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Pairings

Let (G1,⊕), (G′

1,⊕) and (G, ·) be groups and let

e : G1 ×G′

1 → G

be a map satisfying

e(P ⊕Q,R′) = e(P,R′)e(Q,R′)

e(P,R′ ⊕ S′) = e(P,R′)e(P, S′)

The map is non-degenerate in the first argument, i.e. if
e(P,R′) = 1 for all R′ ∈ G′

1 for some P then P is the
identity in G1

Then e is called a bilinear map or pairing.

In protocol papers often G1 = G′

1.
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Consequences

Assume that G1 = G′

1 and hence

e(P, P ) 6= 1.

Then for all triples (P1, P2, P3) ∈ 〈P 〉
3 one can decide

whether
logP (P3) = logP (P1) logP (P2)

by comparing

e(P1, P2)
?
= e(P, P3).

Thus the Decision Diffie-Hellman Problem is easy.

The DL system G1 is at most as secure as the system
G. Even if G1 6= G′

1 one can transfer the DLP in G1 to a
DLP in G, provided that one can find an element
P ′ ∈ G′

1 such that the map P → e(P, P ′) is injective.
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Positive Application of Pairings

Joux, ANTS 2000, one round tripartite key exchange

Let P, P ′ be generators of G1 and G′

1 respectively.
Users A,B and C compute joint secret from their secret
contributions a, b, c as follows (A’s perspective)

Compute and send [a]P, [a]P ′.

Upon receipt of [b]P and [c]P ′ put k = (e([b]P, [c]P ′))a

The resulting element k is the same for each participant as

k = (e([b]P, [c]P ′))a = (e(P, P ′))abc = (e([a]P, [c]P ′))b = (e([a]P, [b]P ′))c.

Obvious saving in first step if G1 = G′

1.

Only one user needs to do both computations.

Tanja Lange Background of Pairings – p. 4



Prerequisites I
We want to define pairings

G1 ×G2 → GT

preserving the group structure.

Tate and the Weil pairing both use elliptic curves as first
argument. Assume that ℓ

∣

∣|E(IFq)| and ℓ2 6
∣

∣ |E(IFq)|.

Let ℓ be a prime, let E be an elliptic curve over IFq.

G1 is the group of IFq-rational ℓ-torsion points of E, i.e.
G1 = E[ℓ](IFq), IFq-rational points on elliptic curve E of
order ℓ.
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Prerequisites II
The pairings we use map to the multiplicative group of a
finite extension field IFqk .

GT has order ℓ, so by Lagrange ℓ must divide the group
order of IF∗

qk , this happens if ℓ | qk − 1.

The embedding degree k is defined to be the minimal
extension degree of IFq so that the ℓ-th roots of unity are
in IF∗

qk , i.e.
k minimal with ℓ | qk − 1.

Attention: if q is not prime then the group of ℓ-th roots of
unity can be in a a smaller extension of the prime field!
Read Laura Hitt’s paper at Pairing 2007.

For k > 1 Tate-Lichtenbaum pairing is degenerate on
linear dependent points, i.e. Tℓ(P, P ) = 1.
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Tate-Lichtenbaum pairing I

Thanks to Isabelle Décheǹe we can now use the whole
machinery of divisors and divisor classes in the “easy”
case of elliptic curves.

Denote by E(IFqk)[ℓ] the points on E of order ℓ defined
over IFqk .

Using the embedding of E into Pic0
E, i.e.

P 7→ P − P∞

we have:

P ∈ E(IFqk)[ℓ]⇒ ∃FP such that ℓ(P − P∞) ∼ div(FP ),

i.e. ℓ(P − P∞) is a principal divisor.
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Tate-Lichtenbaum pairing II

Given Q ∈ E(IFqk), find S ∈ E(IFqk) so that
Q⊕ S, S 6∈ {±P, P∞}. (A random choice of S will do.)

Note that Q⊕ S − S ∼ Q− P∞.

Tate-Lichtenbaum pairing

Tℓ(P,Q) = FP (Q⊕ S − S) =
FP (Q⊕ S)

FP (S)
.

This map is actually bilinear – easy to see for second
argument; slightly harder for first.

The value is independent of the choices of FP and S –
up to ℓ-th powers.
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Tate-Lichtenbaum pairing III

This Tℓ defines a bilinear and non-degenerate map

Tℓ : E(IFqk)[ℓ]× E(IFqk)/ℓE(IFqk)→ IF∗

qk/IF∗ℓ
qk

as ℓ-folds are in the kernel of Tℓ.
To achieve unique value in IFqk rather than class do final
exponentiation

T̃ℓ = Tℓ(P,Q)(q
k
−1)/ℓ.

Often

Tℓ : E(IFq)[ℓ]× E(IFqk)/ℓE(IFqk)→ IF∗

qk/IF∗ℓ
qk .

The function FP is built iteratively and evaluated in each
round. This is known as Miller’s algorithm.
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Miller’s algorithm

In: ℓ =
∑n−1

i=0 ℓi2
i, P,Q⊕ S, S

Out: Tℓ(P,Q)

1. T ← P , F ← 1

2. for i = n− 2 downto 0 do
(a) Calculate lines l and v in doubling

T ← [2]T

F ← F 2 · l(Q⊕ S)v(S)/(l(S)v(Q⊕ S))

(b) if ℓi = 1 then
Calculate lines l and v in addition T ⊕ P
T ← T ⊕ P
F ← F · l(Q⊕ S)v(S)/(l(S)v(Q⊕ S))

3. return F
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

l : y − λx− µ = 0
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

l : y − λx− µ = 0 P ⊕R

v : x− c = 0
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Weil pairing
For an elliptic curve E define

Wℓ : E(IFq)[ℓ]× E(IFq)[ℓ] → µℓ

(P,Q) 7→
FP (DQ)

FQ(DP )
,

where µℓ is the multiplicative groups of the ℓ-th roots of unity
in the algebraic closure IFq of IFq and DP and DQ are
divisors isomorphic to P − P∞ or Q− P∞, respectively.
Obviously, Wℓ(P, P ) = 1.

Weil pairings can be seen as two-fold application of the
Tate-Lichtenbaum pairing, note Q ∈ E(IFqk).

Needs full group of order ℓ in E(IFqk), if k = 1 then the Weil
pairing is trivial & one needs to use larger field.
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Supersingular and ordinary
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Definition

Let E be an elliptic curve defined over IFq, q = pr.
E is supersingular if

E[ps](IFq) = {P∞}.

|E(IFq)| = q − t + 1 with t ≡ 0 mod p.

EndE is order in quaternion algebra.

Otherwise it is ordinary and one has E[ps](IFq) ∼= ZZ/ps
ZZ.

These statements hold for all s if they hold for one.
EndE order in quaternion algebra means that there are
maps which are linearly independent of the Frobenius
endomorphism. They are called distortion maps.
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Example

Consider
y2 + y = x3 + a4x + a6 over IF2r ,

so q = 2r.

Negative of P = (a, b) is −P = (a, b + 1),
⇒ no affine point with P = −P since b 6= b + 1,
⇒ even number of affine points, one point P∞,

⇒ |E(IFq)| = q − t + 1 = 2r − t + 1 is odd, so t is even.

This curve is supersingular (using the second criterion).
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Distortion map I

For supersingular curves it is possible to find maps
φ : E(IFq)→ E(IFqk) that map to a linearly independent
subgroup, i.e.

T ′

ℓ(P, P ) 6= 1 for T ′

ℓ(P, P ) = Tℓ(P, φ(P )).

(This needs that there are independent endomorphisms, so
no chance for ordinary curves).
Examples:

y2 = x3 + a4x, for p ≡ 3 (mod 4).
Distortion map (x, y) 7→ (−x, iy) with i2 = −1

y2 = x3 + a6, for p ≡ 2 (mod 3).
Distortion map (x, y) 7→ (jx, y) with j3 = 1, j 6= 1,

In both cases, #E(IFp) = p + 1, k = 2.
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Distortion maps II

Over IF2d consider
y2 + y = x3 + x + a6, with a6 = 0 or 1

and distortion map

(x, y) 7→ (x+s2, y+sx+t), s, t ∈ IF24d, s4+s = 0, t2+t+s6+s2 = 0.

#E(IF2d) = 2d + 1± 2(d+1)/2, k = 4.

Over IF3d consider
y2 = x3 + x + a6, with a6 = ±1

and distortion map

(x, y) 7→ (−x+ s, iy) with s3 +2s+2a6 = 0 and i2 = −1.

#E(IF3d) = 3d + 1± 3(d+1)/2, k = 6.
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Outlook and literature
Efficient implementation of pairings in Mike Scott’s talk

Much more about pairings during ECC – talks by Laura
Hitt, Kate Stange, and Fre Vercauteren.

Chapters 6. Background on Pairings, 16.
Implementation of Pairings, and 24. Pairing-Based
Cryptography of the Handbook of Elliptic and
Hyperelliptic Curve Cryptography
http://www.hyperelliptic.org/HEHCC

Advances in Elliptic Curve Cryptography by I. F. Blake,
G. Seroussi, and N. P. Smart (Eds.) has chapter on
pairings by Steven D. Galbraith.

Pairings for Cryptographers by S. D. Galbraith,
K. G. Paterson, and N. P. Smart; ePrint Archive: Report
2006/165
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