
Pairings on Edwards Curves

Michael Naehrig

Eindhoven Institute for the Protection of Systems and Information
Technische Universiteit Eindhovenmi
hael�
ryptojedi.org

Pairings in Arithmetic Geometry and Cryptography
Essen, 05.05.2009

joint work with Christophe Arène (IML), Tanja Lange (TU/e), and Christophe
Ritzenthaler (IML)

C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler Pairings on Edwards Curves



Edwards curves

Let K be a field of characteristic 6= 2, d ∈ K, d /∈ {0, 1}.

Ed : x2 + y2 = 1 + dx2y2

◮ Associative operation on most points defined by
Edwards addition law

(x1, y1) + (x2, y2) = (x3, y3),

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

and y3 =
y1y2 − x1x2

1− dx1x2y1y2

.

◮ Neutral element is O = (0, 1), −(x1, y1) = (−x1, y1).
O′ = (0,−1) has order 2; (1, 0), (−1, 0) have order 4.
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Edwards curves
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Relationship to elliptic curves
◮ Every elliptic curve with point of order 4 is birationally

equivalent to an Edwards curve.
◮ Let P4 = (u4, v4) have order 4, shift u s.t. [2]P4 = (0, 0).

Then Weierstraß form:

v2 = u3 + (v2
4/u

2
4 − 2u4)u

2 + u2
4u.

◮ Define d = 1− (4u3
4/v

2
4). Then the coordinates

x = v4u/(u4v), y = (u− u4)/(u+ u4)

satisfy x2 + y2 = 1 + dx2y2.

◮ Inverse map u = u4(1 + y)/(1− y), v = v4u/(u4x).
◮ Finitely many exceptional points (v(u+ u4) = 0).
◮ Addition on Edwards and Weierstraß corresponds.
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Nice features of the addition law

◮ Neutral element is affine point, this avoids special
routines (for O one of the inputs or the result).

P +Q =

(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)

,

[2]P =

(

x1y1 + y1x1

1 + dx2
1y

2
1

,
y2

1 − x
2
1

1− dx2
1y

2
1

)

.

◮ If d is not a square in K, the denominators
1 + dx1x2y1y2 and 1− dx1x2y1y2 are never 0;
addition law is complete.

◮ Having addition law work for doubling removes some
checks from the code; addition law also works for
adding P + (−P ) or the neutral element.
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Fast addition law
◮ Very fast point addition (10M + 1S + 1D). Even faster

with Inverted Edwards coordinates (9M+1S+1D) and
Extended Edwards coordinates (8M+1S+1D).

◮ Dedicated doubling formulas need only 3M + 4S.
◮ Fastest scalar multiplication in the literature.
◮ For comparison: IEEE standard P1363 provides “the

fastest arithmetic on elliptic curves” by using
Jacobian coordinates on Weierstraß curves.

◮ Point addition 12M + 4S.
◮ Doubling 4M + 4S.

◮ For more curve shapes, better algorithms (even for
Weierstraß curves) and many more operations
(mixed addition, re-addition, tripling, scaling,. . . ) seewww.hyperellipti
.org/EFD.
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Twisted Edwards curves

Let a, d ∈ K∗, a 6= d.

Ea,d : ax2 + y2 = 1 + dx2y2

◮ Isomorphic to plain Edwards curve E1,d/a for a = �.
◮ Set of twisted Edwards curves invariant under

quadratic twists.
◮ Addition formulas very similar to Edwards curves

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

and y3 =
y1y2 − ax1x2

1− dx1x2y1y2

.

◮ Arithmetic complete only for a = �, d 6= �.
◮ Operation count same as Edwards (except for 1A)
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Pairings on Edwards curves

Das, Sarkar [Pairing 2008]:
◮ Map points to a curve in Weierstraß form using

birational map and compute pairing there.
◮ Express functions gR,R and gR,P in the Miller loop by

transformation to Montgomery form.
◮ Explicit formulas for supersingular curves with k = 2.

Ionica, Joux [Indocrypt 2008]:
◮ Compute Miller functions on a curve

v2u = (1 + du)2 − 4u.

◮ Actually compute 4th power of the Tate pairing.
◮ Explicit formulas for even k.
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A geometric interpretation of the addition law

◮ Find a function gP1,P2
= h1/h2 s.t.

div(gP1,P2
) = (P1) + (P2)− (P3)− (O),

for some point P3 and O = (0, 1).
◮ Then

(P1)− (O) + (P2)− (O) ∼ (P3)− (O),

i. e. P1 + P2 = P3.
◮ Can use line functions for elliptic curves in Weierstraß

form.
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Weierstraß
◮ Line through P1 and P2 divided by vertical line

through third intersection point:
(

(P1) + (P2) + (−P3)− 3(O)
)

−
(

(P3) + (−P3)− 2(O)
)

= (P1) + (P2)− (P3)− (O).

b
b

b

bP1
P2

P3

−P3
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E

(c) Addition

b

b

bP1
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−P3
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E

(d) Doubling

Addition and doubling on E : y2 = x3 − x over R.
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Edwards

◮ Edwards equation has degree 4, so expect 4 · deg(h)
intersection points by intersection with a function h.

◮ Functions h1, h2 cannot be linear (would have 4
intersection points; need to eliminate 2 out of each).

◮ Quadratic functions h1, h2 could offer enough
freedom of cancellation (8 intersection points).

◮ General quadratic polynomial:

cX2X2 + cY 2Y 2 + cZ2Z2 + cXY XY + cXZXZ + cY ZY Z

◮ Problem: a conic is determined by 5 points; not
enough control over intersection points.
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Conic sections

◮ Solution: observe that points at infinity

Ω1 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0)

are singular and have multiplicity 2.
◮ Conic C determined by passing through the 5 points

P1, P2,O
′,Ω1, and Ω2

has only one more intersection point, say −P3.
◮ Let h1 be the function corresponding to C:

div(h1) = (P1) + (P2) + (O′) + (−P3)− 2(Ω1)− 2(Ω2)
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Conic sections

◮ Use h2 to “replace” O′ by O and −P3 by P3.
◮ Can be done with product h2 = l1l2 of two lines, a

horizontal line l1 through P3 and a vertical line l2
through O.

◮ div(l1) = (P3) + (−P3)− 2(Ω2),
div(l2) = (O) + (O′)− 2(Ω1)

div(h1/(l1l2)) = (P1) + (P2) + (O′) + (−P3)

−2(Ω1)− 2(Ω2)

−(P3)− (−P3) + 2(Ω2)

−(O)− (O′) + 2(Ω1)

= (P1) + (P2)− (P3)− (O)
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Pictures I
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Addition and doubling over R for d < 0.
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Pictures II
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Pictures III
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Explicit functions
◮ Need to compute gP1,P2

= h1/(l1l2) from coefficients
of the points P1, P2.

◮ Let P3 = (X3 : Y3 : Z3). Then the horizontal line
through P3 is given by

l1 = Z3Y − Y3Z.

◮ The vertical line through O is given by

l2 = X.

◮ Conic through O′,Ω1, and Ω2 has shape

C : cZ2(Z2 + Y Z) + cXYXY + cXZXZ = 0,

where (cZ2 : cXY : cXZ) ∈ P
2(K).
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Theorem
P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) ∈ Ea,d, Z1, Z2 6= 0

(a) If P1 6= P2, P1, P2 6= O
′, then

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 +X1Y2 −X2Y1),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

(b) If P1 6= P2 = O′, then cZ2 = −X1, cXY = Z1, cXZ = Z1.

(c) If P1 = P2, then

cZ2 = X1Z1(Z1 − Y1),

cXY = dX2
1Y1 − Z

3
1 ,

cXZ = Z1(Z1Y1 − aX
2
1 ).
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Proof

(a) P1 6= P2 and P1, P2 6= O
′

◮ From P1, P2 ∈ C, we get

cZ2Z1(Z1 + Y1) + cXYX1Y1 + cXZX1Z1 = 0,

cZ2Z2(Z2 + Y2) + cXYX2Y2 + cXZX2Z2 = 0.

◮ The formulas follow from the (projective) solutions

cZ2 =

∣

∣

∣

∣

X1Y1 X1Z1

X2Y2 X2Z2

∣

∣

∣

∣

, cXY =

∣

∣

∣

∣

X1Z1 Z2
1 + Y1Z1

X2Z2 Z2
2 + Y2Z2

∣

∣

∣

∣

,

cXZ =

∣

∣

∣

∣

Z2
1 + Y1Z1 X1Y1

Z2
2 + Y2Z2 X2Y2

∣

∣

∣

∣

.
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Proof

(c) First P1 = P2 6∈ {O,O
′}:

Consider P1 = (x1, y1) = (X1/Z1, Y1/Z1).

◮ Since P1 ∈ C: cXZ = −cXY y1 − cZ2(y1 + 1)/x1.
◮ Intersection multiplicity of Ea,d and C in P1 needs to

be larger than 1: tangents in P1 equal.
◮ The tangents are

(cXY y1 + cXZ)(x− x1) + (cXY x1 + cZ2)(y − y1) = 0,

2x1(a− dy
2
1)(x− x1) + 2y1(1− dx

2
1)(y − y1) = 0

◮ They are equal if
(cXY x1 + cZ2)2x1(a−dy

2
1) = (cXY y1 + cXZ)2y1(1−dx

2
1).
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Proof
◮ Combine the two equations, multiply by x1, apply

curve equation:

(1 + y1)(1− dx
2
1y1)cZ2 = −x1(1− y

2
1)cXY .

◮ P1 6= O
′ (y1 6= −1):

(1− dx2
1y1)cZ2 = −x1(1− y1)cXY

◮ Choose cZ2 = −x1(1− y1) and cXY = 1− dx2
1y1.

◮ Then
cXZ = ax2

1 − y1.

The formulas follow from homogenization.
◮ Verify that special cases are obtained by same

formulas.
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Miller’s algorithm

Let k > 1 be the embedding degree of Ea,d w.r.t. r,
P ∈ Ea,d(Fp)[r], Q ∈ Ea,d(Fpk),
r = (rl−1, . . . , r1, r0)2.
Compute the Tate pairing as:

1. R← P , f ← 1

2. for i = l − 2 to 0 do
2.1 f ← f2 · gR,R(Q), R← 2R //doubling step
2.2 if ri = 1 then

f ← f · gR,P (Q), R← R + P //addition step

3. f ← f (pk−1)/n
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Miller functions on twisted Edwards curves

Assume an even embedding degree k.
◮ Represent Fpk = Fpk/2(α) where α2 = δ ∈ Fpk/2.
◮ Use quadratic twist Eδa,δd(Fpk/2) to represent second

pairing argument Q = ψ(Q′):

ψ : Eδa,δd(Fpk/2) → Ea,d(Fpk),

Q′ = (x0, y0) 7→ (x0α, y0).

◮ Here y0 ∈ Fpk/2 lies in a proper subfield of Fpk .
◮ In Miller’s algorithm compute
f 2 · gR,R(ψ(Q′)) (doubling step) and
f · gR,P (ψ(Q′)) (addition step).
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Miller functions on twisted Edwards curves

◮ Compute

h1

l1l2
(x0α, y0) =

cZ2(1 + y0) + cXY x0αy0 + cXZx0α

(Z3y0 − Y3)x0α

=
cZ2

1+y0

x0δ
α + cXY y0 + cXZ

Z3y0 − Y3
,

where (X3 : Y3 : Z3) are the coord. of [2]R or R + P ,
◮ in 2(k/2)m over Fp given the coefficients cZ2, cXY , cXZ

and precomputed η = 1+y0

x0δ
.

◮ Note that Z3yQ − Y3 ∈ Fpk/2. Discard it since final
exponentiation maps it to 1 anyway.
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Pairing-friendly Edwards curves

How to get Edwards curves with small embedding
degree?

◮ Construct pairing-friendly curves in Weierstraß form
and then transform to Edwards or twisted Edwards
form.

◮ Only requirement is that the group order is a multiple
of 4.

◮ If have a point of order 4, get plain Edwards curve.
◮ If not, get twisted Edwards curve. Can be

transformed to plain Edwards form by using
2-isogenies.
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Pairing-friendly Edwards curves

◮ Need curves with 4 | #E(Fp).
◮ Use generalized MNT construction for curves with

cofactor 4 as done by Galbraith, McKee, Valença.
◮ Parametrizations for embedding degree k = 6 and

cofactor 4.Case q(ℓ) t(ℓ) n(ℓ)

1 16ℓ2 + 10ℓ+ 5 2ℓ+ 2 4ℓ2 + 2ℓ+ 1
2 112ℓ2 + 54ℓ+ 7 14ℓ+ 4 28ℓ2 + 10ℓ+ 1
3 112ℓ2 + 86ℓ+ 17 14ℓ+ 6 28ℓ2 + 18ℓ+ 3
4 208ℓ2 + 30ℓ+ 1 −26ℓ− 2 52ℓ2 + 14ℓ+ 1
5 208ℓ2 + 126ℓ+ 19 −26ℓ− 8 52ℓ2 + 38ℓ+ 7
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Pairing-friendly Edwards curves

◮ First solve the norm equation

t(ℓ)2 − 4q(ℓ) = −Dv2.

◮ Case 1 in the table:

t(ℓ) = 2ℓ+ 2, q(ℓ) = 16ℓ2 + 10ℓ+ 5

Transform equation into corresponding Pell equation
by completing the square:

t(ℓ)2 − 4 q(ℓ) = −D y2 ⇐⇒ x2 − 15Dy2 = −44,

where x = 15ℓ+ 4.
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Pairing-friendly Edwards curves
◮ Constructed curves over Fp have order

#E(Fp) = 4hr

for a prime r and cofactor h.
◮ Since embedding degree is fixed to 6, balance the

DLPs; eCrypt report on key sizes suggests the
following bitsizes:

r p p6 h

160 208 1248 46
192 296 1776 102
224 405 2432 179
256 541 3248 283
512 2570 15424 2056
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Examples
D = 1, ⌈log(n)⌉ = 363, ⌈log(h)⌉ = 7, ⌈log(p)⌉ = 371

p = 32428903728427434871960638456028409162281939582432575945

30632153559402628010019946681624958973937239637420169141,

n = 11105788948091587284918026868502879850096554651518005460

623832064312035897815509951488907964532000965993787241,

h = 73,

d = 16214451864213717435980319228014204581140969791216287972

65316076779701314005009973340812479486968619818710084571.

D = 7230, ⌈log(n)⌉ = 165, ⌈log(h)⌉ = 34, ⌈log(p)⌉ = 201

p = 2051613663768129606093583432875887398415301962227490187508801,

n = 44812545413308579913957438201331385434743442366277,

h = 7 · 733 · 2230663,

d = 889556570662354157210639662153375862261205379822879716332449.
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Explicit formulas

◮ Use explicit formulas with extended Edwards
coordinates by Hisil, et. al. [Asiacrypt 2008] for point
doubling and addition in Miller’s algorithm.

◮ Can reuse large parts of the computation for
coefficients of the conic.

◮ Use even embedding degree and quadratic twist to
represent second pairing argument Q, i.e.
multiplications with coordinates xQ and yQ cost k/2
multiplications in Fp.

◮ Compute conic coefficients in doubling step with
6m + 5s + 1ma, in addition step with 14m + 1ma

(mixed addition 12m + 1ma).
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Comparison of operation counts

DBL mADD ADD

J 1m + 11s + 1ma4
9m + 3s —

J , a4 = −3 7m + 4s 9m + 3s —
J , a4 = 0 6m + 5s 9m + 3s —
E 8m + 4s + 1md 14m + 4s + 1md —
E , this paper 6m + 5s + 1ma 12m + 1ma 14m + 1ma

All formulas need additional km + 1M for (mixed) addition
steps and km + 1M + 1S for doubling steps.
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Comparison of operation counts

DBL mADD ADD

J 1m + 11s + 1ma4
9m + 3s —

this paper 1m + 11s + 1ma4
6m + 6s 15m + 6s

J , a4 = −3 7m + 4s 9m + 3s —
this paper 6m + 5s 6m + 6s 15m + 6s
J , a4 = 0 6m + 5s 9m + 3s —
this paper 3m + 8s 6m + 6s 15m + 6s
E 8m + 4s + 1md 14m + 4s + 1md —
E , this paper 6m + 5s + 1ma 12m + 1ma 14m + 1ma

Explicit formulas and more curve examples in preprinthttp://eprint.ia
r.org/2009/155
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