
Knowledge Based Engineering -
Assignment 3

Automatic pipe routing for Aker Solutions

Spring 2022

Hallvard Bjørgen
Johanne Glende
Sigve Sjøvold



Table of Contents
Product description 2

Comprehension story 2
Selected parameters 2

Application architecture 3
Model-view-controller 3

Model 3
View 4
Controller 4

inputOutput 4
Application interaction 4

More UML diagrams 5
Design class diagram 5
Problem domain class diagram 5
Sequence diagram: Customer provides number of equipments 6
Sequence diagram: Engineer creates new case 6
Activity diagram 7

Developed code 8
Controller modules 8
Model modules 8
InputOutput modules 8

Results 9
Example 1: Two pieces of equipment 9
Example 2: Four pieces of equipment 10
Example 3: Ten pieces of equipment 11

Backlog 12
Knowledge base 12
Diameter decision making 12
Obstacles 12

Pipes are plummed 12
ParameterContainer 12

1



Product description

Comprehension story
The automatic pipe routing system is created to automatically find the shortest and best path
from A to B, intersecting all necessary equipment in the environment.

Investing in the system will involve:
- Measuring and providing the input of:
1. The environment space.
2. Point A, where path will begin.
3. Point B, where path will end.
4. Coordinates of all equipment the piping must intersect.

In return one will obtain a supposal of where the piping might go to:
- Start in A and end in B.
- Intersect neccessary equipment.

The solution will be sent as a DFA-file (runnable in Siemens NX) to the email provided by the
user.

Selected parameters
The user interface is “under-developed”. Time has gone to other parts of the development for
this assignment.

Selected parameters are thus all the variables that can be changes and then produce
different visible solutions. We’ve not gotten to the point where the application produces
non-visible information, or does any kind of input-control. The application could be extended
to check what the pressure would be in the pipe with given inner diameter and/or what
material needs to be used, how much material is needed, what the heat-loss will be etc.

The selected parameters are then all physically visible variables for environment,
equipments and pipe, as well as the email one wants their solution sent to (the file is also put
in a folder “/inputOutput/products”).

2



Application architecture

Model-view-controller
We have mostly stuck to a
model-view-controller architectural
pattern for code simplicity. We do,
however, not have a view (the closest
is our runnable “UserInterface.py” in
the top level folder).

Figure 2 : package diagram

Model
The model package contains all logic, and consists of Environment, Equipment, Path, Pipe,
and PipeElement. In fig. 1: “simple straight example”, the environment is green, equipment is
yellow, path is invisible (but is the middle of where the piping will go) and is, in fig. 1, split so
there’s three paths in fig. 1. Pipe is the cross section of the pipe (and the radius of elbow
elements, not shown in fig. 1), and the pipe element is the three straight pipings between
equipments portrayed in grey.

3



View
Our application requires only the UserInterface.py to be fed input, and instead of a separate
Main file running the application, the files are merged to simplify the process of running new
input. The UserInterface file is therefore put on top level, and the view package nonexistent.

Controller
The controller package consists of classes that are used to integrate and pass information.
For our application, a path is the pipe between an inlet and an outlet. In fig. 1, three paths
are shown.

- Controller
Is related to userinterface, passing information to other controllers.

- DFABuilder
Interacts with the dfa templates to create the product dfa file.

- EmailHandler
Sends the product to the email defined in UserInterface.

- IDGenerator
Generates random IDs (and is a controller because of it’s aspirations to accumulate
information from other classes and make unique ID from this).

- PathGenerator
Handles the complete path from input of the environment to output of the environment,
splitting into different paths and having them generate their own new paths out of path
elements, which are either straights or elbows.

inputOutput
This package consists of the template files for the dfa file creation, and our
ParameterContainer. In addition, the products are also stored in a folder here “/products”,
which is created should it not be existent prior to running the application.

Application interaction
To illustrate and further supplement the
interaction discussed above:

Figure 3: Architecture diagram

4



More UML diagrams
Check out all the diagrams (in higher resolution) here!
https://drive.google.com/file/d/1aewpo-coM41aiBa-a9W4_Jk235NSWVIS/view?usp=sharing

Design class diagram

Figure 4: Design class diagram

Problem domain class diagram

Figure 5: Problem domain class diagram

5

https://drive.google.com/file/d/1aewpo-coM41aiBa-a9W4_Jk235NSWVIS/view?usp=sharing


Sequence diagram: Customer provides number of equipments

Figure 6: Sequence: customer gets random solution

Sequence diagram: Engineer creates new case

Figure 7: Sequence: engineer creates new case

For figure 7, the rest of the sequence is the same as in figure 6.

6



Activity diagram
Figure 8 has swim lanes for User, Server, and DFA Builder with activity entities related to the
main use cases of the application.

Figure 8: Activity diagram

7



Developed code

Controller modules
All controllers interactions are described in controller, under application architecture, which
gives a sufficient understanding of their purpose and main functions.

Model modules
- Environment

Instantiates the environment used in the product, with the parameters specified in
ParameterContainer.

- Equipment
Instantiates the different pieces of equipment.

- Path
Instantiates the path. Also contains functions for calculating if the path contains a single
straight or two straights with an elbow. Also instantiates the elbows with the correct
orientation.

- Pipe
Instantiates the pipe profile

- PipeElement
Instantiates the pipe element either as an elbow or a straight

InputOutput modules
- ParameterContainer

is the storage of predefined parameters providing the application with functional solutions,
allowing the user to define how many equipments should be in the solution, and get one of
the solutions having this number of equipments.

There should be a way to use the ID-defined solutions when only specifying number of equs
as well. The parameter-combinations defined by engineers could have been randomly
generated instead, but this would need more work to be created. If the solution is how it is
now, the solutions the engineers create should rather be added to a knowledge base where
one could easily extract all solutions with a given number of equipments, specific
environment characteristics (like "my environment is less than ..."), or the one solution with a
specific ID.

8



Results

Example 1: Two pieces of equipment
Point A and B in the environment are placed in the floor and the right wall, respectively.

9



Example 2: Four pieces of equipment
Point A and B in the environment are placed in the left and the right wall, respectively.

10



Example 3: Ten pieces of equipment
Point A and B in the environment are placed in the left and the back wall, respectively.

11



Backlog
Included for the purpose of keeping track of some of the future opportunities for the
application. List is not exhaustive.

Knowledge base
● Equipment can be defined with a multitude of parameters and stored for later use.

Different equipment could entail having to use other equipment, and could be
implemented in a way such as “if this is used, we need either this or this as well, or
the environment temperature needs to be such and such”.

● ParameterContainer would then probably be obsolete.

Diameter decision making
● Make it so that the piping diameter is dimensioned from what the equipment with the

largest input/output diameter is.

Obstacles
● Add obstacles to the equation.
● Pipes: create attachment plates with bolt holes for the in and outlets.

Pipes are plummed
● Opening them up was harder than imaginged when the pipe makes a turn.

The travelling salesman problem
● The path taken between equipment should be calculated as a solution to the

travelling salesman problem, and not solely dependent on the order in which the
equipment is fed to the application as it is today.

● There are multiple algorithms for solving this problem. The algorithm for this
application needs not to be exact.

12


