Background of Pairings

Tanja Lange
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
The Netherlands
tanja@hyperelliptic.org

04.09.2007

Pairings

Let $\left(G_{1}, \oplus\right),\left(G_{1}^{\prime}, \oplus\right)$ and (G, \cdot) be groups and let

$$
e: G_{1} \times G_{1}^{\prime} \rightarrow G
$$

be a map satisfying

- $e\left(P \oplus Q, R^{\prime}\right)=e\left(P, R^{\prime}\right) e\left(Q, R^{\prime}\right)$
- $e\left(P, R^{\prime} \oplus S^{\prime}\right)=e\left(P, R^{\prime}\right) e\left(P, S^{\prime}\right)$
- The map is non-degenerate in the first argument, i.e. if $e\left(P, R^{\prime}\right)=1$ for all $R^{\prime} \in G_{1}^{\prime}$ for some P then P is the identity in G_{1}
Then e is called a bilinear map or pairing.
In protocol papers often $G_{1}=G_{1}^{\prime}$.

Consequences

- Assume that $G_{1}=G_{1}^{\prime}$ and hence

$$
e(P, P) \neq 1
$$

Then for all triples $\left(P_{1}, P_{2}, P_{3}\right) \in\langle P\rangle^{3}$ one can decide whether

$$
\log _{P}\left(P_{3}\right)=\log _{P}\left(P_{1}\right) \log _{P}\left(P_{2}\right)
$$

by comparing

$$
e\left(P_{1}, P_{2}\right) \stackrel{?}{=} e\left(P, P_{3}\right)
$$

Thus the Decision Diffie-Hellman Problem is easy.

- The DL system G_{1} is at most as secure as the system G. Even if $G_{1} \neq G_{1}^{\prime}$ one can transfer the DLP in G_{1} to a DLP in G, provided that one can find an element $P^{\prime} \in G_{1}^{\prime}$ such that the map $P \rightarrow e\left(P, P^{\prime}\right)$ is injective.

Positive Application of Pairings

Joux, ANTS 2000, one round tripartite key exchange
Let P, P^{\prime} be generators of G_{1} and G_{1}^{\prime} respectively. Users A, B and C compute joint secret from their secret contributions a, b, c as follows (A 's perspective)

- Compute and send $[a] P,[a] P^{\prime}$.
- Upon receipt of $[b] P$ and $[c] P^{\prime}$ put $k=\left(e\left([b] P,[c] P^{\prime}\right)\right)^{a}$

The resulting element k is the same for each participant as

$$
k=\left(e\left([b] P,[c] P^{\prime}\right)\right)^{a}=\left(e\left(P, P^{\prime}\right)\right)^{a b c}=\left(e\left([a] P,[c] P^{\prime}\right)\right)^{b}=\left(e\left([a] P,[b] P^{\prime}\right)\right.
$$

- Obvious saving in first step if $G_{1}=G_{1}^{\prime}$.
- Only one user needs to do both computations.

Prerequisites I

We want to define pairings

$$
G_{1} \times G_{2} \rightarrow G_{T}
$$

preserving the group structure.

- Tate and the Weil pairing both use elliptic curves as first argument. Assume that $\ell\left|\left|E\left(\mathbb{F}_{q}\right)\right|\right.$ and $\left.\ell^{2} \chi\right| E\left(\mathbb{F}_{q}\right) \mid$.
- Let ℓ be a prime, let E be an elliptic curve over \mathbb{F}_{q}.
- G_{1} is the group of \mathbb{F}_{q}-rational ℓ-torsion points of E, i.e. $G_{1}=E[\ell]\left(\mathbb{F}_{q}\right), \mathbb{F}_{q}$-rational points on elliptic curve E of order ℓ.

Prerequisites II

- The pairings we use map to the multiplicative group of a finite extension field $\mathbb{F}_{q^{k}}$.
- G_{T} has order ℓ, so by Lagrange ℓ must divide the group order of $\mathbb{F}_{q^{k}}^{*}$, this happens if $\ell \mid q^{k}-1$.
- The embedding degree k is defined to be the minimal extension degree of \mathbb{F}_{q} so that the ℓ-th roots of unity are in $\mathbb{F}_{q^{k}}^{*}$, i.e.
k minimal with $\ell \mid q^{k}-1$.
- Attention: if q is not prime then the group of ℓ-th roots of unity can be in a a smaller extension of the prime field! Read Laura Hitt's paper at Pairing 2007.
- For $k>1$ Tate-Lichtenbaum pairing is degenerate on linear dependent points, i.e. $T_{\ell}(P, P)=1$.

Tate-Lichtenbaum pairing I

- Thanks to Isabelle Décheǹe we can now use the whole machinery of divisors and divisor classes in the "easy" case of elliptic curves.
- Denote by $E\left(\mathbb{F}_{q^{k}}\right)[\ell]$ the points on E of order ℓ defined over $\mathbb{F}_{q^{k}}$.
- Using the embedding of E into $\operatorname{Pic}_{E}^{0}$, i.e.

$$
P \mapsto P-P_{\infty}
$$

we have:

$$
P \in E\left(\mathbb{F}_{q^{k}}\right)[\ell] \Rightarrow \exists F_{P} \text { such that } \ell\left(P-P_{\infty}\right) \sim \operatorname{div}\left(F_{P}\right),
$$

i.e. $\ell\left(P-P_{\infty}\right)$ is a principal divisor.

Tate-Lichtenbaum pairing II

- Given $Q \in E\left(\mathbb{F}_{q^{k}}\right)$, find $S \in E\left(\mathbb{F}_{q^{k}}\right)$ so that $Q \oplus S, S \notin\left\{ \pm P, P_{\infty}\right\}$. (A random choice of S will do.)
- Note that $Q \oplus S-S \sim Q-P_{\infty}$.
- Tate-Lichtenbaum pairing

$$
T_{\ell}(P, Q)=F_{P}(Q \oplus S-S)=\frac{F_{P}(Q \oplus S)}{F_{P}(S)}
$$

- This map is actually bilinear - easy to see for second argument; slightly harder for first.
- The value is independent of the choices of F_{P} and S up to ℓ-th powers.

Tate-Lichtenbaum pairing III

This T_{ℓ} defines a bilinear and non-degenerate map

$$
T_{\ell}: E\left(\mathbb{F}_{q^{k}}\right)[\ell] \times E\left(\mathbb{F}_{q^{k}}\right) / \ell E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} / \mathbb{F}_{q^{k}}^{* \ell}
$$

as ℓ-folds are in the kernel of T_{ℓ}.
To achieve unique value in $\mathbb{F}_{q^{k}}$ rather than class do final exponentiation

$$
\tilde{T}_{\ell}=T_{\ell}(P, Q)^{\left(q^{k}-1\right) / \ell}
$$

Often

$$
T_{\ell}: E\left(\mathbb{F}_{q}\right)[\ell] \times E\left(\mathbb{F}_{q^{k}}\right) / \ell E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} / \mathbb{F}_{q^{k}}^{* \ell}
$$

The function F_{P} is built iteratively and evaluated in each round. This is known as Miller's algorithm.

Miller's algorithm

In: $\ell=\sum_{i=0}^{n-1} \ell_{i} 2^{i}, P, Q \oplus S, S$
Out: $T_{\ell}(P, Q)$

1. $T \leftarrow P, F \leftarrow 1$
2. for $i=n-2$ downto 0 do
(a) Calculate lines l and v in doubling

$$
\begin{aligned}
& T \leftarrow[2] T \\
& F \leftarrow F^{2} \cdot l(Q \oplus S) v(S) /(l(S) v(Q \oplus S))
\end{aligned}
$$

(b) if $\ell_{i}=1$ then

Calculate lines l and v in addition $T \oplus P$

$$
\begin{aligned}
& T \leftarrow T \oplus P \\
& F \leftarrow F \cdot l(Q \oplus S) v(S) /(l(S) v(Q \oplus S))
\end{aligned}
$$

3. return F

Group Law in $E(\mathbb{R}), h=0$

$$
y^{2}=x^{3}-x
$$

Group Law in $E(\mathbb{R}), h=0$

$$
y^{2}=x^{3}-x
$$

Group Law in $E(\mathbb{R}), h=0$

$$
y^{2}=x^{3}-x
$$

Weil pairing

For an elliptic curve E define

$$
\begin{aligned}
W_{\ell}: E\left(\overline{\mathbb{F}}_{q}\right)[\ell] \times E\left(\overline{\mathbb{F}}_{q}\right)[\ell] & \rightarrow \mu_{\ell} \\
(P, Q) & \mapsto \frac{F_{P}\left(D_{Q}\right)}{F_{Q}\left(D_{P}\right)},
\end{aligned}
$$

where μ_{ℓ} is the multiplicative groups of the ℓ-th roots of unity in the algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q} and D_{P} and D_{Q} are divisors isomorphic to $P-P_{\infty}$ or $Q-P_{\infty}$, respectively. Obviously, $W_{\ell}(P, P)=1$.
Weil pairings can be seen as two-fold application of the Tate-Lichtenbaum pairing, note $Q \in E\left(\mathbb{F}_{q^{k}}\right)$.
Needs full group of order ℓ in $E\left(\mathbb{F}_{q^{k}}\right)$, if $k=1$ then the Weil pairing is trivial \& one needs to use larger field.

Supersingular and ordinary

Definition

Let E be an elliptic curve defined over $\mathbb{F}_{q}, q=p^{r}$. E is supersingular if

- $E\left[p^{s}\right]\left(\overline{\mathbb{F}}_{q}\right)=\left\{P_{\infty}\right\}$.
- $\left|E\left(\mathbb{F}_{q}\right)\right|=q-t+1$ with $t \equiv 0 \bmod p$.
- End_{E} is order in quaternion algebra.

Otherwise it is ordinary and one has $E\left[p^{s}\right]\left(\overline{\mathbb{F}}_{q}\right) \cong \mathbb{Z} / p^{s} \mathbb{Z}$.
These statements hold for all s if they hold for one.
End_{E} order in quaternion algebra means that there are maps which are linearly independent of the Frobenius endomorphism. They are called distortion maps.

Example

Consider

$$
y^{2}+y=x^{3}+a_{4} x+a_{6} \text { over } \mathbb{F}_{2^{r}},
$$

so $q=2^{r}$.
Negative of $P=(a, b)$ is $-P=(a, b+1)$,
\Rightarrow no affine point with $P=-P$ since $b \neq b+1$,
\Rightarrow even number of affine points, one point P_{∞},
$\Rightarrow\left|E\left(\mathbb{F}_{q}\right)\right|=q-t+1=2^{r}-t+1$ is odd, so t is even.
This curve is supersingular (using the second criterion).

Distortion map I

For supersingular curves it is possible to find maps $\phi: E\left(\mathbb{F}_{q}\right) \rightarrow E\left(\mathbb{F}_{q^{k}}\right)$ that map to a linearly independent subgroup, i.e.

$$
T_{\ell}^{\prime}(P, P) \neq 1 \text { for } T_{\ell}^{\prime}(P, P)=T_{\ell}(P, \phi(P)) .
$$

(This needs that there are independent endomorphisms, so no chance for ordinary curves).
Examples:

- $y^{2}=x^{3}+a_{4} x$, for $p \equiv 3(\bmod 4)$.

Distortion map $(x, y) \mapsto(-x, i y)$ with $i^{2}=-1$

- $y^{2}=x^{3}+a_{6}$, for $p \equiv 2(\bmod 3)$.

Distortion map $(x, y) \mapsto(j x, y)$ with $j^{3}=1, j \neq 1$,
In both cases, $\# E\left(\mathbb{F}_{p}\right)=p+1, k=2$.

Distortion maps II

- Over $\mathbb{F}_{2^{d}}$ consider

$$
y^{2}+y=x^{3}+x+a_{6}, \text { with } a_{6}=0 \text { or } 1
$$ and distortion map

$(x, y) \mapsto\left(x+s^{2}, y+s x+t\right), s, t \in \mathbb{F}_{2^{4 d}}, s^{4}+s=0, t^{2}+t+s^{6}+s^{2}=$ $\# E\left(\mathbb{F}_{2^{d}}\right)=2^{d}+1 \pm 2^{(d+1) / 2}, k=4$.

- Over $\mathbb{F}_{3^{d}}$ consider

$$
y^{2}=x^{3}+x+a_{6}, \text { with } a_{6}= \pm 1
$$

and distortion map
$(x, y) \mapsto(-x+s, i y)$ with $s^{3}+2 s+2 a_{6}=0$ and $i^{2}=-1$.
$\# E\left(\mathbb{F}_{3^{d}}\right)=3^{d}+1 \pm 3^{(d+1) / 2}, k=6$.

Outlook and literature

- Efficient implementation of pairings in Mike Scott's talk
- Much more about pairings during ECC - talks by Laura Hitt, Kate Stange, and Fre Vercauteren.
- Chapters 6. Background on Pairings, 16. Implementation of Pairings, and 24. Pairing-Based
Cryptography of the Handbook of Elliptic and Hyperelliptic Curve Cryptography
http://www.hyperelliptic.org/HEHCC
- Advances in Elliptic Curve Cryptography by I. F. Blake, G. Seroussi, and N. P. Smart (Eds.) has chapter on pairings by Steven D. Galbraith.
- Pairings for Cryptographers by S. D. Galbraith, K. G. Paterson, and N. P. Smart; ePrint Archive: Report 2006/165

