containsfour collective coordinates.In
principle, one can rotate this solution around the first and/or the secondaxes in isotopic space,
producing other solutions with “non-standard” asymptotics.This would clearly bring in two new
collective coordinates.
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it is worth noticing that

(8,.a-”(x))2 = 8y2/[(x — x
0)

2 + y2]2,

andthe one-instantonactionis

2 a 2

So~-rj d x(8,,o (X))insi~ji. (80)

Moreover, the topological chargecorrespondingto eq. (32) is

q = ~L J Ea& (a-”(X) a,.’a-b(x)8~a-c(X))~~
51�“~ = 1 . (81)

Combining the definition of the topological charge,eq. (75), with the axial anomaly,eq. (66), we see
that (just like in QCD) the instantonnecessarilygeneratesfermioniczero modes.More exactly, in the
one-instantontransition ~Q5 = 4 (05 standsfor the axial charge).In other words, each instanton is
accompaniedby four fermion legs.This fact will be importantfor us later.

Let us now show how onecan easilyfind thesolution(79) andothermulti-instantonsolutionsstarting
from the duality equation.In termsof the complexfield ~ eq. (78) reducesto [4]

(82)

where

z—x1+ix2, Z—X11X2.

Any function that dependsonly on z satisfiesthis equality. Moreover, the classicalfield evidentlymust
haveno essentialsingularities,and,hence,p(z) mustbe an analyticfunction of z. However,poles are
admissible— apole atsomepoint 2 simply meansthat a-

3—* —1 at x
5 —~Re2, x2 -~ Im 2.

The only analytic function with no poles is qs(x)nsconst.,the trivial vacuum solution. Analytic
functionswith onepole correspondto a one-instantonsolution, q = 1, with two polesto two-instanton
solution,q = 2, etc.

For one instantonthe mostgeneralparametrizationis

= C+ y/(z — zo) (83)

whereC, y, z0 are threeindependentcomplexconstants(six realcollectivecoordinates).Using eqs.(67)
onecan express(a-”)jnst in termsof ~ andcheckthat the standardboundaryconditioncorrespondsto
C = 0. Moreover,z0 is just the position of the instantoncentre,andy hasthe samemeaningas in eq.
(79); ~lplays the role of the instantonradiusp, while thephaseof y is the angleof rotation aroundthe
third axis in isospace.Adding C we rotatethe instantonaroundthe first and/orthe secondaxis.

Just like in QCD, differentiationwith respectto the collective coordinatesyields the zero modes,
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bosoniczeromodesin the caseat hand.*Two complexmodeswhich will beof interestare

(~o)’— y/(z— zo)2, (~‘o)2-= 1/(z — zo). (84)

Their geometrical meaning is quite simple: we have four real modes, two of them are associated with
translations, one with dilatations and the last one with rotations around the third axis in isotopic space
(the latter do not change the standard asymptotics).

If the asymptotics of the pseudoparticle field were not fixed, there would arise two extra zero modes
corresponding to rotations around the first and second axes. However, simultaneously the trivial
amplitude correspondingto the zero topologicalchargewould acquirethe sametwo zeromodes— the
phenomenonhaving no parallel in QCD. Moreover, since the one-instantonamplitude is always
normalizedto perturbationtheory, a-”(x) = const.(seebelow) the effect of the two extrazero modes
would cancelout andwe maydisregardthem from the verybeginning.

Thus far our discussionof instantonswas independentof fermions. As well-known from QCD the
most drastic effect of masslessfermions is the appearanceof fermionic zero modeswhich totally
suppressthe instantonamplitude in the absenceof externalfermionic sources.

The model we are consideringis no exception.Moreover, as was mentionedabove, the numberof
the fermion zero modes is known beforehand,from the considerationof the axial anomaly. For
instance,for the instantonwe expectfour (real) zeromodes.

Let usdwell on this issue.First of all we mustperforman analyticalcontinuationof the Lagrangian
(71) to Euclideanspace.The procedureis quite trivial for the bosonicpieceandis slightly lesstrivial for
the fermionicone. A detaileddiscussionwith all relevantdefinitions can be found in the review paper
[42] andwe give heredirectly the final answer

(85)

where, in Euclideanspace,IY’ and ~I’are to be treatedas independentvariables,x = 1 + ~, andy~,
y~,the Euclideangammamatrices,satisfythe standardalgebra~{y~y~}= 8,.,.,. A convenientset of y’s
is

y~=a-,., ~t=1,2.

Notice thatsince 1J~and ~ are independentcomplexvariablesin Euclideanspace,andnot constrained
by the Majoranacondition, thereis no needfor the gammamatricesto bereal, as in eq. (48).

The fermion zeromodessatisfy the classicalequationsof motion

-iy,.8,.~+~y,.~1’(çc~ a,.~)+4(~÷~P)~1’=0 (86a)

where ‘P = ‘Pinst andwe must imposean additional condition

* Instantonsin QCD are reviewed in refs.[41,421.
The superscriptE is hereafteromitted.
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(86b)

ensuringthe absenceof the sourceterm in the classicalequationfor ‘P.

In principle,onemight try to solve eq. (86) explicitly, but fortunatelysupersymmetrydoesthe job for
us. The solution of the bosonic equationis already known, ‘Pinsi. Applying to it a supersymmetry
transformationwe can generatesolutions of the fermionic equation. This fact is general for all
supersymmetrictheoriesandwas first mentionedin refs. [43,44].

Let us considerthe Euclideanversion of the superfieldct as definedin eq. (72), andput ~ = F = 0,
‘P = ‘Piflst. Shifts of 0 evidently lead to no changesof i becauseXch stays the same.On the contrary,
undershiftsof 0~,0~~ 0~+ ~

(x~h),.—~~ + 2i~y,.0.

In this way we generateII’,

= —2V’2 ia~y/(z — z0)
2,

1p~)O, F=0 (87)

where(1, 2) are the spinor (Lorentz) indices, a~ ~ and the meaningof the subscriptss (super-
symmetry)will becomeclear in a moment. Now, the readermay easily check that the eqs. (86) are
satisfiedidentically.

This is not the endof the story,however.Just like supersymmetricgluodynamics,the Lagrangian(85)
containsno dimensionalparametersandits scaleinvarianceat the classicallevel is obvious.Combining
this scale invariance with supersymmetrywe arrive at the so-calledsuperconformalgroup, which
includesconformaltransformationsandtheir supersymmetricpartners(for a discussionof superconformal
symmetryin gluodynamicsseee.g. ref. [34]).

The fermion sector of this group consists of the ordinary supersymmetrytransformationswith
parameters~ and ~ — constantGrassmannspinors— plus the same transformationswith x-dependent
parameters,

uf3 ( \ ~-(a)
ç —E X,,,.jjs~,

Both scale invariance and the superconformalinvariance are broken at the quantum level by
anomalies.They are valid symmetrices,however, if we are interestedin the classical solutions.
Performingthe superconformaltransformationswe get anotherfermion solution*, introducingin this
way an extrafermion collectivecoordinate/3

= —2’I2 i/3 y/(z — zo),

(88)

where/3 is someGrassmannnumber.

* Let us noticethat a simpleexaminationof eq. (86)showsthat any spinor of thetype ~pW= f(z), ~ = 0, wheref(z) is anarbitrary function of
z, satisfiesthis equation.One may ask: “why is preferancegiven to thesolutionsquotedand not to someothers?”On reflection onewill conclude
that eqs. (87), (88)give theonly normalizablesolutionswith theappropriateanalytic behaviour(1(z) mustbe meromorphic).
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Thus, we havetwo complex fermion collective coordinateswhich are equivalentto four real zero
modes,the numberexpectedfrom the axial anomaly. It is worth emphasizingthat the modesfound
possessdefinite chirality

5,i, —

~ ss(sc)— T ss(sc)

Finally, we may write the super-instantonin the following conciseform:

— y(1+4i0~2~p)
iflSi — — — Aa(2) +

z~, z
0 ~ a

(90)
Z~h= z + 2i0~

1~0~21.

6.3. Instantonmeasure

The readerfamiliar with instantoncalculus in QCD certainlyremembersthat the basic object is the
amplitude for the one-instantontransition (another name for the same quantity is the instanton
contributionto the vacuumenergy). In QCD this amplitudeis often called the instantondensity,andit
plays the key role in instanton-basedvacuummodels[45—47].In supersymmetricgluodynamicswe have
managedto find the one-instantonamplitude exactly [19] and this fact has allowed us to extractthe
exact/3 function.The descriptionof themethodusedin supersymmetricgluodynamicsis our main goalin
this sectionandwe thusproceedto a discussionof the one-instantonamplitude in the a model.

The instanton centre may be located at any point in spaceand, moreover, the instanton size
and orientation may be also arbitrary. It is intuitively clear that the amplitude of the one-instanton
transition I must be proportionalto the integral over x

0 and p. (For a more strict argumentsee refs.
[48,41].) In the supersymmetricmodel, integrationover the bosoniccollectivecoordinatesis necessarily
accompaniedby an integrationover their fermionic counter-partners.In such a caseafter integrating
over the instantonorientation,I reducesto a function of g0, M0 (ultravioletcut-off) andp times

dxodpdada~d/3df3~.

The integrandbearsa naturalname:the instantonmeasure.
In ref. [19]it hasbeenshownthat,dueto supersymmetry,the instantonmeasureis actuallyfixed and

can be written out almost immediately,up to an overall numericalfactor. Let us explain this important
point in somedetail. First of all, the leadingexponentialfactor

I — exp(—4IT/g~)

is determinedby theinstantonaction,S(~jnsi). The pre-exponentialloop correctionsaccountfor the fact
that the fields fluctuatearound binst.

To get the one-loopcorrectionwe represent~1ias J~,plus a small deviation,

= ~ + &i1~
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andexpandthe action in Wi keepingonly bilinear terms.The resultingfunctionalintegral is Gaussian
and, in principle, can be done. Symbolically, it can be written as a productof determinantsin the
backgroundinstantonfield.

Moreover, the calculation of multi-loop correctionsis, generally speaking,a very difficult task.
Fortunately, in supersymmetrictheoriesone does not need to calculate anything. All multiloop
contributions to the one-instantonamplitude vanishand the samewould be valid for the one-loop
contribution if it were not for the zero modes. The situation is reminiscent of the well-known
cancellationof boson and fermion vacuum loops in the “empty” vacuum (with no instanton back-
ground)[49].The presenceof the instantonactuallydoesnot affect this cancellation.

6.3.1. One-loopcontribution, non-zeromodes
Let us forget for a while about the existenceof the zero modes.We shall shortly return to their

discussionandfirst integrateover “orthogonaldirections” in functionalspace.
It is convenientto introducethe variations~p and3~I’ in the following way

‘P = ‘P~nst~~’P, j’~’ ~
1’inst~-~1~ (91)

where ‘Pinst and ~ standfor the classicalsolutionsdescribedabove.Substitutingeq. (91) into eq. (85)
yields, in the bilinear approximation[38]

8 —2

S~=J d2x [ (_4~x~2~)b’P2ib~r[ ~ aZ~ (92)

where

—1+ + —1~l- 2/ — 2
Xo — ‘P inst’Pinst — )‘ z Zo

Now, we proceedto diagonalizethe bilinear form figuring in eq. (92). To this end we must find the
eigenfunctionsof the correspondingoperators.The bosonicmodesare definedby the equation

— ~ ~ = E~x~2~i’P~ (93)

where E~is the nth eigenvalueand Sq~~is the correspondingeigenfunction, normalized by the
condition

I ~‘P~~’P~Xo2d2X 1.

Notice that the operator—(8/8z)~~2(8/8~)indeedpossessesonly non-negativeeigenvalues.
We shall not try to solve eq. (93). Insteadit will beshown that eachbosonicmode (with E~� 0) is
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necessarilyaccompaniedby two “degenerate”fermionic modes.The equationfor the fermion eigen-
functionsis

8 -20 .sz Xo r if,(1)i r~i1,(1)
I~ n I_

a L~1,2]— ~ L~I,2 . (94)
xo2~ 0

It hastwo solutions— thisfact immediatelystemsfrom eq. (93). Indeed,the first solution

n — ‘Pn~ — E~V2 82

correspondsto ~‘,, = —En, while the secondone

(1)1~

‘~ ~ — E~\/2 82

correspondsto g’~= E~.The two-fold “degeneracy”of the fermion modesis a consequenceof the y~
invarianceof the model. Needlessto say that the boson-fermion“degeneracy”reflects the supersym-
metry.

Perhaps,many of the readersare alreadyconvinced that bosonand fermion contributionscancel
eachother.For thosewho arenot yet convincedwe canmakea few explanatoryremarks.Accordingto
the standardrulesof functionalintegration

J D~tp~(x)D~p(x)-3~ = fl ~-. (95)

On the otherhand,

r 2ifx~2

JD~V~(x)D8~P(x)-+Det Z = fl 2i~,= fl 4E~. (96)

L2ix~2~ 0

As a result, all non-zeromodescombineto give unity.
These formal manipulationsshould not overshadowthe very simple and generalmeaningof this

phenomenon.In all supersymmetrictheoriesthenumbersof bosonandfermiondegreesof freedomare
equal to each other (possibly, with the exception of zero-energylevels). The energy levels are
degenerate(supersymmetry!),hencethereis no surprisethat the fermion loop coincideswith the boson
oneup to a sign (the minussign appearsbecauseof the different statistics).This fact is independentof
the presenceof the instanton*.

* It took severalyearsto realizethat thecancellationavowedfor the“empty” vacuumis valid in any self-dualexternalfield aswell [501.
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6.3.2. One-loopcontributionzero modes
The zero-energylevels,the zeromodes,are exceptionalsincetheyaregenerallyspeaking,not paired.

All such modeshave a geometricalmeaningreflecting the symmetriesof the classical action. Not all
symmetriesgeneratezero modes, though, some are realized trivially. For instance, the Lorentz
invarianceis not representedby specialzeromodes.The reasonis simple— the instantonsolution (79) is
a scalarwith respectto combinedrotations in coordinatespaceand in isotopic space.Thus, to avoid
doublecountingit is sufficient to accountonly for isotopicrotations.Likewise, conformalinvarianceis

equivalentto translationandsimultaneousdilation.
As for fermion zero modes, one can easily convince oneself that only one of the two possible

combinationsof the supercurrentsgeneratesa non-trivial ~ startingfrom (a-”)jnsi, namely,~(S”+ S”).
Another linear combination,~,(S”— 5”), leadsto the trivial (vanishing)fermion field.

The integration over the coefficients in front of the bosonzero modes is non-Gaussianand, as is
well-known, we must switch to integration over the correspondingcollective coordinates,hut, in
passing to collective coordinates,we haveto introduce Jacobians.Again, insteadof doing a direct
computation,we shall try to find a round-aboutway.

First of all, it is worth recallingthat we are interestedin the instantonmeasureaveragedover the
instantonorientationin isotopicspace.Practically,this meansthat onemust integrateover the phaseof
y. As was explainedabovethereis no needto accountfor two other possiblerotations— this effect is

totally cancelledby just the sameeffect in the “vacuum” amplitude(ff(x) = const.).
Secondly,we must takecareof the ultraviolet regularizationof the theory. It is convenientto usethe

Pauli—Villars method in the instantonbackgroundfield (seeref. [48] and a very detaileddiscussionin
the reviewpaper[42]). introductionof the Pauli—Villarsregulators,bosonicandfermionic, resultsin the
following. The determinantfiguring, say, in eq. (95) is substitutedby

[Det[_4 -~- x~2-~]/Det[_4 ~ xo2 ~ + M~]}

where M
0 is the regulatormass.In otherwords, the productof eigenvalues(4E~tis substitutedby

fl~(M~/4E~).The massterm for the fermionregulatoris linear in MI) and,hence,ll2i~~—~ fl(2i~~/M0).
The appearanceof M0 obviously does not affect the cancellationof non-zero modesas shown

above—eachboson mode enters accompaniedby a pair of “degenerate”fermion modes, and the
correspondingM0 factorsdrop out.This is not the case,however,for the zeromodessincetheir number
is unbalanced.

As usual [48,42], each complex boson zero mode yields a pre-exponential factor Sins,M
2o=

const M2o/go2, where g
0 is the barecharge,go = g(M0). We havetwo such modes(seeeq. (84)), hence

(M~/g~)
2. (97)

On the otherhand, two (complex) fermion zeromodesresult in the factor

(g~/M
0)

2. (98)

The only point whichmight deservea commentis the presenceof theg~factor in eq. (98). In QCD we
are used to the fact that the fermion zero modesgenerate(S

1~5~)°.Actually, our definition of the



V.A. Novikoreta!., Two-dimensionalsigma models: modellingnon-perturbativeeffectsin quantum chromodynamics 151

collectivecoordinatesa and /3 doesnot correspondto the standardnormalizationof the fermionzero
modes.Comparingeqs. (87), (88) with eq. (91) we concludethat

J~ ~)zero modesX~
2d2x g~2.

This implies in turn that the integral overdadat, emergingfrom

0 2ifx~2

Det Z

2ix~2~ 0

is accompaniedby the factor (M
0/g~)~,coming from the regularizingdeterminant

M0 2i~..X~2

Det
2iX~2I M0

Of course,the sameis valid for df3 d/3~.
Assemblingall piecestogetherwe get [64]

I = const M~exp(—4ir/g~)d
2x

0 dada~df3 d/3~. (99)

Herethe power of p is reconstructedfrom dimensionalarguments.(Indeed,I mustbe dimensionless.
Moreover,dueto the uniformity of superspace,the measuremustbe independentof x0, a, /3 andmay
dependonly on p.)

Thisexhauststhe calculationof the instantonmeasureat the one-looplevel.
p, a, a~,/3 /3k) may be consideredas an effectiveinteractionwith four fermion legs.All vertex

correctionsto this four-fermion interaction vanish (see subsection6.4). It is important that renor-
malizationof the ~Pfield is alsoabsent;the 0(3)sigmamodelpossessesonly oneZ factorrenormalizing
the couplingconstant(providedthat all computationsare performedin an 0(3) invariant manner;see
appendixC for details).

Thus far, our derivation is perfectly analogousto that given previously [19] in supersymmetric
gluodynamics.The careful readermight have,perhaps,noticeda peculiarity. The modes(‘P0)2 and !P5~
are actuallynon-normalizableand call for an infrared regularization.We shall not dwell on this issue,
referringratherthe readerto the verydetailedpaper[38].The situationcan besummarizedas follows.
If one introducesan infraredcut-off R it cancelsout all the samein I since (‘P0)2 yields In R/IyI in the
numeratorof I and ~I’~producesthe samefactor in the denominator.

6.4. Superinvarianceof theinstantonmeasure.Multiloop corrections

In this sectionwe will arguethat eq. (99) is actuallythe exactresult for the instantonmeasure.To
prove this let us first show that it is invariant undersupersymmetrytransformations.
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What are the transformationlaws of the collective coordinates?The simplestway to answer this
questionis to examinethe instantonsuperfield (90). Applying supersymmetrytransformationsto the
original solution ~ just reshufflesthe collectivecoordinates.Thus, one can readily checkthat, under
the shift 0 —~ 0 +~, 0~~ 0~+ ~, the original solution becomes

y(l + 4i 0(2)/3 + 4i C2~/3)
~ifl5i ~c

5 — z0 + 4i ~+(l)0(2) — 4i 0~
21a~— 4i ~

— y(l + 4i ~(2)p) (1 + 4i 8(21/3) 100

— Zch — (z
0+ 4i ~

2~a~)— 4i 0~2~(a~+ (t))’ ( )

wherewe only keepterms linear in the transformationparameters~, ~.
In otherwords,the collective coordinatestransformas:

y —s y(1 + 4i ~(2)f3) )?—~j7(I — 4i /3+~+(2)); (lOla)

z
0—~zo+ 4i ~ , 2~—*

2o~~4i a~”2~; (lOib)

a—* a + C1~, a~—is a~+ (t); (lOic)

/3-*f3, f3~—~f3~. (bid)

It is ratherobviousthat the instantonmeasure(99) is invariant underthesetransformations.Moreover,
d In p is the only expressioncompatiblewith the requirementthat the measureshould be invariant
under the transformation(lOla) (we recall the reader that p y~).it follows from this observation
alonethat higher loops cannotgeneratecorrectionsof the type 1 + cg~In M2

0p
2+ ~ sincethis would

violate supersymmetry.Shortly we shall show that correction factorsof the type 1 + cg~+c’g~+...,
which are not ruled out by the aboveargument,do not appearin I either.

Skippingsomesubtleties, let us sketch the proof of this assertion.Considerto this endthe Feynman
graphsin the instantonbackgroundfield. An exampleof the three-loopcontributionto I is displayedon
fig. 9. The graph hastwo verticesandfour superpropagatorsconnectingthem.An integrationoverboth
supercoordinates(x, 0, 0~)and(x’, 0’, 0’~)is hereimplied. Furthermore,assumethe superpropagatorsin
the instantonbackgroundto be known. Fixing the instantoncollectivecoordinatesandintegratingover
(x’, 0’, 0’~),we must arrive at an expressionof the type

J d2x d20d20~f(x,0,0k,xo,p,a,/3,a~,/3~) (102)

ct, 0, &~

0
~‘, e’, e’~

Fig. 9. Multiloop contribution to thevacuum amplitude in the presenceof an instanton.The solid lines denotesuperpropagatorsin the instanton
backgroundfield.
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where f is some function. The only constraint on f is that it is invariant under supersymmetry
transformations.A single glanceat eqs.(101) convincesus that, generallyspeaking,f is a function of the
following arguments:

z — z0— 4iO~
2~a’, 2— 2~+ 4iaO”21

0~1—a, O~°~—a’~

y(l + 4i/30~21), y(1 — 4i0”21$~)

What is important is that 0(2) and 0~2) do not appearin this list by themselves.As a result, the
integrationover d2x d20 d20~yields zero.

Indeed, by shifting x we get rid of the dependenceon O~2~a~and a0”2~.In order to get a
non-vanishingresult we must then invoke the dependenceon the variablesy(l + 4i/30~2~)and ~(l —

4i0~2~/3~).This doesnot help,however;if it did helptheanswerwould be proportionalto f3/3~ This in
turn would imply that integrationover two fermioniczeromodes(namely,sc-modes)can be performed
and that instantonscontributeto transition with changeof chirality by two units, not four as usual.
However, the changeof chirality is fixed by the topology of the classical solution and cannotvary in
perturbationtheory.Hence

Jd2x d20d2O~f=0,

andthis completesthe proof of our assertion.
It is remarkablethat the proof of the non-renormalizationtheoremfor the instantonmeasureruns

very muchin parallel to the analogoustheoremin supersymmetricgluodynamics[19].

6.5. TheexactGel/-Mann—Lowfunction

A last effort, andwe shall get as a rewardthe Gell-Mann—Lowfunction of the modelconsidered,and
this to all ordersin the couplingconstant.

Let us recall that the 2D sigmamodel is renormalizable.Moreover, all renormalizationsreduceto a
singlefactorZ, renormalizingthe couplingconstant,Z/g~= 1/g~(seeappendixC for somedetails).All
physical amplitudes,being expressedin terms of the renormalizedcouplingconstant,mustcontain no
ultraviolet parameter.In other words, the explicit M

0 dependence,exhibited by eq. (99), must be
cancelledout by an implicit dependenceentering through g0 = g(M0). This requirementimmediately
yields [64]

g
2(Mo)/4ir = [ln(M~/m2)]t

(103)
/3 = (d/dIn M

0) g~/4ir = —2(g~/4ir)
2,

where m is a dimensional constant playing the role of AQCD, the scale parameterof quantum
chromodynamics.

Note that the exact /3 function (103) actually coincideswith the one-loop result known in the
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literature [51]. In 4D supersymmetrictheoriesthere exists a general theorem [52] stating that, for
extendedsupersymmetries(n � 2), all the coefficientsof the /3 function (with the possibleexceptionof
the first one)vanish.The proofof the theoremrelies on somedimensionalconsiderationsspecific to the
4D caseand doesnot apply directly — as far aswe can understand— to the 2D theoriesconsideredhere.
However, the similarity betweenthe final answerfor the /3 function makesus suspectthat an analogous
generalassertionshould exist in two dimensionsas well. It is all the moreprobablesincethe absenceof
higher loop correctionscan be proven— by meansof the instantoncalculus— for a very broad class of
the so-calledKäller a--models[53].

It is worth addingthat, unlike in QCD, in the sigmamodel, onecan readily analysea more general
solution with topological chargeq = k, or k-instantonconfigurations.These are characterizedby 4k
bosonicand4k fermionic collectivecoordinates,in particular,each of the k instantonshasits own size
and orientation. The dependenceof the k-instanton transition amplitudes on these parametersis
certainly rathercomplicatedandcannotbeextractedalongthe lines sketchedabove.However,the Mo
dependenceof the measurecan be found.

As a matter of fact, the correspondingformula

1k — {M~exp(_4IT/g~)}k.

is a trivial generalizationof eq. (53). If we apply the sameprocedureas that followed aboveto extract
the /3 function, we arrive at the sameresult,as it shouldbe the casein any self-consistenttheory.

6.6. instantoneffects

As an exampleof morepracticalapplicationswe shall calculatein this sectionthe two-point function
[38]

H(x) = (OIT{C(x) 0(0)}lO) (104)

where

= ~(~‘~/“ +
1~~~1jay

5
1pba-~)= x

2 ‘P~(i+ y5) 1!’,

= a-
3.

This exercisewill allow oneto find the vacuumcondensate(t/i”~/i”~. Moreover it is promptedby similar
calculationsin supersymmetricgluodynamics[54],which establishthe existenceof a vacuumcondensate
of the gluino fields, (A”A”) � 0.

The strategyfor evaluatingvacuum condensatesby meansof the instantoncalculus is as follows.
Consider an n-point function, vanishing to all orders in perturbationtheory by virtue of chirality
conservation.Takecare,however,that thisn-point function includescontributionsby instantons.Then,
at short distances,the function is saturatedby the contributionof small-sizeinstantonsand can be
reliably calculated.The crucial point is that therealwaysexists somespecific n-point function which
reducesto a constant in this approximation.Moreover, supersymmetryguaranteesthat, once the
function is a constantat short distances,it remainsthe sameat all distances.In this way the cluster
decompositiongetsviolated at large distances,signalling the presenceof a certainvacuumcondensate.
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All thesepoints can be illustrated using the example of the two-point function (104). First, the
operatorC(x) is invariant under 0(3) rotations. Second,due to y5 invariance,the correlator (104)
vanishesto any finite order of perturbationtheory. Third, there exists a non-trivial one-instanton
contributionto 11(x); moreover,only q = 1 configurationsare relevantsince, in this case,the instanton
is accompaniedby exactly 4 fermion legs, annihilatedby the externalfermionicsourcesfiguring in eq.
(104). Similarly, k-instantonconfigurationsmight contributeto the 2k-point functionsof the fermion
densities.

Let us considerfirst the two-point function 11(x) in the limit of vanishing x, x —~0, where it is
dominatedby small-sizefluctuations.Moreover,becauseof asymptoticfreedom,the calculation is well
undercontrol and is reliable.

To performan explicit calculationwe introduce,following ref. [38],complexfields ~P,~J’~andmakea
Wick rotation (notethat, in Euclideanspace,the y5 matrix is just the same, = a-

3). Then we get

H — . ~ f ~P~(x)(1 + y~)~P(x)~P~(0)(1 + ~ !P(0)(x) — const ( 1~. 2(x 2(0) ( )

(seeeq. (70)).
The remainingcomputationsare extremelytrivial. We simply substitutex and ~I’by their instanton

values:

fl+ys\ —. 1 1 ± 1 1
2 ) ~P(x)—*—2~ ~~_~0ya ~

2,
\ 2 j z—zol

andinsert the instantonmeasure.Simplealgebraicmanipulationthen yields:

11(x)= const M~exp(—4IT/g~)f d
2xo da~da d/3~d/3

p4~z~2a~a/3~/3
— Zo~”(1 + p2/~z— z~) zo~4(1 +

r ,i 4 2
2 2 2 pZ

= const ‘M
0 exp(—4IT/go)J d x0 p (~z— z0~

2+ p2)2 (~zoI2+ p2)2’

An integrationover x
0 andp can be performed,for exampleby meansof a Feynmanparametrizationof

the integral. We finally arrive at [38]:

TI(x)=const’m
2�0 (106)

where m is the constantenteringin the definition of the runningcoupling constant,seeeq. (103).
The result is obviously renormalization-groupinvariant.Moreover, reiteratingthe argumentpresen-

ted in subsection6.4 onecan convinceoneselfthat higher orderg2 correctionsdo not modify eq. (106).
In otherwords,the expressionfor 11(x) quotedin eq. (106) is exact.
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Evenmoresurprisingis the fact that 11(x) is actually x independent.Of course,literally speakingthe
assertionrefersto smallx, where the one-instantonapproximationusedabove is justified. However,
havingestablishedeq. (106) at short distanceswe can show that, by virtue of supersymmetry,it mustbe
valid for all x.

Justthe samesituation is realizedfor the two-point function of gluino densities,

(OIT[A” IiTLAa(x) ~b 1 ~Y Ab(O)} o~= const.

Moreover,in this casethegluino density~“(1 + y5)A” (a is the colour index) is the lowestcomponentof
a chiral superfieldso that the correlatorconsideredcan be nothingelse but a constant(seeref. [54],or
the morerecentpaper[55]).A similar argumentworks conceptually(but not technically)in the caseof
the sigmamodel.

Let us considerfor definitenessthe Euclideanversion of the model. The operator

C = 2X2r~t~P(t)

is a component of the real superfieldIn(1 + Ii~I),

ln(1 + ~I:i+~I:~)= . . + ~ 2~2~P”t~W~t1+.‘‘ (107)

Note that, since y~= a-
3, it is perfectly legitimate to trace only the upper (or only the lower)

componentsof the spinorswithout violating Lorentz invariance.
Among other componentsof the samesuperfieldthere is a fermion operatorwhich enterswith

0O�a~O~(2~1.We denoteit by ~ Moreover, it is evidentthat

(Dl K~°(x)C(0) ID) = 0 ; (108)

since therecan be no correlation betweenthe bosonand fermion operatorsin the vacuum. We can
perform now a supersymmetrytransformationwith the parameters

= ~-(2)= 0 ~±(t) = 0 ; ~‘~2) � 0 . (109)

The key observationis that, undersuch a transformation

= i~~
21A,.a,.C (A

1 = ~, A2 = i/2) and~C= 0,

and,applyingthistransformationto eq. (108) we find

a,.(0I {C(x) U(0)} 0) = 0

or

(01 {C(x) C(0)} 0) = const, (110)

Sincewe havemanagedto show that, for x -~ 0, the constanton the right-handsideis non-”anishing,
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supersymmetrybooststhis non-vanishingresult to all distances.But, at largedistances,eq. (110) would
violatethe clusterdecomposition.It is naturalto interpret [55] thisfact asdue to the occurrenceof the
correspondingvacuumcondensate,

(0lCI0) = const’m. (111)

The validity of this interpretation,a biquark condensate,can be checkedwithin CP(N) models[56].
Indeed,in thesemodels,sucha biquarkcondensateis known to exist in the largeN limit [57,58] andits
valueis fixed theoretically.On theotherhand,instantoncalculationsyield aresultanalogousto (111).The
Greenfunction G(x1, . . . , x~÷~)involving (N + 1) pairsof ~ ~Phasbeenfoundin ref. [56].Analogouslyto
eqs. (106), (110), this (N + 1)-point function turnedout to be x, independent.

In vein with thediscussionabove, this fact implies that

(~i~!P)insi= { lim G(x1, . . . xN+l)}~ = const in
lxi— xil—*°°

what is remarkablesincethe instantonresultcoincidesexactly [56]with thatobtainedwithin theleading
1/N approximation[57,58].

It is amusingto observeoncemorethat the analogybetweengluodynamicsandthe sigmamodelgoes
very far. In particular,althoughthe condensatesconsideredare perfectly consistentwith supersymmetry
as far as the gauge-or 0(3)-invariantsectorsareconcerned,theyseeminglydo indicatesupersymmetry
breakingin the gauge-or 0(3)-noninvariantsectors.

To begin with, consider A”(1 + y5)A”. On the one hand this operatoris proportional to the lowest
componentof the superfield WaW~.Moreover,it is well knownthatif the lowestcomponentdevelopsa
non-vanishingvacuumexpectationvalue this doesnot meanany violation of supersymmetrysincethe
lowest componentcannotbe representedas an (anti)commutatorwith the superchargeof someother
component.

On the other hand, the sameoperatoris a componentof the superfield VW, occupyingthis time a
middle position. More exactly [59]:

= ~{Q~k~y,.A~}. (112)

If so, (OlkA 10) � 0 implies that 010) � 0 and supersymmetryis spontaneouslybroken.The paradox is
seemingly solved as follows. Supersymmetryis spontaneouslybroken but this breakdownmanifests
itself only in the gauge-noninvariantsectorof the theory, while the gauge-invariantsector remains
supersymmetric.The situation is reminiscentof the famousU(1) problem. In that casewe have a
spurious pole generatedby instantonsand coupled to K,. = E,.,,3(A~a~A”0+ ~ This
Goldstonepole,however,decouplesfrom gauge-invariantoperators.Herethe samething happenswith

y,. Aa,.(x).The correspondingcorrelationfunction falls off asx
3at largedistancesin the presence

of an instanton,thus signalingthe presenceof a polecoupledto A”y,.A”,..
By the sametoken, in the 0(3) sigma model the operatorC is not the lowest componentof the

superfield ln(1 + t1i~I). However the lower componentsof the superfield— their anticommutatorwith
Q~yields C — do not possessthe 0(3) symmetry.Thus, supersymmetrymay be broken in the 0(3)
non-invariant sectorand, simultaneously,the 0(3)-invariantsector may well be perfectly supersym-
metric.
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7. Conclusions

This review could be called “Selected topics in non-perturhativeeffects in sigma models and in
QCD”. We haveconcentratedon thoseaspectswhich are interestingprimarily to QCD investigators,
andare rather trivial from the point of view of 2D theorists.Presentunderstandingof two-dimensional
modelsis of course,much deeper.In two dimensions,as opposedto QCD, thereexist varioussubtle
andpowerful methodsallowing oneto give exhaustiveanswersto suchdynamicalquestionsas the mass
spectrum,the scatteringmatrix, etc. Suffice it to mention,for instance,the recentcompletesolutionof
the 0(4) sigmamodel [60],or older results[61] basedon the ZamolodchikovS-matrix approach[62].
Unfortunately,onecan hardly hope to extendthesemethodsand resultsto four-dimensionaltheories,
and we thus leavethem asidehere.

The presentpaper touchesupon issues for which thereexist a close parallel between 4D gauge
theoriesand sigma models.First of all, we investigateWilson’s operatorexpansionin the presenceof
non-perturbativeeffects. A generalformulationis given allowingoneto constructthe expansionto any
order.The crucial role of an auxilary massparameter,the normalizationpoint i.e, is emphasized.It is
shown that the procedure,which is well-definedtheoretically,necessarilyrequiresthe introductionof a
parameter~t. Once this is done, both the coefficient functions in OPE and the vacuumexpectation
valuesof compositeoperatorscan be calculatedwith no ambiguities.

Power (non-perturbative)effectsresult in the mixing of operatorswith differentnormaldimensions.
This point seemsto be unusualfor thosewho are usedto the logarithmic perturbativesituation.

Moreover, the operatorexpansionin the 0(N) sigma model (N —* cc) nicely illustratesa property
inherent to QCD. Namelythat the operatorsentering the expansionof the correlators,like

(OIT{f(a,. a-’~(x))2,f(a,. a-’~(0))2}lO)

are ~ independentin the leadingN approximation.As a result,OPE turns out to be especiallysimple
(andthereis no difficulty in checkingit). Likewise, in OCD, the operatorswe deal with in applications
havea very weak ~t dependence,totally negligible from a numericalpoint of view. For this reasonand
as a rule for practicalproblemsin QCD (but not in theoreticalinvestigationsof OPE!) onecan accepta
simplified recipewhich reads:

(i) draw all relevant Feynmangraphsand calculate the coefficients C, in standardperturbation
theory;

(ii) parametrizenon-perturbativeeffectsby vacuumexpectationvalues(OIC1IO), assumingthat (01C010)
vanish in perturbationtheory for all operatorsexceptthe unit one.

Both prescriptionsbearan approximatecharacter— generallyspeaking,theremay existnon-pertur-
bative contributionsto C1(JL) and, vice-versa,perturbativecontributions to (O~C~(ji)l0).We haveused
the 0(N) sigmamodel in the next-to-leadingapproximationto illustrate the latter assertion.

Another interestingissueconsideredaboveis the low-energytheorems.They expressthe existenceof
symmetries,exact or approximate,and establishstrict relationsbetween various amplitudes. Cor-
respondingrelationsin QCD serveas a uniquesourceof information in connectionwith confinement
dynamics. We haveinvestigatedtwo classesof low-energy theorems:(i) those for the trace of the
energy-momentumtensorand(ii) thosefor the topologicalchargedensity.Their validity is confirmedby
directcomparisonwith exactresultsknownin the0(N) andCP(N — 1) models.Theanalogybetweensigma
modelsandQCD turns out to be very close,but not absolute—somedetailsaredifferent.The natureof
thesedistinctionshasbeenexplained.
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In the secondpart of the reviewwe haveshown that a combinationof supersymmetrywith instanton
calculus results in peculiar consequences.In particular,the exact GeIl-Mann—Low function of SUSY
models is calculable.The correspondingmethod, developedpreviously for Yang—Mills theories, is
applicableto 2D sigmamodelsas well. Moreover,in SUSY sigmamodels,it becomesevensimpler,and
we couldn’t helpusingthis fact for pedagogicalpurposes.The main lessonis that the coefficientsof the
/3 function in SUSY theorieshavea geometricalmeaningand are fixed by the numberof zeromodes,
bosonicandfermionic, in the instantonfield.

Another result, discussedin detail, is the instanton calculation of bifermionic condensates.In
connectionwith this problemthereis a very interestingquestionwhich is left partly unsolved.Namely
the fact that the existenceof ~I’~1’condensatesstandsfor violation of supersymmetryin the unphysical
sectorsof the theory (i.e. the gaugenon-invariantsector for SUSY Yang—Mills, the 0(3) non-invariant
sectorfor the sigma model) mayor may not lead to a situationcompatiblewith generaltheorems,for
instancethe Witten index theorem[63]?

In a broader context, our considerationconfirms that there exists a new way of studying non-
perturbative effects in SUSY theories. Namely, a specific example of non-perturbativefluctuations
(instanton)used togetherwith some generalpropertiesallows one to evaluateunambiguouslysome
quantitieswhich are consideredusually to be governedby poorly-understoodlarge-distancedynamics.
The supersymmetrictheoriesare veryspecific since arigid connectionbetweenshort andlargedistance
dynamicstakesplace.Indeed,nothing can preventappearanceof instantonsof arbitrary small size in
asymptotically free theory where the physical vacuum at short distancesis as simple as that of
perturbationtheory.Proceedingfrom thisfact alone,one is able to fix the full vacuumcondensate.

As for the similarity betweensigma modelsand gaugetheoriesit is supportedoncemore. Results
first derived in gauge theoriesdo find their analoguesin the sigma models. Moreover, in one but
importantcase,the study of sigma modelshas an advantage— the instanton-basedevaluationof the
vacuumcondensate(111) is confirmed by an alternative(and technically very different) calculationof
the samequantity.

In conclusionwe would like to thank A.M. Polyakovwho a few yearsago suggestedus to usesigma
modelsto checkvarious elementsof our approachto QCD (low-energytheorems,operatorproduct
expansion,vacuum condensates).We are also grateful to A. Morozov and V. Fateev for useful
discussions.

AppendixA. Vacuum condensatesfrom functional integrals

In this appendixwe return to the issueof vacuumcondensateanddiscussit from the pointof view of
functionalintegration.

Let usintroducethe generatingfunctional (seesection3.1):

Z[~] = f fl Da(x) Da-(x)expf_~Jd2x [(1 + ‘P)(a,.a-)2+~(a-2_~)]}. (A.1)

If onedoesnot takecareof thenormalizationof the integrationmeasure,thefollowing definition of the
vacuumexpectationvalue seemsto be natural

/ 1 ‘~ i~Z=-~— . (A.2)
E ‘-‘~‘P ~=0



160 VA. Nor’ikor eta!.. Two-di,nensionalsigma models: ~nodellingnon-perturbatireeffectsin quantum chromodvnamics

This recipe immediatelyreproducesthe result of the naive calculation(12)

“a \2\ = N 1 ~LP.. P2 — N 2_

\~ ~a-)f~ J (2~)2p2+m24~ f~)’ A.

p2<”2

It is easyto show,however,that such acalculationcannotbe correct.Indeed,rescalingthe integration

variables

a--~(1+’P)t12a-, a—~(1+’P)a

andassuming,for the moment, that ‘P is x-independent,we get

Z[~] = J flDa(x)Da-(x)exp(-~Jd2x [(a,.a)2~~(a-2~~(l+ ~))]}. (A.4)

Now calculationof the samevacuumexpectationvalueaccordingto eq. (A.2) yields

l~ZVN N 2

(A.5)

This expressioncoincideswith the resultfor (8,.a-)2stemmingfrom the Heisenbergequationsof motion.
It also coincideswith the result obtainedwithin the regularizationprocedureof section3.1 involving a
point-splitting techniqueand the Dyson T-product. However, by no meansdoes it reproducethe
precedingcalculation,eq. (A.3).

The solutionof the paradoxis as follows. Usually, the measureof the normalizedfunctional integral
is independentof the sources.Therefore, to avoid cumbersomeexpressionsassociatedwith nor-
malization, one usually calculatesthe vacuumexpectationvaluesstarting from a formula of the type
(l/Z)~Z/~J,whereJ denotesa source,andZ is the generatingfunctional,normalizedarbitrarily. In the
caseat handthe normalizationfactor for the functional (Al) doesdependon ‘P~andhence,oneshould
vary over ‘P not only exp(—Seff(cp)) but the integrationmeasureaswell. In otherwords, the use of the
formulaZ’ ~iZ/~iJis unjustified.

Variation of the measurejust cancelsout theterms (N/4ir)ji2 in eq. (A.3). As for the functional(A.4)
its measureis ‘P-independent,and the standardexpressionfor the vacuumexpectationvalue leadsto
the correctresult. Thus,all definitions of the matrix element((a,.a-)2)agreewith eachother.

Let us sketch the basic points of the proof. At first, we shall dwell on the question of the ‘P
dependenceof the integration measure.To elucidatethe issue it is convenient to start from the
functionalintegral in phasespace.For one degreeof freedomit hasthe form

I dir(t)dg(t) 1. 1
j ~ 2ir exp~ij [i~-q— H(ir, q)]

whereH(IT, q) is the Hamilton function, IT is the canonicalmomentum.If we divide the time interval
into N small intervals,the correct integrationmeasureis



V.A.Novikoveta!., Two-dimensionalsigma models: modellingnon -perturbativeeffectsin quantum chromodynamics 161

N-i

~ [dir1dg1]dirj~

M L 2IT j Zn-
Integrating over the canonical momentum IT automatically yields the normalized configurational
functional.It is ratherevidentthat, if H(IT, q) is bilinear in IT, the norm emergingin this way is entirely
determinedby the coefficient of IT

2 andis independentof interaction.
The canonicalmomentumfor (A.1) is

7r(x)= (1+’P)aOa-,

andthe kinetic energyreducesto

11 1

T=~j l+’P(x)~~~
Therefore,after integrationover IT, we arrive at the following expressionin the configurationalspace
containingan explicit dependenceon ~:

Du(x, t) = fl fl da-(x, t
1) CV1 + ‘P(x, t1)

1=1

whereC standsfor a numericalconstant.
The functional (A.4), on the otherhand, contains‘P only in the interaction terms, and, hence,the

correspondingmeasurein configurationalspaceis ‘P-independent.This is the reasonwhy the standard
definition of thevacuumexpectationvalue (A.2) leadsin this caseto the correctresult for ((a,.a-)

2) (see
section3.1).

For completenesswe should check that differentiating the measure cancels the quadratically
divergentterm (N/4IT)M

0
2 in the integral (A.3). From the technicalpoint of view it is ratherdifficult to

checkthe cancellationliterally. Indeed,theM~divergenceof the Feynmanintegralmust be expressed
in termsof divergencesof the type(l/�)~’where� = t

1±1— t~is a shorttime interval,appearingwhenthe
functionalintegral is substitutedby a productof ordinaryintegrals(seeabove).

Thereexists,however,a round-about,discussedwith greatcare in the book by FeynmanandHibbs
[24]who devotea whole chapterto the considerationof this problemfor a dynamicalsystemwith one
degreeof freedom.In their case,insteadof ((a,.a-)

2),eq.(A.2), one dealswith the vacuumexpectation
valueof the kinetic term,

(T) = (~-4(t)4(t)) = 1 JDq !~~_exp(iS/h). (A.6)
J Dq exp(iS/h)

It turns out that (T), definedin this way, divergesas

(T)—’ih/2�.

Moreover, it is easyto show that the divergencedisappearsprovidedthat oneusesanotherdefinition,
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(T)= —im ~—JDq(t)exp(iS/h),

andtakesinto accountthe fact that theintegrationmeasuredependson m (m plays therole of a source
analogousto ‘P) The latter definition of the averagekinetic energyis the reasonableone. It is very
important that the final resultemergingafter the cancellationof the divergences,actually reducesto a
matrix elementof productof velocitiesat slightly separatedpoints,

(T) = lim ~-(4(t + �)4(t)) - (A.7)
�—.‘O ~.

The fact that the two definitions,(A.6) and(A.7) are different is due to the equality

(m4(t+�)q(t))—(q(t+�)m4(t))=—ih,

or to the commutatorterm. Thus,on this simple example,we see that the accuratevariation over the
source,andthe Dyson T-product,both yield coinciding results.

It is clear that field theory is not worse in this respectthan a systemwith finite degreesof freedom:
the only important point in the Feynmanproof sketchedabove is the bilinearity in the canonical
momentumof the Hamiltonian.This property is valid in field theory. Hence, in field theory we also
havethe equivalenceof the two definitions of ((a~a-)2),obtainedwith variation over the sourceandwith
the DysonT-product.

AppendixB. Perturbationtheory for o- fields

This appendix is devoted to a variant of perturbationtheory. When discussingthe operator
expansionin the main body of the paper,we haveused as dynamical variable fields, 4~.They are
connectedwith the original fields a-~of the sigma model by a non-lineartransformation.Here we
describehow onecan developperturbationtheory directly in termsof theo~fields.

Let us first explain why it is difficult to deal with the a-’ fields. Eliminating the Nth componentwe
arrive at the Lagrangian(seeeq. (17)):

~[a~a-0a,.a-°+ N/f—a-°a-°(a-k a,.a-k)(V a,.a-e)} (B.l)

(i = 1,. . . ,N — 1; a summationover repeatedindicesis assumedhere).This Lagrangianis adjustedto
thedescriptionof the situationwherethe Nth componentof the a- field is large,

a-N = (N/f — a-ia-i )t/2 — (N/f)112

andwhile all other componentsaresmall. The first term in eq. (B.1) thendescribessmalloscillationsin
a “plane” orthogonalto the direction of a-”, the secondterm accountsfor curvature.From the exact
solutionof the problematlargeN it is knownthat the fluctuationsof all the componentsof the a- field



V.A. Novikoret a!., Two-dimensionalsigma models: modellingnon-perturbativeeffectsin quantum chromodynaonics 163

are actually large,and that the correspondingmatrix elementsin the ground stateare equalto one
another,

(a-ta-k)= ~ik

(a,.a-i a~a-k)= ~6,.~ik(_m2), (i, k= 1,... ,N —1, N).

Now let us try to calculatethe vacuumexpectationvalueof the Lagrangian(B.l). Thereis absolutelyno
difficulty with the first term,

a,.a-’ a~a-t)= ~(_m2) [1 + 0(1/N)].

As for the secondterm, both its numerator

(a-” a,.a-k a-e a,.V)= N~(a-2)((a,.a-)2),

anddenominator

(~—a-a-t)= ~— ~ (1 + 0(1/N))— 0(1/f),

vanish in the leadingN approximation.To eliminatethis uncertaintyof the 0/0 type, one mustensure
a higher accuracy.In principle,this is possible,but all computationsbecomeunjustifiably complicated.
Analogousdifficulties arisein the calculationof the a- propagationfunction andof othercorrelators.As
it is seen from section 3 the a-.—*4, transformationhasallowed one to automaticallyget rid of the
uncertainty0/0 andto deal only with quantitiesreferring to the leadingN approximation.

Thereis an alternativeformalism,however,that leadsto the samegoal. Onecan calculateall Green
functionsworking with the original a- fields in the leadingN approximation,providedthat oneusesthe
externalfield technique.

At first we decomposeo~(x)

a-’~(x) c”(x)+ qa(x)

where c’~(x)is a classical backgroundfield while q’~(x)describequantum fluctuations.Just the same

decompositionis assumedto beperformedwith the Lagrangemultiplier a(x),
a(x)= a~(x)+ aqu(x)

(the a field entersonly in intermediateformulae). The classical field dynamicsis describedby the

Lagrangian

= .~ {a,.caa,.ca + ~ (c~~ca— 1)) (B.2)



164 V.A. Novikoreta!.. Two-dimensionalsigma models: modellingnon-perturbativeeffectsin quantum chromodynamics

while the quantumfluctuationsare governedby the Lagrangian

~2)+~/~(3)~L{a,.qaa,.qa +~q”q” +-.~2c”q”+~qaqa}_Jaqa, (B.3)

Theterm linear in q” andaqu reducesto afull derivativeanddropsoff theactionprovidedthat c”(x) and
a~(x)satisfy the classicalequationsof motion

c”(x)c”(x)= N/f,

a2c”(x) = a~(x)c~(x),

ct~(x)N — a a\2

(,.c~.

The equationsof motion for the quantumfields are

2c”q” + q~~qa= 0, (B.4)

(B.5)

Now weareable tofind thepropagationfunctionof q” in thebackgroundfield c”. Thisexercisewill allow
us to build the operatorexpansionfor the exactpropagator(a-’~(x)a-”(0)).

The first step is linearizationof eqs. (B.4) and (B.5).The relation c”q’~= 0 implies

qajjab’Pb (B.6)

where ‘P” is an arbitraryfield and [Jab is the projectionoperator

H” = ~ab — c”c~’/c2,

Habcb = 0,

= H

Moreover, the linearizedeq. (B.5) is

[a2—M2(c)] (H’Pyz = Ja +ca,

(B.7)
M2(c)= —(a,.c)2/c2.
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Applying the operatorH to both sidesof eq. (B.7), we get rid of the undesirableterm proportionalto
a

[Ha2— M2(c)] (Thp)= —Hf

andthe propagationfunction of the q field takesthe form

D0b(X, y)= -(xI(H ~a2+(8,.c)2/c2~’}l~ (B.8)

Here we have used the equationsof motion and expresseda~(x)in terms of c(x) and a,.c(x). In the

momentumrepresentationthe propagatorreducesto

D~(q)nsJd2xe-IoxDab(x 0)~Jd2x(xl{HH(q+~+M2(c)H}lY)

wherej3,. = —ia,,. For largeq2 we can expandD”(q2) in a seriesin 1/q2:

Dab(q) = Hab[c(0)] -~r-M2[c(0)] ~ab + -~ [Hab[c(x)],132]Ix 0~~” (B.9)

(thisexpressionassumesan averagingover the directionsof the momentumq).
Identifying thefunctionsof the externalfield figuring in eq. (B.9) with the vacuumexpectationvalues

of the correspondingoperatorsbuilt from a-, we get the operatorexpansion.Thus,

Da~(q)= oa~{J-~+~ (01 (aa-)21o)+ .. ‘}(i + 0(1/N))

oab{1/q2m2/q4+...}

which reproducesthe exactpropagatorat large q2.
Let usnow turn to thecorrelatorS andbegin with treegraphs.Expandingthe currentj~andkeeping

the term linear in the quantumcorrectionwe, evidently,get a full derivative,

= 2fa,.[a,.c’~[Jabqb] (B.10)

The reasonis simple: j, is proportional to the Lagrangianand the field c”(x) is assumedto satisfy the
classicalequationof motion.Eq.(B.10) impliesthatthetwo-pointfunction S isproportionaltotheexternal
momentumq. More exactly,

S(q2)= 4ff d2x e~a,.(xla,.c” {aH ha2 M2H} a~cbIo)~

~
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It is convenientto averageS(q)over the directionsof q, then

S(q2)= 4f~ [a~c”a,.c” + (c a,.c)2

— .L~[(ac)2a~—a,.cHa,.a2c + 3a2(a,.cH)a,.c] + o(-)}.

The vacuumexpectationvalue of S(q2)emergesafterthe following substitution

a,.c” a~cl~..*(ola,.a-aa~a-”lo), etc.

The resultingexpressionfor S(q2)at largeq2 is

S 2_~1~~J—~

2_2Nm
4~,,,(q)- 2 ~ ftm fq2

andcoincideswith the expansionquoted in the text. Intermediatecomputationsturnedout to be even
simpler.

The calculationof one-loopdiagramsrequiresa somewhatlarger effort than in the caseof tree
graphs.We shall not dwell on this issuehere.It is worth noticing, though, that it is now necessaryto
solve the constraint

2caq~~+ qaqa = 0

with higher accuracy

q” = Iiab’Pb -~H’P)+

andthis changestheverticesfor the ‘P fields. As a result, the form of the currentIs varies.However, the
complicationsare not drastic. The externalfield techniqueremainsthe most economicone.

Appendix C. Uniquenessof the Z factors

In deriving the exact /3 function in section 6 we have used the fact that there is only one
renormalizationconstantin the 0(3) sigma model. More exactly, if the original Lagrangianis written
as*

~2a,.’P~a”’PO (Cl)

* For simplicity weshallconsiderherethenon.supersymmetricvariant which,nevertheless,providestheopportunityto answerall questionsreferring

to renormalization.
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thenthe radiative correctionsimply the following counterterm:

I

~ (Z 1) u,.’Po v ‘Po (C2)(1+ ‘P

andits effect reducesto a renormalizationof g
0,

g~=g~Z
t. (C.3)

However, the readermayfind in the literaturethe oppositeassertionaccordingto which therearetwo
distinct Z factors(seee.g. [6b]); oneof them renormalizesg and anotherone renormalizestp In other
words, ~ + ~ is representedin the form

2Z
1 a,.’P~a~’PO C4

g~(1+Z2’P~’Po)
2’

To avoid confusionwe are in a hurry to makea few explanatoryremarks.
The appearanceof two Z factorsis dueto the fact that calculationsastheyare sometimesperformed

do not respectthe full symmetry of the original Lagrangian,the 0(3) symmetry.If the symmetry is
maintainedat each step (including the regularization procedure)the occurrenceof Z

2 is certainly
impossible.Moreover, thereexists a well-developedmethod,namely, the backgroundfield formalism,
which automaticallyrespectsthe full symmetryof the theory.

This method hasbeen alreadydiscussedin various contexts in the present review and we shall
thereforenot dwell on details,but recapitulatethe basicpoints.

The startingpoint is the introductionof an externalfield, ‘Po

‘P=’P0~q (C.5)

whereq representsa quantumpieceto be integratedover (q propagatesonly in loops).The invariance
of the Lagrangian

‘P —~ E + ~*‘P2, ‘P* _* E* + E(’P*)

2

becomesnow an invariancewith respectto the simultaneoustransformations

‘Po~E+E*’P~o, ‘P~~E*+E(’P~)2, (C.6a)

q_~2~*’P
0q, q**~~’P0*q*, (C.6b)

Notice that the transformationfor q is homogeneous;thisfact enablesoneto introducea massterm for
the q field without violating the symmetry,andhenceto regularizethe theory both in the infraredand
ultravioletlimits.

Integrating over q we are left with an effective Lagrangiandependingon ‘Po and possessingan
invariancewith respectto (C.6a).Thus it is intuitively clear that the only countertermemergingin this
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way reducesto (C.2). Below we shall illustrate thisstatementwith a one-loopcalculationleaving to the
readerthe opportunityto extendthe procedureto multiloop graphs.

In the bilinear approximation,the Lagrangiangoverningquantumfluctuations,is

I ~ ±~ — 2 ± -4- -4-
cp(2)_±..l~,.q & q ~ q ~ + ~ ~ ±~,. \‘POq ‘P°q

— 2 I -~- 2 z~u,.q~ ‘P0’ u,.’PO ‘ q) ± ~
g

0 L (1 + ‘Po’Po) (1 + ‘Po’Po)

+ ±\2 ÷

+a ~ (3(’Poq+c~oq ~ — 2g ~ 1 C,.‘Po ‘Po~ (1+’P~’Po)2 l+’P~’Po (l+’P~’Po)2

We have introduced here a small mass term ~
2q~q(l + ‘P~’Po)2 ensuring infrared regularization.

Ultraviolet regularizationis achievedby virtue of the Pauli—Villars field R — we add to (C.7) just the
sameLagrangianwith the substitution

q—~ R, q±—p R±, ~ -~Mo

ascribingto R the oppositemetric (with respectto q).
Using the Lagrangian(C.7) we must find the effective one-loop Lagrangian dependingon the

backgroundfield, ‘Po. Generallyspeaking,the calculation can be readily performedfor an arbitrary
backgroundfield. However, sincethe functionalform of the effectiveLagrangianis knownbeforehand
(see, e.g. (C.4)) the problemcan be essentiallysimplified if we choose‘Po in a specialway. The most
convenientchoiceis aplanewave,

‘Po=fe’~ ‘Pot f+ ~ (C.8)

wheref is a dimensionless constant. The valueof f is arbitrary while the parameterk is assumedto be
small. Moreover,it is clear from eq. (C.4) that we mustkeepall ordersin f, f4- but can expandin k and
keeponly bilinear termsin k.

For a planewave(C.8)

‘P~’Po= f~f= const.,

andthe first term in ~(2) reducesjust to an ordinary bosonLagrangian,quadraticin q. We shall fix the
propagatorof the q field from thisterm andshall treatthe second(0(k)) andthe third (0(k2))termsas
an interactionLagrangian.Both piecesinduceverticeswith two q lines. Contractingtheselineswe get
the effective Lagrangian~ The correspondingdiagramsare shown in fig. 10 wherethe solid lines

(a) (b)

Fig. 10. Diagramsdetermining&~?in theone-loopapproximation.

2+( 6g~o — 2 ) q4-q

g
0 (1+g~go)

2l+g~g
0(1+g~~o)

2

ao+~~
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denotethe propagationfunction of q,

Dq~(1+ + 2 1
— ‘Po’Po) (C.9)_~j~2

andthe verticesareeitherbilinear in k (one vertex in fig. lOa) or linear in k (two vertices in fig. lob).
Computation of the tadpolediagram of fig. lOa is perfectly trivial. The result is

6’Po~’Po 2 ] 1 Mo~
± —ln—----

5-. (C.1O)~ (fig. lOa)= a,.’P~a~’PO[(l+± )2 1+’Po’Po
4IT ~

As for the otherdiagram,oneshould keepin mind that

(a,.’P
0(x)a~’P~(x))Jd

2y(a~(q~(x)q~(x)),a~(q(y)q(y))) e21~~ = 0(k4)

andthat we are thus left with the correlationfunction of the type

a,.’P~(x)a~’P
0(x)J d

2y ((a~q~(x))q(x),(a~q~(y))q(y)).

Integratingover y yields

4’P~’Po 1 14~1 ~,2 ~ 1~ (fig. lOb) = a,.’P~a~’PO[-(1+ ‘P~’Po)2]J 4~ + ~ (p2+ M~)2j

________________ 0
— a,.’P~a,.’POE— 4’P~’Po 1 1 M2I—ln—-’~-. (C.11)— (1+’P~po)2j47r /2

Assemblingthe two piecestogetherwe get

~ a~’P
0(i~1M~ (C.12)
\ Zn~, j.~’

the counterterm,which is indeedproportionalto the original Lagrangian,

Z2=l, q.e.d.

Perhaps,it is worth addingthat eq. (C.12) implies that

g~— (C.13)
— 1 — (g

2oI4ir) ln(M~/ji2)’

Thus, we recoverin perturbationtheory (at the one-loop level) the resultderivedin the bulk of the
reviewwithin the framework of instantoncalculus.
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