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Abstract

Recently, Edwards curves have received a lot of attention in the cryptographic community
due to their fast scalar multiplication algorithms. Then, many works on the application of
these curves to pairing-based cryptography have been introduced. Xu and Lin (CT-RSA, 2010)
presented refinements to improve the Miller algorithm that is central role compute pairings on
Edwards curves. In this paper, we study further refinements to Miller algorithm. Our approach
is generic, hence it allow to compute both Weil and Tate pairings on pairing-friendly Edwards
curves of any embedding degree. We analyze and show that our algorithm is faster than the
original Miller algorithm and the Xu-Lin’s refinements.
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1. Introduction

In 2007, Bernstein and Lange ]lﬁltroduced Edwards curves to cryptography. Their study
and subsequent works in E, E, , 10] showed that the addition law on such curves is more
efficient than all previously known formulas. Edwards curves have thus attracted great interest
in applications that require elliptic curve operations to achieve faster arithmetic. Then, the
application of Edwards curves to pairing-based cryptography has been studied in several research
papers ﬂﬁ, , m, , ] Although, pairing computation on Edwards curves is slightly slower
than on Weierstrass curves so far. However, in many pairing-based cryptosystems, the most
time-consuming operation is still to compute scalar multiples aP of a point P.

Pairing (or bilinear map) is probably the most useful cryptographic tool in the 2000s. It was
first introduced to cryptography in Joux’s seminal paper HE] in 2010 that describes a tripartite
(bilinear) Diffie-Hellman key exchange. Then, the use of cryptosystems based on pairings has
had a huge success with some notable breakthroughs such as the first identity-based encryption
scheme ﬂj], the short signature scheme ]

Ever since it was first described, Miller’s algorithm m, @] has been the heart of the compu-
tation of pairings on elliptic curves. Many papers are devoted to improvements in its efficiency.
For example, it can run faster on pairing-friendly elliptic curves that belong to specific fam-
ilies ﬂﬂ, , , ] Another approach of improving the Miller’s algorithm is to reduce the
Miller-loop length by introducing variants of Tate pairings, for example Eta pairing ﬂ], Ate
pairing ﬂﬂ], and particular optimal pairings m, @] For a more generic approach, studies
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in [14, 13, 22] improved the performance for computing pairings of any type (i.e., Weil, Tate,
optimal pairings), and on generic pairing-friendly elliptic curves.

Basically, Miller’s algorithm is based on a rational function g of three points Py, P>, P3. This
function is called Miller function and has its divisor div(g) = (P1) + (P2) — (P3) — (O), where O
is a distinguished rational point. For curves of Weierstrass form, this function is defined to be
the line passing through points P; and P, divided by the vertical line passing through the point
Ps, where P; = (P; + P2). On Edwards curves, finding such a point Ps is not straightforward as
in Weierstrass curves because Edwards equation has degree 4, ¢.e. any line has 4 intersections
with the curves instead of 3 on Weierstrass curves.

In |1], Arene et al. presented the first geometric interpretation of the group law on Edwards
curves and showed how to compute Tate pairing on twisted Edwards curves by using a conic
C of degree 2. They also introduced explicit formulas with a focus on curves having an even
embedding degre. In order to speed up the pairing computation on generic Edwards curves,
Xu and Lin [28] proposed refinements to Miller’s algorithm. Their refinements are inspired from
Blake-Murty-Xu’s refinements on Weierstrass curves |14]. Their refinements are generally faster
than the original Miller’s algorithm on Edwards curves described in [1].

In this paper, we further extend the Blake-Murty-Xu’s method on Edwards curves and
propose new refinements of Miller’s algorithm. Similarly Xu-Lin’s refinements, our approach is
generic. Although it did not bring a dramatic efficiency as that of Arene et al. for computing
Tate pairing over Edwards curves with even embedded degree, but the proposed refinements
can be used to compute pairing of any type over pairing-friendly Edwards curves with any
embedding degree. This approach is of particular interest to compute optimal pairings [26, [16],
and in situations where the denominator elimination technique using a twist is not possible
(e.g., Edwards curves with odd embedding degrees)E We also analyze and show that our new
algorithm is faster than the original Miller’s algorithm and its refinements presented in [2§].

The paper is organized as follows. In Section 2 we briefly recall some background on pairing
computation on Edwards curves, and then the Xu-Lin’s refinements. In Section 3 we present
our refinements of Miller’s algorithm. Section 4 gives some discussion on performance of the
proposed algorithms. Section 5 is our conclusion.

2. Preliminaries

2.1. Pairings on Edwards Curves

Let F,, be a prime finite field, where p is a prime different from 2. A twisted Edwards curve
E, 4 defined over F,, is the set of solutions (x,y) of the following affine equation:

Eoaq:ax® +y? =1+ da?y?, (1)

where a,d € F, and a # d. Edwards curves are special case of twisted Edwards curves where a
can be rescaled to 1. Twisted Edwards curves have the fastest doubling and addition operations
in elliptic curve cryptography (see [2]).

ILet E be an elliptic curve defined over a prime finite field Fp, and r be a prime dividing #E(Fp). The
embedding degree of F with respect to r is the smallest positive integer k such that r|p* — 1. In other words, k
is the smallest integer such that ]F; . contains r-roots of unity.

2Note that by definition optimal pairings only require about log,(r)/¢(k) iterations of the basic loop, where
r is the group order, ¢ is Euler’s totient function, and k is the embedding degree. For example, when k is prime,
then p(k) = k — 1. If we choose a curve having embedding degree k £ 1, then ¢(k +1) < k+1 hich is roughly

2
elk) _ %, so that at least twice as many iterations are necessary if curves with embedding degrees k £ 1 are

2
used instead of curves of embedding degree k.




Cryptographic pairing is a bilinear map that takes as input two points on elliptic curves
defined over finite fields and returns a value in the extension finite field. The key to the definition
of pairings is the evaluation of rational functions in divisors. The pairings over (hyper-)elliptic
curves are computed using the algorithm proposed by Miller [25]. The main part of Miller’s
algorithm is to construct the rational function f, p and evaluating f, p(Q) with div(f, p) =
r(P)— (rP)—[r—1]J(O) for divisors P and Q. In this section, we just recall the Miller algorithm
that is so far the best known method to compute pairings. Readers who want to study more
about pairings can take a look at papers |25, [26].

Let m and n be two integers, and ¢, p,np be a rational function whose divisor div(gmp,np) =
(mP)+(nP)—([m+n]P)—(O). We call the function gm,pnp Miller function. Miller’s algorithm
is based on the following lemma.

Lemma 2.1 (Lemma 2, [25]). For n and m two integers, up to a multiplicative constant, we
have

fmin,p = fm,pfn,Pgmpnp- (2)

Equation (@) is called Miller relation, which is proved by considering divisors. The Miller
algorithm makes use of Lemma 2] with m = n in a doubling step and n = 1 in an addition
step. For Edwards curves, Arene et al. |1] defined Miller’s function in the following theorem.

Theorem 2.2 (Theorem 2, [1]). Let a,d € Fy,a # d and Eq q be a twisted Edwards curve over
F,. Let P, P, € E, q(F,). Define Ps = P, + P,. Let ¢ is the equation of the conic C passing
through Py, P, —P3, 1, Q2, 0" whose divisor is (P1) + (P2) 4+ (= P3) + (O") — 2(Q1) — 2(Q2). Let
01, p, be the horizontal line going through Ps whose divisor is div({y p,) = (Ps) + (—P3) — 2(Q2),
and 2,0 is the vertical line going through O and O' whose divisor is (O) + (O') — 2(Q4). Then
we have

dio (222 (P + (R - (P - (). 3)

l1,p 020

The rational function gp, p, = _Opyoby consisting of three terms, can be thus considered as

T li,pyla0
Miller function on Edwards curves. Miller’s algorithm for Edwards curves using this function

works as in Algorithm [T

Input: r = ZE:O ri2t with r; € {0,1}, P,Q € E[r];
Output: f = f.(Q);

R+ P, f+1 g«1
fori=t—-1to 0do
[ orr(Q)
g 9> 11,0(Q) - L22r(Q)
R+ 2R
if (r; = 1) then
[« f-orP(Q)
g+ 9-41,0(Q)  lo,rP(Q)
R+ R+ P
end

end
return f/g

Algorithm 1: Miller’s Algorithm for twisted Edwards curves 28]




2.2. Xu-Lin Refinements

For simplicity, in what follows, we make use of the notation ¢p p (resp. o 9)p, and £1,0)
replacing for ¢p p(Q) (resp. £321p(Q), and £1 0(Q)). By extending the Blake et al.’s method [14]
to Edwards curves, Xu and Lin [28] presented a refinement to Miller algorithm. Their algorithm
was achieved owing to the following theorem.

Theorem 2.3 (Theorem 1 in [28]). Let E, 4 be a twisted Edwards curve over ¥, and P,R € E, 4
be a point of order r. Therld

1.
SRR 2 PPR[2R _ TR '
lojoirl1,0° Lo mrli,0  O—2R|-2RP0,0

®R,R PRRP _ _ _ PrEl2P
U 2rl1,0 la 2 RePl10  P2iRyP—Pl1,0

The above theorem was proven by calculating divisors (see [28] for more details). From this
theorem, they introduced refinements and an improved Miller algorithm in radix-4 representa-
tion |28, Algorithm 3]. They also claimed that the total cost of the proposed algorithm is about
76.8% of that of the original Miller’s algorithm.

3. Our Improvements on Miller’s Algorithm

3.1. First Improvement
We first present a new rational function whose divisor is equivalent to Miller function (Eq[3)
presented in [1].

Definition 3.1. Let E, q be a twisted Edwards curve and R,P € Eq q. Let ¢r p be a conic
passing through R and P, ¢_g —p be a conic passing through —R and —P, and let ¢r4p _[r+ P]
a conic passing through R+ P and —[R + P]. Then we define

B R, P )
OR4P,—[R+P]

Lemma 3.1. We have

div(gr.r) = (R) + (P) — ([R+ P]) - O.
Proof. By calculating divisors, it is straightforward to see that
div(gr,p) = (R)+(P)+ (=[R+ P])+(0') = 2(1) — 2(22)
—([R+ P]) = (=[R+ P]) = (0) = (O') +2(1) + 2(2)
= (B)+(P)—([R+P])-(0).

which concludes the proof.
O

. . . 0
Recall that, on Weierstrass curves, the Miller function gr p = U;’; , where {r p, Vgt p are

lines passing through R, P and R+ P,—[R + P], respectively. The Eq. ) thus looks similar to
the Miller function on Weierstrass curves if a conic plays role as a line function. A variant of
Miller algorithm by using Eq. 4 is described in Algorithm

3There were typos in the first formula of Theorem 1 in [2§]. Tt should be 4o 21r1,0 instead of 41 ;91 rf2,0-



Input: 7= Yi_, 2" with r; € {0,1}, P,Q € E[r];
Output: f = f(Q);

R+ P, f+1l g«1
fori=t—1to 0do
f< 2 9rr(Q)
g+ g*- dar2r(Q)
R+ 2R
if (r; = 1) then
[ f-orpP(Q)
94 9 Or+r—(r+pP)(Q)
R+~ R+ P
end
end
return f/g

Algorithm 2: First improvement of Miller’s Algorithm for twisted Edwards curves

Remark : As the original Miller’s algorithm, our algorithm cannot avoid divisions needed to
update f. But we can reduce them easily to one inversion at the end of the addition chain (for
the cost of one squaring in addition at the each step of the algorithm).

At first glance, Algorithm [2] requires only one multiplication for updating the function g
instead of two in Algorithm [I] Note that this operation is costly because it is performed in the
full extension finite field. In Section Ml we will provide a detailed analysis on the performance
of these algorithms. In the following section, we introduce a further refinement that even offers
a better performance in comparison to Algorithm

3.2. Refinement
The new refinement is inspired from the following lemmas.
Lemma 3.2. We have

_ QrR-R ®P-P (5)

9gRr,Pp = .
¢—Rr,—pP 90,0

Proof. This lemma is again proved by considering divisors. Indeed,
div($E=0E=L) = (R) + (—R) + (0) + (0) = 2(01) — 2(2)
+(P)+ (=P) + (0) + (0') — 2(Q1) — 2(2)
—(=R) = (=P) = ([R+ P]) = (O) +2() + 2(2%2)
—3(0) = (O') +2(f1) + 2(22)
= (B)+(P)—([R+P])-(0)
= div(gr,p) -

which concludes the proof.

Lemma 3.3. Let P,R € E, 4 be points of order r, we have

PR,R _ 1
¢% _p-b2r 2R  O-R-R 000




This lemma is easy to be proven using Definition B] and Lemma The factor ¢p,0 can
be precomputed and integrated into the factor ¢_g g as follows:

¢ r-r(Q)=0¢-r-r(Q) ¢0,0(Q)
= (cz2(Z4 + YoZq) + cxvXqYo + cx2XqZq)(Xq(Zg — Yg))

= cCgz2M + Ccxy N2 + cxzns3,

where m = (Z(z;) + YQZQ)(XQ(ZQ - YQ)), N2 = X%YQ(ZQ - YQ), n3 = X%ZQ(ZQ - YQ) are
fixed for whole computation, thus they can be precomputed and stored. The Eq. [0l can thus be
rewritten as follows:

1
®R,R B )

¢%{77R ! ¢2R,—2R ¢L37,R'

Our algorithm is described by the pseudo-code in Algorithm B by applying Eq[@ To do so,
the proposed algorithm tries to delay the factor ¢r _pr for the next step. We make use of a
memory variable m to imply whether a delayed factor in the current step or not. If m = 1, there
is a delayed factor for the next step and otherwise. There will be no delayed factor for the next
step (i.e., m will be assigned to 0) if the current bit b; = 0 and there exists a delayed factor for
the current step (line 2lin the Algorithm [B]). This will lead to the most expensive case (line €
of the proposed algorithm if the next bit b;—; = 1 (counting from the most significant bit).

Input: 7= Y1_, b2, b; € {0,1}.

Output: f

T+ P f+<1l,g<1,m<+0;

fori=t—-1to 0do

1 if (b; =0) A (m =0) then

| f+< f* 9rr: g+ g¢*; R+ 2R;

end

2 if (b; =0) A (m = 1) then

| fef* g« g* ¢ p_r: R+ 2R;

end

3 if (b =1)A (m =1) then

| f<f*-¢erp; 9g+9¢* ¢ p r; R<—2R+P;
end

4 if (b; =1) A (m =0) then

|f<—f2'¢R,R'¢2R,P; 9<—92'¢§R,,23; T+ 2R+ P;
end

m <+ —-mVb;

end

return 5
Algorithm 3: Improved Refinement of Miller’s Algorithm for any Pairing-Friendly Ed-

wards Curves




Doubling Doubling and Addition

Algorithm [l 2S,x + 3M 2S,x + SM
(Miller’s algorithm [1, 28]) = 4.6M « = 6.6M,x
p p p p
Algorithm in [1] Z 18M,¢ Z98M,¢
. 2Spk =+ 2Mpk 2Spk + 4Mpk
Algorithm 2 = 3.6M, — 5.6M,,.
Algorithm 3] 2Spk + lMpk 2Spk + 2Mpk = 3.6Mpk (line 3)

= 26Mpk 2Spk + 3Mpk = 46Mpk (line 4)

Table 1: Comparison of the cost of updating f, g of Algorithms. “Doubling” is when algorithms deal with the
bit “b; = 0” and “Doubling and Addition” is when algorithms deal with the bit “b; = 1”.

4. Discussion

In this section, we first compare the proposed algorithm with the original Miller’s algorithm
over Edwards curves [1, 28], and the Xu-Lin refinements [28]. Before analyzing the costs of
algorithm, we introduce notations for field arithmetic costs. Let Fm be an extension of degree
m of F, for m > 1 and let I,m, Mpm, Spm, and addp= the costs for inversion, multiplication,
squaring, and addition in the field F,m, respectively. We denote by m, the multiplication by
the curve coefficient a.

The cost of the algorithms for pairing computation consists of three parts: the cost of
updating the functions f, g, the cost of updating the point R and the cost of evaluating rational
functions at some point ). Note that during Ate pairing computation, coordinates of the point
R that is on the twisted curve, . The analysis in [1] showed that the total cost of updating the
point R and coefficients cz2, cxy, and czz of the conic is 6Mye + 58, 4+ 2m, for each doubling
step and 14M,. + 1lm, for each addition step (see [I, §5] for more details), where e = k/d.
Without special treatment, this cost is the same for all algorithms.

The most costly operations in pairing computations are operations in the full extension field
[F,x. At high levels of security (i.e. k large), the complexity of operations in [F,» dominates the
complexity of the operations that occur in the lower degree subfields. In this subsection, we only
analyze the cost of updating the functions f, g which are generally executed on the full extension
field IF,,x. Assume that the ratio of one full extension field squaring to one full extension field
multiplication is set to Sy = 0.8M«, a commonly used value in the literature. It is clear to see
that to update functions f and g, the proposed algorithm requires 1M x + 2S,x for a doubling
step (lines 1, 3), and 1M, for an addition step (lines 2, 4). TABLE [l shows the number of
operations needed in F,» for updating f, g in different algorithms.

From Table[] for the generic case we can see that Algorithm [3]saves two full extension field
multiplication when the bit b; = 0 compared with Algorithm [II When the bit b; = 1, Algo-
rithm [3] saves two or three full extension field multiplications in comparison to Algorithm [d]
depending on which case Algorithm [3] executes.

In comparison to Arene et al.’s algorithm [1], Algorithm Bl requires one more squaring in the
full extension field for each doubling step. However, as already mentioned, Arene et al. can only
be applied on Edwards curves with an even embedding degree k for Tate pairing computation,
while our approach is generic. It can be applied to any (pairing-friendly) Edwards curve and
for both the Weil and the Tate pairing.

The refinements in [28] are described in radix 4. Their algorithm allows to eliminate some
rational functions from Eq (@) during pairing computation. Let r = le:ol ¢:4%, with ¢; €
{0,1,2,3}. Table 2 compares our algorithm and their algorithm. From Table 2] it clearly see



that Algorithm [3]is generally faster than the refinements of Miller’s algorithm in [28] for all
four cases.

Algorithm in [28] Algorithm [3]
qg=0 5S,x + 3M ke 48,k + 2M
o[ e [ (e
i I O VI
0=3 | aserton, | o T e Y

Table 2: Comparison of our algorithm with the refinements in [2§].

5. Conclusion

In this paper, we extended the Blake-Murty-Xu’s method to propose further refinements

to Miller’s algorithm over Edwards curves. Our algorithm is generically more efficient than
the original Miller’s algorithm (Algorithm [I) the Xu-Lin’s refinements in [28]. Especially, the
proposed algorithm can be applied for computing pairings of any type over any pairing-friendly
Edwards curve. This allows the use of Edwards curves with embedding degree not of the form
2137 and is suitable for the computation of optimal pairings [26].
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