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Universal gate sets for quantum computing have been known for decades, yet no universal gate set
has been proposed for particle-conserving unitaries, which are the operations of interest in quantum
chemistry. In this work, we show that controlled single-excitation gates in the form of Givens
rotations are universal for particle-conserving unitaries. Single-excitation gates describe an arbitrary
U(2) rotation on the two-qubit subspace spanned by the states |01〉, |10〉, while leaving other states
unchanged – a transformation that is analogous to a single-qubit rotation on a dual-rail qubit. The
proof is constructive, so our result also provides an explicit method for compiling arbitrary particle-
conserving unitaries. Additionally, we describe a method for using controlled single-excitation gates
to prepare an arbitrary state of a fixed number of particles. We derive analytical gradient formulas
for Givens rotations as well as decompositions into single-qubit and CNOT gates. Our results offer a
unifying framework for quantum computational chemistry where every algorithm is a unique recipe
built from the same universal ingredients: Givens rotations.

I. INTRODUCTION

Quantum algorithms for quantum chemistry rely on
the ability to prepare states that represent fermionic
wavefunctions [1–3]. These can correspond to ground and
excited states of molecular Hamiltonians, which can then
be employed to compute properties of the molecule [4–
9]. For systems that contain a fixed number of parti-
cles, valid quantum states occupy only a subspace of the
available Hilbert space. Notably, in the Jordan-Wigner
representation [10], the space of states with k particles
in n spin-orbitals is spanned by the set of all n-qubit
states with Hamming weight k, i.e., states with k ones
and n − k zeros. To ensure that output states remain
valid, quantum circuits for quantum chemistry should
therefore preserve the number of particles.

Universal gate sets capable of synthesizing arbitrary
unitary operations have been known for decades [11, 12].
Famously, the set of arbitrary single-qubit rotations and
CNOT gates is universal for quantum computation [13].
Yet no universal gate set has been proposed specifi-
cally for particle-conserving unitaries, which are precisely
the operations of interest in quantum chemistry. In-
stead, there are several proposals for preparing states of
fermionic systems [14–16], some of which are designed to
preserve particle number and other symmetries [17–19].
A universal set of particle-conserving gates would consti-
tute a flexible and composable framework for designing
arbitrary quantum circuits for quantum chemistry.

Currently, a wide variety of quantum circuit architec-
tures have been proposed to prepare states of many-body
fermionic systems, particularly in the context of varia-
tional quantum algorithms. These include chemically-
inspired circuits [20, 21], adaptive circuits [22, 23],
hardware-efficient circuits [24, 25], and other specialized
methods [26, 27]. This situation is not ideal because
quantum algorithm developers are faced with a seeming
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choice among different proposals rather than having ac-
cess to universal building blocks to construct any desired
operation.

In this work, we give a constructive proof that con-
trolled single-excitation gates are universal for particle-
conserving unitaries. A single-excitation gate performs an
arbitrary U(2) transformation in the subspace |01〉 , |10〉
while leaving other basis states unchanged:1 0 0 0

0 a c 0
0 b d 0
0 0 0 1

 , (1)

where U =

(
a c
b d

)
is a general 2 × 2 unitary. Single-

excitation gates can be viewed as an extension of Givens
rotations to unitary two-dimensional transformations.
A controlled single-excitation gate, which applies this
Givens rotation depending on the state of a third qubit,
can be described by the unitary

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 a c 0
0 0 0 0 0 b d 0
0 0 0 0 0 0 0 1


. (2)

In addition to the universality result, we propose an
explicit algorithm using excitation gates to prepare an
arbitrary state with a fixed number of particles. We de-
rive analytical gradient formulas for Givens rotations and
argue that they are ideal building blocks in variational
quantum circuits for quantum chemistry.

The rest of this manuscript is organized as follows. We
introduce the basic concepts of particle-conserving uni-
taries and Givens rotations in Sec. II. We then show in
Sec. III that controlled single-excitation gates are uni-
versal for particle-conserving unitaries. In Sec. IV we
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describe a universal method for preparing states with a
fixed number of particles. We discuss the role of Givens
rotations in variational quantum circuits in Sec. V and
conclude in Sec. VI.

II. UNIVERSAL GATE SET

We introduce basic concepts and notation that are rel-
evant before presenting the main results. For simplic-
ity and generality, we employ abstract notions of parti-
cles and operations, without establishing an explicit con-
nection to concepts such as electrons, spin-orbitals, or
fermionic operators.

A. Particle-conserving unitaries

Define the qubit ladder operators σ† = (X + iY )/2,
σ = (X − iY )/2, where X,Y are Pauli matrices, and the
total number operator

N =
∑
i

σ†iσi. (3)

For a computational basis state |x〉 it holds that N |x〉 =
w(x) |x〉, where w(x) is the Hamming weight of the bit
string x. We define the Hamming weight to be equal to
the number of particles and refer to eigenstates of the
total number operator as states with a fixed number of
particles. A unitary gate U is deemed particle-conserving
if

[U,N ] = 0. (4)

A particle-conserving unitary maps states with a fixed
number of particles to other states with a fixed number
of particles. Any product of particle-conserving unitaries
is also particle-conserving, so any quantum circuit com-
posed of particle-conserving gates is guaranteed to per-
form a particle-conserving transformation.

The space of all states with k particles on n qubits, de-
noted asHk, is spanned by the set of computational basis
states with Hamming weight k. In general, any state of
a fixed number of particles can be interpreted as an ex-
citation from a reference state. Unless stated otherwise,
we use the state |11 · · · 100 · · · 0〉 with all particles in the
first k qubits as the reference state. This is illustrated in
Fig 1. We use the Hamming distance

∑n
i=1 xi⊕ yi to de-

note the number of qubits where the computational basis
states |x〉 and |y〉 differ. For states with an equal number
of particles, the Hamming distance is an even number.

Two states |x〉 and |y〉 of equal number of particles are
said to differ by an excitation of order ` if their Hamming
distance is equal to 2`. For example the states |1100〉
and |0101〉 differ by a single excitation (order 1) from
the first to the fourth qubit. Similarly, the state |0011〉
differs from |1100〉 by a double excitation (order 2).

FIG. 1: Jordan-Wigner representation of states with a fixed
number of particles. Each qubit corresponds to an orbital
with a specific spin orientation. The state of the qubit de-
termines whether that spin-orbital is occupied or not. All
basis states can be obtained from a reference state, in this
case |110000〉, by a specific excitation. For instance, the state
|100100〉 is obtained by exciting a particle from qubit 2 to 4,
while the state |001001〉 is obtained by exciting both particles
to qubits 3 and 4.

Any particle-conserving unitary acting on states with
k particles on n qubits can be represented as a block-
diagonal unitary performing a general U(d) transforma-
tion on the subspace Hk with dimension d = dim(Hk).
For universality, it is therefore sufficient to consider a
set of particle-conserving gates that is universal for the
subspace Hk.

B. Givens rotations

As discussed above, any two states with a fixed number
of particles differ by an excitation of a given order. It
is therefore convenient to work with a set of quantum
gates that create superpositions between the original and
the excited state. In the simplest non-trivial case of a
single particle and two qubits, these correspond to gates
that perform arbitrary U(2) rotations between the states
|10〉 , |01〉 while leaving other basis states unchanged. For
example, restricting to the case where the gate has only
real parameters, a two-qubit particle-conserving unitary
can be written as

G(θ) =

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 , (5)

where we use the ordering |00〉 , |01〉 , |10〉 , |11〉 of two-
qubit computational basis states.

This is an example of a Givens rotation: a rotation in a
two-dimensional subspace of a larger space. In this case,
the Givens rotation acts as a two-qubit single-excitation
gate, coupling states that differ by a single excitation.
More generally, we can extend the concept of Givens ro-
tations to U(2) transformations in two-dimensional sub-
spaces, where a general single-excitation gate can be writ-
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ten as

G =

1 0 0 0
0 a c 0
0 b d 0
0 0 0 1

 , (6)

where |a|2 + |c|2 = |b|2 + |d|2 = 1 and ab∗ + cd∗ = 0 to
ensure unitarity. We can also consider four-qubit double-
excitation gates G(2) which perform a general U(2) rota-
tion on the subspace spanned by the states |0011〉 , |1100〉

G(2) |0011〉 = a |0011〉+ b |1100〉 , (7)

G(2) |1100〉 = c |1100〉+ d |0011〉 , (8)

while leaving all remaining four-qubit states unchanged.
Double-excitation gates can also perform rotations in
two-dimensional subspaces defined by pairs of four-
qubit states with Hamming distance four, namely
|1010〉 , |0101〉 and |1001〉 , |0110〉.

We can generalize to excitation gates of order `. These
are unitary Givens rotations acting on the space of 2`

qubits that couple the states |1`0`〉 := |1〉⊗` |0〉⊗` and

|0`1`〉 := |0〉⊗` |1〉⊗` as

G(`) |0`1`〉 = a |0`1`〉+ b |1`0`〉 , (9)

G(`) |1`0`〉 = c |1`0`〉+ d |0`1`〉 , (10)

while acting as the identity on all other states. Similar
Givens rotations can be defined for permutations of the
states |1`0`〉 , |0`1`〉, i.e., excitation gates of order ` also
include rotations on all pairs of states of 2` qubits with
Hamming distance 2`. By construction, these excitation
gates are particle-conserving since they only couple states
with an equal number of particles.

Now consider controlled excitation gates, which apply
an excitation gate depending on the state of a control
qubit. In particular, we focus on the three-qubit con-
trolled single-excitation gate

CG =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 a c 0
0 0 0 0 0 b d 0
0 0 0 0 0 0 0 1


. (11)

A particular example of a controlled single-excitation
gate is the controlled SWAP, or Fredkin gate

F =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


. (12)

FIG. 2: The three-qubit controlled single-excitation gate,
which is universal for particle-conserving unitaries, and the
four qubit double-excitation gate. The controlled single-
excitation gate on the top denotes a control on state |1〉 while
the one below shows a control on state |0〉. The figures on the
right are alternative representations of the excitation gates,
which are useful for drawing circuits when the qubits are not
adjacent. The bottom circuit is a double-excitation gate.

Controlled gates usually refer to the case where a
gate is applied only if the control qubit is in state |1〉.
Throughout this work, we more generally use the term
controlled gate to include also the case where gates are
applied only if the control qubit is in state |0〉. All
such controlled gates are particle-conserving. Controlled
single-excitation gates and double-excitation gates are il-
lustrated in Fig. 2.

III. PROOF OF UNIVERSALITY

In this section, we show that controlled single-
excitation gates are universal for particle-conserving uni-
taries. We use standard textbook methods similar to
those used for proving the universality of single-qubit and
CNOT gates [13]. The proof follows these main steps:

1. For particle-conserving unitaries, we show that the
relevant U(2) transformations are excitation gates
controlled on multiple qubits. Using the estab-
lished result that U(d) transformations can be de-
composed into products of U(2) transformations,
it follows that excitation gates controlled on multi-
ple qubits are universal for particle-conserving uni-
taries.
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2. We show that any excitation gate controlled on
multiple qubits can be decomposed in terms of
multiply-controlled single-excitation gates.

3. Finally, we show that single excitation gates con-
trolled on multiple qubits can be decomposed
into three-qubit controlled single-excitation gates,
which are therefore also universal.

The main insight of this construction is that single-
excitation gates are analogous to single-qubit gates.
Indeed the subspace |10〉 , |01〉 can be interpreted as a
dual-rail encoding of a single qubit. This allows standard
methods to carry over to the particle-conserving case,
with few modifications. Fredkin gates, which are a spe-
cific type of control single-excitation gate, play a special
role: they are used to extend controlled single-excitation
gates to controlled gates over multiple qubits. Fredkin
gates have been shown to be universal for reversible
computations in dual-rail encodings [28].

A. Excitation gates with multiple controls

It is well-established that any U(d) transformation can
be decomposed into a product of U(2) transformations
acting on arbitrary two-dimensional subspaces [13, 29–
31]. As discussed in the previous section, any state of a
fixed number of particles can be obtained by applying
an excitation to a reference state. This result holds more
generally: any two states of a fixed number of particles
differ by a specific excitation.

Consider two k-particle states on n qubits |x〉 , |y〉, with
Hamming distance 2`. Without loss of generality, since
this can be guaranteed by relabelling, suppose the first
k − ` qubits are set to 1 for both states and the last
n−k− ` qubits are set to 0. The remaining 2` qubits are
in different states, meaning that they can be mapped to
each other by exciting the particles from the ` occupied
qubits to the ` unoccupied ones.

For example, the states |111000〉 and |110010〉, which
have Hamming distance 2, differ by a single excitation.
Similarly, the states |011010〉 and |010101〉 differ by a
double excitation. This connection between states and
excitations is illustrated in Fig. 3.

A U(2) rotation in the subspace spanned by the k-
particle states |x〉 , |y〉 is therefore equivalent to a unitary
performing the transformation

U |x〉 = a |x〉+ b |y〉 , (13)

U |y〉 = c |y〉+ b |x〉 , (14)

while leaving every other basis state unchanged. For the
specific case of states with n = 2` qubits, this is accom-
plished by a unitary Givens rotation G(`), as in Eqs. (9)
and (10). When applied to states with n > 2` qubits,
the gate G(`) acts non-trivially on any states where 2`

1,5

2,5

2,3,4,61,3,4,6

3,4,5,6

1,2,3,4,5,6

FIG. 3: Any pair of states with a fixed number of particles can
be related by an excitation. The states |111000〉 and |011010〉
differ by a single excitation between qubits 1 and 5. The states
|011010〉 and |000111〉 differ by a double excitation between
qubits 2,3,4,6, while |000111〉 and |111000〉 are connected by
a triple excitation acting on all qubits.

qubits are set to |x〉 or |y〉, regardless of the state of the
remaining qubits. For instance, if |z〉 is a basis state of
m = n− 2` qubits, it holds that

G(`) |z〉 |x〉 = a |z〉 |x〉+ b |z〉 |y〉 , (15)

for all z. To address this issue, we can simply apply
G(`) controlled on the state of the remaining n − 2`
qubits. We use the notation C(m)G(`) to denote a G(`)

gate controlled on the state of m qubits. Controlling
on the remaining qubits being on state |z∗〉 and defining
|x′〉 = |z∗〉 |x〉 and |y′〉 = |z∗〉 |y〉, we then have that

C(m)G(`) |x′〉 = a |x′〉+ b |y′〉 , (16)

C(m)G(`) |y′〉 = c |y′〉+ b |x′〉 , (17)

while leaving all other basis states unchanged. This is
the desired two-dimensional transformation.

Consider the states |100011〉 and |010011〉. They differ
by an excitation from the first to the second qubit, and
coincide on the remaining four qubits. A non-controlled
single-excitation gate acting on the first two qubits would
also perform a transformation on other subspaces, for ex-
ample the one spanned by |101101〉 and |011100〉. How-
ever, controlling on the last four qubits being in state
|0011〉 ensures that the gate C(4)G acts non-trivially only
on the target two-dimensional subspace. The role of mul-
tiple controls is shown in Fig. 4.

Overall, we conclude that any two-level U(2) gate on
the subspace of k-particle states on n qubits can be im-
plemented in terms of multi-controlled excitation gates
C(m)G(`), where n = 2` + m. Following standard re-
sults, this implies that multi-controlled excitation gates
are universal for particle-conserving operations.

B. Single-excitation gates with multiple controls

We now show that multi-controlled excitation gates
can be decomposed in terms of multi-controlled single-
excitation gates C(m)G. The construction follows a sim-
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FIG. 4: A single-excitation gate G can act non-trivially on
many states. To ensure that the desired rotation happens only
between two target states, we can apply a multi-controlled
gate C(4)G that acts as the identity on non-target states. In
this example, the goal is to perform a rotation in the subspace
of states |100001〉, |010001〉. This can be achieved by apply-
ing a single-excitation gate to the first two qubits, controlled
on the state of the last four being |0001〉. This guarantees
that other states, such as |010010〉, are left unchanged. A
circuit diagram of this multi-controlled single-excitation gate
is shown below.

ilar approach to Ref. [13]. Suppose we wish to decom-
pose a U(2) Givens rotation on the subspace spanned
by |x〉 , |y〉, where the states have Hamming distance 2`.
The goal is to employ single-excitation gates to perform
a permutation of all basis states such that the permuted
versions of |x〉 and |y〉 differ by a single excitation. This
can be achieved following similar principles to the con-
struction of Gray codes. A controlled single-excitation
gate can then be applied, followed by a reversal of the
permutation.

For example, the states |101001〉 and |010110〉, which
differ by a triple excitation, can be linked through the
sequence |101001〉 → |011001〉 → |010101〉 → |010110〉,
where each new state differs from the previous one by a
single excitation. Each of the states in this sequence can
be obtained from the previous one by applying a SWAP
gate

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (18)

controlled on the state of all remaining qubits, i.e., by
applying a C(m)SWAP gate. The SWAP gate is a spe-
cial case of a single-excitation gate. As before, the con-
trol is required to ensure that the resulting permutation
happens non-trivially only on the two-dimensional target
subspace. This procedure is illustrated in Fig. 5.

We now describe the method in more detail. With-
out loss of generality, suppose that the states |x〉 and
|y〉 differ on the first 2` qubits. The first step is to out-

FIG. 5: Method for connecting any pair of states by a se-
quence of particle-conserving multi-controlled SWAP gates.
The initial state |x〉 = |101001〉 differs from the target state
|010110〉 by a triple excitation, which can be decomposed
in terms of single excitations using a sequence of interme-
diary states. A circuit implementing a triple-excitation rota-
tion can then be decomposed in terms of (i) multi-controlled
SWAP gates performing a permutation of states, (ii) a multi-
controlled single-excitation gate, and (iii) a reversal of the
permutation.

line an ordered sequence of computational basis states
|g1〉 , |g2〉 , . . . , |g`+1〉 such that all |gi〉 , |gi+1〉 differ by a
single excitation, and where |x〉 = |g1〉 and |y〉 = |g`+1〉.
To build the circuit implementing the decomposition, we
perform the following steps.

1. Apply a SWAP gate to the qubits where |x〉 = |g1〉
and |g2〉 differ, controlled on all other qubits. This
has the effect of swapping |g1〉 , |g2〉, while leaving
all other states unchanged.

2. Follow the same procedure to swap |g2〉 , |g3〉, then
|g3〉 , |g4〉, and all other states until the final swap
between |g`−1〉 , |g`〉. This sequence of operations
has the effect of mapping |x〉 → |g`〉 while |g`+1〉 =
|y〉 is left unchanged.

3. Since |g`〉 , |g`+1〉 differ by a single excitation, we
perform a multi-controlled single-excitation gate
that acts only on the subspace spanned by these
states.

4. The circuit is completed by reverting all the swaps
such that the resulting transformation is a rotation
in the subspace spanned by |x〉 and |y〉, as desired.

C. Controlled single-excitation gates are universal

Given a gate controlled on a single qubit, there exist
well-established methods to extend the control to addi-
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FIG. 6: A multi-controlled single-excitation gate can be de-
composed in terms of a controlled single-excitation gate us-
ing a cascade of Toffoli gates. The Toffoli gates can be
decomposed in terms of the particle-conserving controlled-
controlled-SWAP gate using additional dual-rail qubits.

tional qubits [13]. Suppose we want to control the oper-
ation on the state of m qubits |z1z2 · · · zm〉. The strategy
relies on employing m − 1 auxiliary qubits and Toffoli
gates (controlled CNOT gates), as shown in Fig. 6.

Toffoli gates are not particle-conserving, but they can
be decomposed in terms of particle-conserving Fredkin
gates by replacing the auxiliary qubits with dual-rail
qubits |0̃〉 := |01〉, |1̃〉 := |10〉. In this case a Toffoli
gate is equivalent to a controlled-controlled-SWAP gate,
since swapping |01〉 and |10〉 applies a NOT gate to the
dual-rail qubit. As shown in Ref. [28], the controlled-
controlled-SWAP gate can then be decomposed into three
Fredkin (controlled-SWAP) gates with the help of an aux-
iliary qubit, as shown in Fig. 7.

Overall, we have shown that single-excitation gates
controlled on multiple qubits, which were previously
shown to be universal, can be decomposed into controlled
single-excitation gates, which are therefore also universal.
This concludes the proof that controlled single-excitation
gates are universal for particle-conserving unitaries.

FIG. 7: A controlled-controlled-SWAP gate can be decom-
posed in terms of three Fredkin gates using an auxiliary
qubit [28].

IV. STATE PREPARATION

Universal gate sets for particle-conserving unitaries can
also be used to prepare arbitrary states of a fixed num-
ber of particles. Here we discuss how controlled single-
excitation gates can be used for this purpose. We follow
the strategy of Ref. [32].

Consider a system of k particles on n qubits, spanning
a space of dimension d =

(
n
k

)
. Any such state can be

written as |ψ〉 =
∑
x cx |x〉, where the sum is over all

n-bit strings x of Hamming weight k. As shown before,
an arbitrary U(2) rotation in the subspace of any pair of
states |x〉 , |y〉 can be performed by a suitable decompo-
sition into controlled single-excitation gates.

Consider a lexicographical labelling of all bit strings of
Hamming weight k as |x1〉 , |x2〉 , . . . , |xd〉. For instance,
in the case of n = 3 and k = 2 we have |x1〉 = |011〉,
|x2〉 = |101〉, and |x3〉 = |110〉. An arbitrary state can
then be written as

|ψ〉 =

d∑
i=1

ci |xi〉 . (19)

We describe a method to prepare any such state starting
from the reference state |x1〉.

First, apply the multi-controlled excitation operation
in the subspace |x1〉 , |x2〉 that performs the mapping

|x1〉 → α1 |x1〉+ c2 |x2〉 , (20)

where α1 =
√

1− |c2|2. Then, apply the multi-controlled
excitation operation in the subspace |x1〉 , |x3〉. This per-
forms the mapping

α1 |x1〉+ c2 |x2〉 → α1α2 |x1〉+ c2 |x2〉+ α1c
′
3 |x3〉 , (21)

where we set c′3 = c3/α1 and α2 =
√

1− |c′3|2. This
ensure that the coefficient in front of |x3〉 is precisely the
desired one, c3. This process can be repeated for each
of the remaining states |x4〉 , . . . |xd〉. The result is to
prepare the state

|ψ〉 = α |x1〉+

d∑
i=2

ci |xi〉 , (22)
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where α =
∏d−1
i=1 αi. This state is normalized, which from

Eq. (19) implies that |α|2 = |c1|2. To ensure that in fact
α = c1 = |c1|eiθ, it suffices to choose α1, α2, . . . , αd−2
to be positive real numbers, as we have done, and set
αd−1 = |αd−1|eiθ to prepare the desired state. Note that

for a unitary U =

(
a c
b d

)
, a can be guaranteed to be real

for any c by choosing

d = −
√

1− |c|2

b∗ =
c
√

1− |c|2
a

.

In practice, it is possible to simplify this general strat-
egy when applied to particular cases. Since the gates
act only on a specific superposition of basis states, con-
trols only need to be applied on qubits where the states
in the superposition differ. This is useful if the target
state has support only on a specific subspace. For ex-
ample, the first excitation gate performing the mapping
|x1〉 → α1 |x1〉 + c2 |x2〉 does not need to be controlled.
Furthermore, excitation gates can be chosen to act on
different reference states in order to create new superpo-
sitions.

Consider the six-qubit state

c1 |110000〉+c2 |001100〉+c3 |000011〉+c4 |100100〉 , (23)

which corresponds to a superposition of the four basis
states that contribute most significantly to the ground-
state energy of the H+

3 molecule in a minimal basis set.
The state can be prepared as follows.

Starting from |110000〉, apply a double-excitation gate
to the first four qubits to prepare the state a1 |110000〉+
c2 |001100〉. This does not need to be controlled on any
qubit. Then apply a double-excitation gate to qubits
3,4,5,6 to prepare the state a1 |110000〉 + c2 |001100〉 +
c3 |000011〉, where we’re using |001100〉 as the reference.
This again does not need to be controlled. To obtain
the desired state, apply a single-excitation gate to qubits
2 and 4, controlled on the first qubit being in state |1〉,
which prevents mixing with the state |001100〉. This con-
struction is shown in Fig. 8.

V. VARIATIONAL QUANTUM CIRCUITS

We discuss implications of our results for variational
quantum circuits. Our universality result suggests the
use of controlled single-excitation gates as building blocks
for variational quantum circuits. For example, the state
preparation algorithm described above can be employed
as a template where the rotation angles for each gate are
free parameters of the model. In this context, multiple
controls are not necessary; instead, by employing uncon-
trolled excitation gates it is possible to reach a larger sub-
space of states using fewer gates, but generally this makes
it more challenging to prepare specific target states. In

FIG. 8: A quantum circuit for preparing the state
c1 |110000〉 + c2 |001100〉 + c3 |000011〉 + c4 |101000〉 for arbi-
trary values of the coefficients c1, c2, c3, c4. Double-excitation
gates are applied to the first four qubits and then to the last
four qubits. Finally, a controlled single-excitation gate is ap-
plied to qubits 2 and 4, controlled on the state of the first
qubit.

FIG. 9: Example circuit architectures constructed from
Givens rotations as fundamental building blocks. Since these
operations are particle-conserving, it is possible to compose
them arbitrarily to create various types of particle-conserving
circuits. Excitation gates without controls are used to access
larger subspaces with fewer gates, whose parameters may then
be optimized for specific purposes.

the example of Fig. 8, dropping the control on the last
single excitation gate leads to a state with a non-zero co-
efficient on the additional basis state |011000〉. Examples
of variational circuits designed using Givens rotations as
building blocks are shown in Fig. 9. Below we describe
two specific strategies for building quantum circuits for
quantum chemistry applications, and derive analytical
gradient formulas for Givens rotations.
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A. All singles and doubles

In the context of quantum computing, the unitary
coupled-cluster singles and doubles (UCCSD) ansatz is
often expressed in terms of fermionic operators, which
are then mapped to complicated qubit gates. In similar
spirit to the qubit-coupled-cluster approach of Ref. [26],
we can instead consider a circuit where single and dou-
ble excitations are respectively implemented using Givens
rotations G and G(2). A quantum circuit can then be
defined consisting of all possible single and double exci-
tation gates that act non-trivially on the reference state
without flipping the spin of the excited particles. The
resulting circuit is analogous to a Trotterized implemen-
tation of UCCSD to first level, but where all gates are
Givens rotations. This is illustrated in Fig. 10.

B. Adaptive circuits

Adaptive strategies such as those presented in
Refs. [22, 23] can be implemented by selecting Givens
rotations instead of fermionic excitations in the construc-
tions. The main idea is that instead of designing circuits
that work well for all molecules, we can instead build
specific circuits that are custom-built for each molecule.
Hence, what is general is the method for building custom
circuits, not the circuits themselves.

A simple yet powerful strategy is to build a circuit
consisting of all double and single excitation gates, ran-
domly initialize all parameters, and compute the gradient
for each gate. The final circuit is constructed by keep-
ing only those gates such that the norm of their gradient
exceeds a fixed threshold. This is shown in Fig. 10.

C. Analytical gradients

We derive analytic gradient formulas for Givens rota-

tions. If H̃ is the generator of a unitary Ũ(θ) = eiH̃θ,

then the generator of the unitary U(θ) = 1⊕Ũ(θ) is

H = 0⊕H̃, where 0 denotes the zero operator. As shown
in [33], generators of this form can be decomposed as

H =
1

2
(H+ +H−), (24)

H± = (±1)⊕ H̃. (25)

We can then write

U(θ) = eiθG+/2eiθG−/2, (26)

and define the gates

U±(θ) = eiθG± . (27)

The operators H± satisfy

H2
± = 1, (28)

[H+, H−] = 0. (29)

FIG. 10: Strategies for building quantum circuits for quan-
tum chemistry. The first strategy consists of selecting all sin-
gle and double excitation gates that do not flip the spin of
the particles. In an adaptive strategy, after initializing gate
parameters, we compute the gradient for each gate and keep
only those that are above a given threshold.

As shown in [34], any unitary U(θ) with generator that
is self-inverse satisfies the parameter-shift rule

∂C(θ)

∂θ
=
C(θ + s)− C(θ − s)

2 sin(s)
, (30)

for any cost function that can be written as C(θ) =
〈ψ|U†(θ)KU(θ)|ψ〉, where K is an observable.

This parameter-shift rule applies to the gates U±(θ),
which means that derivatives of U(θ) can be obtained by
writing U(θ) = U+(θ/2)U−(θ/2) and computing deriva-
tives of the gates U±(θ). This technique can be employed

for any Givens rotation whose generator H̃ is self-inverse.
For example, in the case of the Givens rotation of Eq. (5),
we can write G(θ) = G+(θ/2)G−(θ/2) where the uni-
taries

G±(θ) =


e±iθ 0 0 0

0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 e±iθ

 , (31)

satisfy the parameter-shift rule.

VI. CONCLUSION

We have shown that controlled single-excitation gates
are universal for particle-conserving unitaries. These
three-qubit gates are Givens rotations performing a
transformation in a two-dimensional subspace of states
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FIG. 11: Decomposition of a single excitation gate into single-
qubit rotations and CNOTs. The gates denoted by ± θ

2
are

Pauli Y rotations. The middle four gates constitute a con-
trolled Y rotation.

|01〉 , |10〉, controlled on the state of a third qubit. The
states |01〉 , |10〉 can be interpreted as a dual-rail encoding
of a single qubit, thus making controlled single-excitation
gates analogous to controlled single-qubit gates.

The proof of universality relies on the ability to con-
trol excitation gates on multiple qubits. This leads to de-
compositions employing auxiliary qubits and controlled
single-excitation gates. These constructions are helpful
proof techniques, but may not be the optimal approaches
to compiling circuits. Instead, quantum circuits can be
designed using Givens rotations directly.

For quantum chemistry applications, it is likely that
custom algorithms will be needed to tackle specific prob-
lems and molecules. Instead of preparing a menu of quan-

tum circuits and algorithms for each instance, we aim
to provide scientists with a set of universal ingredients
that can be employed to craft tailored solutions. Our
results serve as a unifying framework for quantum com-
putational chemistry where every algorithm is a unique
recipe built from the same universal ingredients: Givens
rotations.

Appendix A: Decompositions of excitation operators

While controlled single excitation operators comprise
a universal gate set, hardware constraints often require
a decomposition of these operators over the gate set
of single-qubit rotations and CNOTs. Fig. 11 presents
such a decomposition for a single-excitation gate. It
is straightforward to extend this to a controlled ver-
sion by applying a control to each individual gate.
This would produce Toffolis and controlled-Y rotations,
both of which can be further decomposed over the gate
set. Fig. 12 presents a decomposition for the four-qubit
double-excitation gate. This decomposition was adapted
from that of Ref. [19].
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