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Edwards curves

Let K be a field of characteristic # 2, d € K, d ¢ {0, 1}.
Ey:2?+y? =1+ da?y?

» Associative operation on most points defined by
Edwards addition law

(w1,91) + (22, 52) = (23,93),

T1Y2 + 1%
Ty = —17 <
1+ dzi122y1Y2

Y1Y2 — T122
1 —dzzoy1y
» Neutral elementis O = (0,1), —(x1,y1) = (=1, y1)-
O' = (0,—1) has order 2; (1,0), (—1,0) have order 4.

and y3 =
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Edwards curves

@) P, k
Plp 3 b
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Relationship to elliptic curves

» Every elliptic curve with point of order 4 is birationally
equivalent to an Edwards curve.

» Let Py = (uy,v4) have order 4, shift u s.t. [2]P, = (0,0).
Then Weierstral form:

v? = u® + (vi/ul — 2uy)u® + uiu.

» Define d = 1 — (4u3/v3). Then the coordinates
r =vu/(ug), y = (u—uq)/(u+ uy)
satisfy 2?4 y* =1+ da’y>
» Inverse map u = uy(1 +y)/(1 —y), v = vsu/(usz).

» Finitely many exceptional points (v(u + u4) = 0).
» Addition on Edwards and Weierstral3 corresponds.
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Nice features of the addition law

» Neutral element is affine point, this avoids special
routines (for O one of the inputs or the result).

P+@Q = ( e )
1+ drixoynye 1 — drizoy1ys

Ty + e Y — 2

( 1+da3y? "1 — dx%y%) '

2] P

» If d is not a square in K, the denominators
1 4 dxyx911y2 and 1 — dxqxoy,y2 are never 0;
addition law is complete.

» Having addition law work for doubling removes some
checks from the code; addition law also works for
adding P + (—P) or the neutral element.
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Fast addition law

» Very fast point addition (10M + 1S + 1D). Even faster
with Inverted Edwards coordinates (9M+1S+1D) and
Extended Edwards coordinates (8M+1S+1D).

» Dedicated doubling formulas need only 3M + 4S.
» Fastest scalar multiplication in the literature.

» For comparison: IEEE standard P1363 provides “the
fastest arithmetic on elliptic curves” by using
Jacobian coordinates on Weierstrald curves.

» Point addition 12M + 4S.
» Doubling 4M + 4S.

» For more curve shapes, better algorithms (even for
Weierstral3 curves) and many more operations
(mixed addition, re-addition, tripling, scaling,...) see

www.hyperelliptic.org/EFD.
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Twisted Edwards curves
Leta,d € K*, a # d.
Eoa: ax® +y* =1+ da’y®

» Isomorphic to plain Edwards curve E, 4/, for a = .

» Set of twisted Edwards curves invariant under
quadratic twists.

» Addition formulas very similar to Edwards curves

T1Y2 + 1%
I3 =

_ Y1Y2 — ax1Z2
1 + dz122y1Y2

and y; = )
vs 1 —dz12211Y2

» Arithmetic complete only for a = (I, d # [.
» Operation count same as Edwards (except for 1A)
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Pairings on Edwards curves

Das, Sarkar [Pairing 2008]:

» Map points to a curve in Weierstral® form using
birational map and compute pairing there.

» Express functions gr r and gz p in the Miller loop by
transformation to Montgomery form.

» Explicit formulas for supersingular curves with k& = 2.
lonica, Joux [Indocrypt 2008]:
» Compute Miller functions on a curve

v*u = (1 + du)? — 4u.

» Actually compute 4th power of the Tate pairing.
» Explicit formulas for even k.
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A geometric interpretation of the addition law

» Find a function gp, p, = hy/hs S.1.

div(gp,.p,) = (P)) + (P2) — (P3) — (O),

for some point P; and O = (0, 1).

» Then
(P1) = (0) + (P2) = (0) ~ (P3) = (0),
i.e.P1+P2:P3.
» Can use line functions for elliptic curves in Weierstral3
form.
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Weierstrald

» Line through P, and P, divided by vertical line
through third intersection point:

((P) + (Po) + (= P3) = 3(0)) = ((P5) + (—=F3) — 2(0))
= (P1) + (P2) — (Ps) — (0).

| _ |
—Py! ,?;
- | |
| |
E E '
P
5 Py

(c) Addition (d) Doubling
Addition and doubling on £ : y? = 23 — z over R.
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Edwards

» Edwards equation has degree 4, so expect 4 - deg(h)
intersection points by intersection with a function .

» Functions hy, hy cannot be linear (would have 4
intersection points; need to eliminate 2 out of each).

» Quadratic functions hq, h, could offer enough
freedom of cancellation (8 intersection points).

» General quadratic polynomial:
cx2 X2 ¥ ey2 Y24 cpp 22 4 exy XY +exzXZ +eyzYZ

» Problem: a conic is determined by 5 points; not
enough control over intersection points.
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Conic sections

» Solution: observe that points at infinity
Q=(1:0:0)and Q= (0:1:0)

are singular and have multiplicity 2.
» Conic C determined by passing through the 5 points

P, P, O, Q, and Q,

has only one more intersection point, say —Ps.
» Let h; be the function corresponding to C:

le(hl) = (Pl) + (Pg) + (O,) + (—P3) - 2(91) — 2(92)
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Conic sections

» Use hy to “replace” O’ by O and —P; by Ps.
» Can be done with product hy; = [;15 of two lines, a

horizontal line [; through P; and a vertical line [,
through O.

> div(ly) = (P3) + (—P3) — 2(Qs),
div(ly) = (O) + (O') — 2()

div(hi/(lil2)) = (P1)+ (P) + (O') + (—P)
—2(1) — 2(822)
—(P3) — (—P3) +2(£2)
—(0) = (O') +2(¢h)
= (P)+ () — () —(0)
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Pictures |

Addition and doubling over R for d < 0.
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Pictures Il

Addition and doubling over R for d > 1.
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Pictures lli

Addition and doubling over R for 0 < d < 1.
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Explicit functions

» Need to compute gp, p, = h1/(l1l2) from coefficients
of the points P, P.

» Let P = (X3 : Y3 : Z3). Then the horizontal line
through P; is given by

L =235 —Y3Z.
» The vertical line through O is given by
I, = X.
» Conic through O’, ©2,, and 2, has shape
C:ep(Z2+YZ)+cexy XY +exz X7 =0,

where (cz2 : cxy : cxz) € P?(K).
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Theorem

P =(X1:Y1:21),P,=(X0:Ys:2y) € Eyg, 21,25 #0
(@) If P, # P, P, P, # O, then

Cz2 = X1X2(YlZz - YZZI)>
cxy = Z179(X1Zy — XoZy + X1Ys — Xo Y1),
cxz = XoYolb — XV Z3 + V1Ya(XoZy — X125).

(b) If P 7é b= @', then Cg2 = —Xl, Cxy = Zl> Cxz = 41.
(c) If P, = P, then

Cz2 = X121(Z1 —Yl)a
cxy = dX7Y, - 73,
Zl(Zl}/l - (I,X12)

Cxz
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Proof

(@ P # Pand P, P, # O
» From P, P, € C, we get

cr2Z(Z1 + Y1) +exy XaY1 +exzXaZy = 0,
CZ2Z2(Z2 + }/2) + CXYX2}/2 + szXQZQ = 0.

» The formulas follow from the (projective) solutions

XYy Xaz,

X1Z, 22+ YiZ
XoYs XoZo

XoZy 72+ Yas

Cz2 —

7CXY:‘

72412, X%
Z24+YyZy XoYo

CXZ:'
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Proof

(c) First P, =P, ¢ {O,0'}:
Consider Pl = (xl,yl) = (XI/Z17Y1/Z1)

» Since P, € C ¢xz = —cxyy1 — cz2(y1 + 1) /2.

» Intersection multiplicity of £, ; and C'in P, needs to
be larger than 1: tangents in P, equal.

» The tangents are

(exyyr + exz)(x —x1) + (exyrr +cz2)(y —wp1) = 0,
2a1(a — dy})(z — x1) + 21 (1 —daf)(y — 1) = O

» They are equal if
(exyz1+cz2)2zi(a—dy?) = (cxyyr +cxz)2yi (1 — dz?).
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Proof

» Combine the two equations, multiply by =1, apply
curve equation:

(I4+y)(1— dx%yl)czz = —z(1 — yf)ch.
» P # O (y # —1):
(1-— dx%yl)czz =—x1(1 —y1)exy

» Choose cy: = —z1(1 —y1) and cxy = 1 — dziy;.
» Then
Cxz = @55% — Y1
The formulas follow from homogenization.

» Verify that special cases are obtained by same
formulas.
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Miller’s algorithm

Let £ > 1 be the embedding degree of £, ; w.r.t. r,
P € Eua(F,)[1], Q € Eua(F,),
r=(ri_1,...,71,70)2.
Compute the Tate pairing as:

1. R—P, f«1

2. fori=1—2to0do

21 f— f*-grr(Q), R+ 2R //doubling step
2.2 ifr;, =1then
f—f9rpP(Q), R—R+P /laddition step

3. f— fO"=1/n
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Miller functions on twisted Edwards curves

Assume an even embedding degree k.
» Represent F» = Fi2(a) where a® = 0 € F /2.
» Use quadratic twist E(;a,(;d(IFpk/z) to represent second
pairing argument @ = (Q’):

w : E6a,6d(Fpk/2) - a,d(IFpk)>
Ql = ($0,yo) — (xoaayo).

» Here y, € F /2 lies in a proper subfield of F .

» In Miller's algorithm compute
%+ 9r.r(¢(Q")) (doubling step) and
f - gr.p(¥(Q")) (addition step).

C. Arene, T. Lange, M. Naehrig, C. Ritzenthaler Pairings on Edwards Curves



Miller functions on twisted Edwards curves

» Compute

ha

- sz(l + yo) + CcxyXoYo + Cxz Lol
h — (o, o) =

(Z3Z/0 - Yé)ZEOOé
a+cxylyo+ Ccxz
Z3yo — Y3 7

c +y0

where (X3 : Y3 : Z3) are the coord. of [2]R or R + P,
» in 2(k/2)m over F, given the coefficients cz2, cxy, cxz
and precomputed 7 = =,

» Note that Z3yq — Y3 € F /2. Discard it since final
exponentiation maps it to 1 anyway.
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Pairing-friendly Edwards curves

How to get Edwards curves with small embedding
degree?
» Construct pairing-friendly curves in Weierstral3 form
and then transform to Edwards or twisted Edwards
form.

» Only requirement is that the group order is a multiple
of 4.
» If have a point of order 4, get plain Edwards curve.

» If not, get twisted Edwards curve. Can be
transformed to plain Edwards form by using
2-isogenies.
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Pairing-friendly Edwards curves

» Need curves with 4 | #E(F,).

» Use generalized MNT construction for curves with
cofactor 4 as done by Galbraith, McKee, Valenca.

» Parametrizations for embedding degree k£ = 6 and
cofactor 4.

| Case | q(0) | w0 ] n(0) |
1 1602 4100+ 5 20+ 2 407 + 20+ 1
11202 + 540 +7 | 1404+4 [ 2802 +100 +1
11202 + 860 + 17 | 140+6 |28/>+ 18/ +3
20802 + 300 +1 | =260 — 2 | 520? + 140 + 1
2080 + 1260+ 19 | —26¢ — 8 | 522 +38( + 7

QY | W N
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Pairing-friendly Edwards curves

» First solve the norm equation
t(0)* — 4q() = —Dv*.
» Case 1 in the table:
t(0) =20+2, q(f) = 1602 + 100 + 5

Transform equation into corresponding Pell equation
by completing the square:

t()? —4q(0) = —Dy?* < o —15Dy> = —44,

where ¢ = 15¢ + 4.
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Pairing-friendly Edwards curves

» Constructed curves over F, have order
#E(F,) = 4hr

for a prime r and cofactor h.

» Since embedding degree is fixed to 6, balance the
DLPs; eCrypt report on key sizes suggests the
following bitsizes:

Ll p[ P R
160 208 1248 46
192 296 1776 102
224 | 405 2432 179
256 | 541 3248 | 283
512 | 2570 | 15424 | 2056
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Examples

D =1, [log(n)] = 363, [log(h)] =7, [log(p)] = 371

p = 32428903728427434871960638456028409162281939582432575945
30632153559402628010019946681624958973937239637420169141,
n = 11105788948091587284918026868502879850096554651518005460
623832064312035897815509951488907964532000965993 787241,
= 73,
d = 16214451864213717435980319228014204581140969791216287972

65316076779701314005009973340812479486968619818710084571.

D = 17230, [log(n)] = 165, [log(h)] = 34, [log(p)] = 201

= 2051613663768129606093583432875887398415301962227490187508801,
44812545413308579913957438201331385434743442366277,

7-733 - 2230663,

= 889556570662354157210639662153375862261205379822879716332449.

Q>3
Il
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Explicit formulas

» Use explicit formulas with extended Edwards
coordinates by Hisil, et. al. [Asiacrypt 2008] for point
doubling and addition in Miller’'s algorithm.

» Can reuse large parts of the computation for
coefficients of the conic.

» Use even embedding degree and quadratic twist to
represent second pairing argument @, i.e.
multiplications with coordinates z, and y cost k/2
multiplications in [F,,.

» Compute conic coefficients in doubling step with

6m + 5s + 1m,, in addition step with 14m + 1m,
(mixed addition 12m + 1my,).
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Comparison of operation counts

| | DBL | mADD | ADD
J Im + 11s 4 1ma, 9m + 3s —
J,aq = -3 m + 4s 9m + 3s —
J,aq =0 6m + 5s 9m + 3s —
£ 8m + 4s + Img 14m + 4s + 1mg —
&, this paper | 6m + 5s + 1mj, 12m + 1mg, 14m + 1mg,

All formulas need additional km + 1M for (mixed) addition
steps and km + 1M + 1S for doubling steps.
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Comparison of operation counts

| | DBL | mADD | ADD |

J Im + 11s + 1ma, 9m + 3s —

this paper 1m + 11s+ 1ma, | 6m +6s 15m + 6s
J,aq = -3 m + 4s 9m + 3s —

this paper 6m + 5s 6m + 6s 15m + 6s
J,aq =0 6m + 5s 9m + 3s —

this paper 3m + 8s 6m + 6s 15m + 6s

£ 8m + 4s + Img 14m + 4s + 1mg —

&, this paper | 6m + 5s + 1ma 12m 4+ 1ma 14m + 1ma

Explicit formulas and more curve examples in preprint

http://eprint.iacr.org/2009/155
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