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Improved Miller’s Algorithm for Computing
Pairings on Edwards Curves

Duc-Phong Le, and Chik How Tan

Abstract—Since Edwards curves were introduced to elliptic curve cryptography by Bernstein and Lange in 2007, they have received
a lot of attention due to their very fast group law operation. Pairing computation on such curves is slightly slower than on Weierstrass
curves. However, in some pairing-based cryptosystems, they might require a number of scalar multiplications which is time-consuming
operation and this can be advantageous to use Edwards in this scenario. In this paper, we present a variant of Miller’s algorithm for
pairing computation on Edwards curves. Our approach is generic, it is able to compute both Weil and Tate pairings on pairing-friendly
Edwards curves of any embedding degree. Our analysis shows that the new algorithm is faster than the previous algorithms for odd
embedding degree and as fast as for even embedding degree. Hence, the new algorithm is suitable for computing optimal pairings and
in situations where the denominators elimination technique is not possible.

Index Terms—Edwards curves, Pairing-friendly elliptic curves, Miller’s algorithm, Pairing computation, Weil/Tate pairings, Pairing-
based cryptography.

F

1 INTRODUCTION

Edwards curves and the Edwards group law were first
introduced in [1]. Bernstein and Lange [2] then intro-
duced Edwards curves to cryptography and showed that
the addition law on Edwards curves is more efficient
than all previously known formulas. Edwards curves
were then generalized to the twisted Edwards curves [3]
that cover considerably more elliptic curves over a finite
field than the original ones.

Pairing-based cryptography has received a lot of atten-
tion over the past more than ten years. The first notable
application of pairings to cryptology was the work of
Menezes, Okamato and Vanstone [4]. They showed that
the discrete logarithm problem on an elliptic curve can
be reduced to the discrete logarithm problem in a finite
field in 1991 through the Weil pairing. Then, Frey and
Rück [5] also considered this situation using the Tate
pairing. Pairings were thus used as a means of attacking
cryptosystems.

Nevertheless, pairings on elliptic curves only become a
great interest since their first application in constructing
cryptographic protocols [6], which describes an one-
round 3-party Diffie-Hellman key exchange protocol.
Since then, the use of cryptographic protocols based
on pairings has had a huge success with some no-
table breakthroughs such as the first practical Identity-
based Encryption (IBE) scheme [7], the short signature
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scheme [8], and many other new cryptographic primi-
tives [9], [10], [11].

Efficient algorithms for pairing computation play a
very important role in pairing-based cryptography. The
best known method for computing the Weil and the
Tate pairing is based on Miller’s algorithm [12] for
rational functions from scalar multiplications of divisors.
The Weil pairing requires two Miller loops, while the
Tate pairing requires only one Miller loop and a final
exponentiation; and about two times faster than the Weil
pairing.

In comparison to Weierstrass curves, twisted Edwards
curves introduce a faster addition law. However, pairing
computation over Edwards curves is more complicated
than over Weierstrass ones. The following question is im-
portant for computing the Weil/Tate pairings on elliptic
curves when using Miller’s algorithm: given points P1

and P2 on an elliptic curve, find a point P3 (= P1 + P2)
and a rational function g, called Miller’s function such
that div(g) = (P1) + (P2) − (P3) − (O), where O is a
distinguished rational point. For curves of Weierstrass
form, this function is easy to obtain due to the chord-
and-tangent rule for addition. While Edwards equation
has degree 4, i.e. any line has 4 intersections with the
curves instead of 3 as in Weierstrass curves. Hence it is
not easy to find such a function.

In [13] and [14] computing a pairing uses a bi-rational
equivalence that maps an Edwards curve to a curve
of degree 3 and then express the Miller’s function g
by line functions. Arene et al. [15] presented the first
geometric interpretation of the group law on Edwards
curves and showed how to compute Tate pairing on
twisted Edwards curves by using a conic C of degree
2. They also introduced explicit formulas with a focus
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on curves having an even embedding degree1. Although
pairing computation on Weierstrass curves is slightly
faster than on Edwards curves, in some pairing-based
cryptosystems, there required a number of scalar multi-
plication that can benefit the fastest group law operation
on Edwards curves.

Based on Arene et al.’s algorithm and inspired
from refinements to Miller’s algorithm on Weierstrass
curves [16], [17], Xu and Lin [18] proposed refinements
to Miller’s algorithm on Edwards curves. Although this
approach did not bring a significant improvement as
Arene et al.’s, it can be applied for computing both Weil
and Tate pairing on pairing-friendly Edwards elliptic
curve with any embedding degree. For example, Ed-
wards curves with odd embedding degree don’t provide
a denominator elimination technique, but it may allow
a shorter Miller loop.

In this paper, we study a variant of Miller’s algorithm
for Edwards curves. Similar to Xu and Lin’s approach,
our new algorithm can also be applied on any pairing-
friendly Edwards curves and for computing any cryp-
tographic pairing. We analyze and show that our new
algorithm is generally faster than the original Miller’s al-
gorithm on Edwards curves and its refinements [18]. Our
variant of Miller’s algorithm is particularly interesting
to compute optimal pairings [19], [20], and in situations
where the denominator elimination technique using a
twist is not possible (e.g., Edwards curves with odd em-
bedding degree). Note that optimal pairings only require
log2(r)/ϕ(k) iterations of the basic loop, where r is the
group order, ϕ is Euler’s totient function, and k is the
embedding degree. For example, when k is prime, then
ϕ(k) = k − 1. If we choose a curve having embedding
degree k ± 1, then ϕ(k ± 1) ≤ k+1

2 which is roughly
ϕ(k)
2 = k−1

2 , so that at least twice as many iterations are
necessary if curves with embedding degrees k ± 1 are
used instead of curves of embedding degree k.

In this paper, we also show that our algorithm can
eliminate denominators when computing Tate pairing
on Edwards curves with even embedding degree. The
efficiency of this modification can be thus comparable to
that of Arene et al. [15].

The rest of paper is organized as follows. Section
2 briefly recalls some definitions of Edwards curves,
the Weil/Tate pairings, and Miller’s algorithm. Section
3 presents our improvements to the original Miller’s
algorithm for generic pairing-friendly Edwards curves.
Section 4 analyzes theoretically the efficiency of our
algorithm and compares with previous works. Section
5 is our conclusion.

1. Let E be an elliptic curve defined over a prime finite field Fp,
and r be a prime dividing #E(Fp). The embedding degree of E with
respect to r is the smallest positive integer k such that r|pk − 1. In
other words, k is the smallest integer such that F∗

pk
contains r-roots

of unity.

2 PRELIMINARIES

2.1 Edwards curves and Addition law
Let Fp be a finite field, where p is a prime different from
2. A twisted Edwards curve Ea,d defined over Fp is the set
of solutions (x, y) of the following affine equation:

Ea,d : ax2 + y2 = 1 + dx2y2, (1)

where a, d ∈ F∗p, and a 6= d. Edwards curves are a
special case of twisted Edwards curves where a can
be rescaled to 1. Twisted Edwards curves have the
fastest doubling and addition operations in elliptic curve
cryptography. Let P1 = (x1, y1), P2 = (x2, y2), and let
P3 = P1 + P2 = (x3, y3). The addition law on points of
the twisted Edwards curve Ea,d is given by the following
formulas

(x3, y3) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
.

The neutral element is O = (0, 1), and the negative of
P1 is −P1 = (−x1, y1). The point O′ = (0,−1) has order
2. Two points at infinity Ω1,Ω2 are singular and blow up
to two points each. Bernstein et al. [3] showed that this
addition law is complete2 when a is a square and d is not
a square.

2.2 Background on Pairings
The key to the definition of pairings is the evaluation
of rational functions in divisors (see [21], [12]). Let E
be an elliptic curve defined over the prime field Fp, let
r be a prime number different from p and r|#E(Fp),
where #E(Fp) denotes the number of points on the
elliptic curve E. Let k be the embedding degree of the
elliptic curve E with respect to r. By this setting, we can
define subgroups of points of prime order r on E(Fpk),
denoted by E[r] and a multiplicative group of order r
in the extension field F∗pk , i.e., F∗pk contains the group µr
of r-roots of unity. Let P,Q ∈ E[r], let DP , DQ be degree
zero divisors with DP ∼ (P )− (O) and DQ ∼ (Q)− (O),
and let fP , fQ be functions such that div(fP ) = rDP and
div(fQ) = rDQ. The Weil pairing ω : E[r]× E[r]→ µr is
defined as

ω(P,Q) =
fP (DQ)

fQ(DP )

The reduced Tate pairing τ : E(Fpk)[r] ×
E(Fpk)/rE(Fpk)→ µr is defined as

τ(P,Q) = fP (Q)
pk−1

r

The Ate pairing is an optimized version of the Tate
pairing when restricted to Frobenius eigenspaces. Let
G1 = E[r] ∩ Ker(πp − [1]) = E(Fp)[r], G2 = E[r] ∩

2. Complete means that the addition formulas work for all pairs
of input points. There are no troublesome points at infinity as in
Weierstrass curves.
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Ker(πp − [p]) ⊆ E(Fpk)[r]. For Q ∈ G2 and P ∈ G1,
the Ate pairing is defined in [22] as (the arguments are
swapped in comparison to Tate pairing):

aT = G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )(p
k−1)/r

The length of Miller loop (see the following section in
Ate pairing computation) is determined by the trace of
Frobenius t. Thus, the Ate pairing is particularly suitable
for pairing-friendly elliptic curves with small values of
t. When computing Tate pairing and its variants, instead
of taking the point Q on the curve G2 ⊆ E(Fpk)[r], one
can take Q′ ∈ G′2 ⊆ E′(Fpe)[r], where E′ is a twist of E,
d|k is the degree of the twist, and e = k/d as points on
the twisted curve are defined over a smaller field, and
hence obviously faster in computation.

2.3 Pairing Computation on Edwards Curves

The pairings over (hyper-)elliptic curves are computed
using the algorithm proposed by Miller [12]. The main
part of Miller’s algorithm is to construct the rational
function fr,P and evaluating fr,P (Q) with div(fr,P ) =
r(P )− (rP )− [r − 1](O) for divisors P and Q.

Let m and n be two integers, and gmP,nP be a rational
function whose divisor div(gmP,nP ) = (mP ) + (nP ) −
([m + n]P ) − (O). We call the function gmP,nP a Miller
function. Miller’s algorithm is based on the following
lemma.

Lemma 2.1 (Lemma 2, [12]): For n and m two integers,
up to a multiplicative constant, we have

fm+n,P = fm,P fn,P gmP,nP . (2)

Equation (2) is called Miller relation, which is proved
by considering divisors. For Edwards curves, Arene et
al. [15] defined Miller’s function in the following theo-
rem.

Theorem 2.2 (Theorem 2, [15]): Let a, d ∈ F∗p, a 6= d and
Ea,d be a twisted Edwards curve over Fp. Let P1, P2 ∈
Ea,d(Fp). Define P3 = P1 + P2. Let φ be the equation of
the conic C passing through P1, P2,−P3,Ω1,Ω2,O′ whose
divisor is (P1) + (P2) + (−P3) + (O′) − 2(Ω1) − 2(Ω2).
Let `1,P3 is the horizontal line going through P3 whose
divisor is div(`1,P3) = (P3) + (−P3) − 2(Ω2), and `2,O is
the vertical line going through O and O′ whose divisor
is (O) + (O′)− 2(Ω1). Then we have

div

(
φP1,P2

`1,P3
`2,O

)
∼ (P1) + (P2)− (P3)− (O). (3)

The rational function gP1,P2
=

φP1,P2

`1,P3
`2,O

consisting of
three terms, can be thus considered as Miller function
on Edwards curves. Miller’s algorithm for Edwards
curves using this function works as in Algorithm 1.

Algorithm 1: Miller’s Algorithm for twisted Edwards
curves [18]

Input: r =
∑t
i=0 ri2

i with ri ∈ {0, 1}, P,Q ∈ E[r];
Output: f = fr(Q);

R← P , f ← 1;
for i = t− 1 to 0 do

1 f ← f2
φR,R(Q)

`1,O(Q)`2,2R(Q) , R← 2R ;
if ri = 1 then

2 f ← f
φR,P (Q)

`1,O(Q)`2,R+P (Q) , R← R+ P ;
end

end
return f

3 OUR VARIANT OF MILLER’S ALGORITHM
ON EDWARDS CURVES

In this section, we first introduce a variant of Miller’s
function. Then, we describe a variant of Miller’s algo-
rithm that is generally more efficient than Algorithm 1
for pairing computation over any Edwards curves (i.e.,
without twists). Finally, we discuss our variant with
denominator elimination for even embedding degree.

3.1 Variant of Miller function
Similar to the method in [23], our algorithm requires
a rational function h whose divisor is (P1) + (P2) +
(−P3)− 3(O) instead of Miller’s function whose divisor
is (P1)+(P2)−(P3)−(O). For Weierstrass curves, such a
function h is given by the line function passing through
P1 and P2. On Edwards curves, we define the function
h as follows:

Definition 3.1: If P1, P2 ∈ Ea,d(Fp), then define

hP1,P2 =
φP1,P2

φO,O
,

where φ is the equation of the conic C defined as in
Theorem 2.2.

Lemma 3.1: Let P3 = P1 + P2. The divisor of the
function hP1,P2

is equal to (P1) + (P2) + (−P3)− 3(O).
Proof: By calculating divisors, we have:

div(
φP1,P2

φO,O
) = div(φP1,P2

)− div(φO,O)

= (P1) + (P2) + (−P3) + (O′)− 2(Ω1)

− 2(Ω2)− 3(O)− (O′) + 2(Ω1) + 2(Ω2)

= (P1) + (P2) + (−P3)− 3(O),

which concludes the proof.
In comparison to Eq. (3), our equivalent function

hP1,P2 =
φP1,P2

φO,O
consists of only two factors. Furthermore,

the factor φO,O whose divisor is 3(O) + (O′) − 2(Ω1) −
2(Ω2) is fixed during pairing computation. Let P1 =
(X1, Y1, Z1), P2 = (X2, Y2, Z2) and Q = (XQ, YQ, ZQ) ∈
E(Fpk). The factor φO,O can be precomputed and inte-
grated into the factor φP1,P2

as follows:
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hP1,P2(Q) =
φP1,P2(Q)

φO,O(Q)

=
cZ2(Z2

Q + YQZQ) + cXYXQYQ + cXZXQZQ

XQ(ZQ − YQ)

= cZ2η1 + cXY η2 + cXZη3, (4)

where η1 =
Z2

Q+YQZQ

XQ(ZQ−YQ) , η2 =
YQ

ZQ−YQ
, η3 =

ZQ

ZQ−YQ
are

fixed for whole computation, thus they can be precom-
puted and stored. Coefficients cZ2 , cXY , cXZ are defined
in [15, Section 4] as follows:

If P1 6= P2, then

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 +X1Y2 −X2Y1), (5)
cXZ = X2Y2Z

2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

If P1 = P2, then

cZ2 = X1Z1(Z1 − Y1),

cXY = dX2
1Y1 − Z3

1 , (6)
cXZ = Z1(Z1Y1 − aX2

1 ).

We can see that Eq (4) has no more denominator factor.
Assume that we compute pairings on Edwards curves
with odd embedding degree, Eq (4) saves two multipli-
cations and one inversion in comparison to the original
Miller function (lines 1, 2 in Algorithm 1). Furthermore,
Eq (4) becomes simpler when computing Ate pairing.
The following lemma shows that the factor φO,O(P ) can
be ignored without changing the final result.

Lemma 3.2: Let P ∈ E(Fp)[r] and Q ∈ E(Fpk)[r]. In
computing Ate pairing aT (Q,P ), the factor φO,O(P ) can
be ignored without changing the value of aT (Q,P ).

Proof: By definition in [15, Theorem 1], the conic
φO,O evaluated at P has the form φO,O(P ) = XP (ZP −
YP ), where XP , YP , ZP ∈ Fp are the abscissas of P .
Hence, φO,O(P ) ∈ Fp. This factor will become 1 after
being raised to the exponent (pk − 1)/r.

The main improvement is from the following lemma.
Lemma 3.3: For i and j two integers, up to a multi-

plicative constant, we have

fn+m,P =
1

f−n,P f−m,Ph−nP,−mP
.

Proof: This lemma and its proof is very similar
to Lemma 2 in [23]. The proof can be achieved by
considering divisors. Reader can see [23, Lemma 2] for
more details.

From Lemma 3.3, we can see that the function fn+m,P
is computed from f−n,P and f−m,P instead of fn,P and
fm,P on which Miller’s algorithm is based. Relation
between fn,P and f−n,P as follows:

f−n,P =
1

fn,PhnP,−nP
.

However, in order to avoid this expensive operation,
algorithm in [23] used an expansion to the base of −2
instead of the base of 2. The following section will
describe our variant of Miller’s algorithm over pairing-
friendly Edwards curves.

3.2 Algorithm
Our variant of Miller’s algorithm over Edwards curves
is described by the pseudo-code in Algorithm 2. It was
inspired by the idea of applying Lemma 3.3 with m = n
or n ∈ {±1}. Since our algorithm computes fn+m,P from
f−n,P and f−m,P , the scalar input will be given by -2-
adic expansion. Let r be the prime order of subgroup of
points on the twisted Edwards curve Ea,d, and let lr and
hr be the length and the Hamming weight of r in binary
representation. The algorithm updates numerators and
denominators separately, so that only one final inversion
appears at the end of the algorithm. If the value of (lr +
hr) is even, the value of f will be initialized to f1,P .
Otherwise, the value of g will be initialized to f−1,P .
Note that f1,P = 1, and f−1,P = 1

f1,PhP,−P
=

φO,O
φP,−P

which
is fixed and can be precomputed.

We use the notation h′−T,−P for the function
f−1,Ph−T,−P . In many situations, this can be computed
faster by computing f−1,P and h−T,−P separately and
taking the product. For Edwards curves, we have

h′−T,−P = f−1,Ph−T,−P =
φ−T,−P
φP,−P

, (7)

where φP,−P depends only on fixed arguments P,Q. By
Eq. 4, we have:

h′P1,P2
(Q) = cZ2γ1 + cXY γ2 + cXZγ3, (8)

where γ1 =
Z2

Q+YQZQ

φP,−P (Q) , γ2 =
XQYQ

φP,−P (Q) , γ3 =
XQZQ

φP,−P (Q) , and
all these factors are fixed for whole computation, so they
can be precomputed and cached.

Remark : Note that in Algorithm 2, the value of R is
always a positive multiple of P . Although this approach
does not eliminate denominators, but it improves the
computational performance of Miller algorithm when
computing any pairing on pairing-friendly Edwards
curves having any small embedding degree (i.e., without
twists).

3.3 Edwards curves with even embedding degrees
For twisted Edwards curves having an even embedding
degree (i.e., 2|k), Miller’s algorithm can be implemented
more efficiently. As pointed out in [15] such curves admit
an even twist which eliminates denominators and all
irrelevant terms in the subfield of Fpk in Tate pairing
computation. Another advantage of embedding degrees
of the form 2i3j , where i ≥ 1, j ≥ 0 is that the corre-
sponding extensions of Fp can be written as composite
extensions of degree 2 or 3, which enables faster basic
arithmetic operations [24].
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Algorithm 2: Variant of Miller’s Algorithm on Ed-
wards curves
Data: r =

∑lr−1
i=0 ri2

i, ri ∈ {0, 1}, rlr−1 = 1, hr is the
Hamming weight of r

Result: fr,P (Q);
f ← 1, R← P ;
if lr + hr is odd then

δ ← 1, g ← f−1,P ;
end
else

δ ← 0, g ← 1 ;
end
for i = lr − 2 to 0 do

if δ = 0 then
1 f ← f2 · hR,R(Q), g ← g2 ;

R← 2R, δ ← 1 ;
if ri = 1 then

2 g ← g · h′−R,−P (Q), R← R+ P , δ ← 0 ;
end

end
else

3 g ← g2 · h−R,−R(Q), f ← f2 ;
R← 2R, δ ← 0 ;
if ri = 1 then

4 f ← f · hR,P (Q), R← R+ P , δ ← 0 ;
end

end
end

5 return f
g

Similarly as in [23], [17], by using conjugates of ele-
ments in Fpk when k is even, we don’t need to update the
numerators and denominators separately (two functions
f and g). This will save one squaring in full extension
field for each bit and the division (line 5 in Algorithm 2).

Let v = (a + ib) be a representation of an element of
Fpk , where a, b ∈ Fqk/2 , and i is a quadratic non-residue
and δ = i2. The conjugate of v over Fqk/2 is given by
v̄ = (a+ ib) = a− ib. It follows that, if v 6= 0, then

1

v
=

v

a2 − δb2

where a2 − δb2 ∈ Fqk/2 . Thus, in a situation where
elements of Fqk/2 can be ignored, 1

v can be replaced by
v, thereby saving an inversion in Fpk .

By using this fact, the updating of the function g in
lines 2, 3 in Algorithm 2) can be performed as follows:

f ← f · h′−R,−P (Q), and f ← f2 · h−R,−R(Q)

where f is the same function in lines 1, 4 and
h′−R,−P , h−R,−R are conjugates of h′−R,−P and h−R,−R,
respectively.

4 PERFORMANCE ANALYSIS

In this section, we first compare the proposed algo-
rithm with the original Miller’s algorithm over Edwards

curves [15], [18], and the Xu-Lin refinements [18]. We
also compare our algorithms with the Arene et al.’s
algorithm [15] when computing the Tate pairing on even
twisted curves. Then, we will give a performance anal-
ysis for Ate pairing computation over different choices
of Edwards curves at 128-bit security level.

Before analyzing the costs of algorithm, we introduce
notations for field arithmetic costs. Let Fpm be an exten-
sion of degree m of Fp for m ≥ 1 and let Ipm , Mpm , Spm ,
and addpm be the costs for inversion, multiplication,
squaring, and addition in the field Fpm respectively.
Denote ma be the multiplication by the curve coefficient
a.

The cost of the algorithms for pairing computation
consists of three parts: the cost of updating the functions
f, g, the cost of updating the point R and the cost of
evaluating rational functions at some point Q.

Note that during Ate pairing computation, coordinates
of the point R that is on the twisted curve. The analysis
in [15] showed that the total cost of updating the point
R and coefficients cZ2 , cXY , and cZZ (Eqs. 5-6) of the
conic is 6Mpe + 5Spe + 2ma for each doubling step and
14Mpe +1ma for each addition step (see [15, §5] for more
details), where e = k/d as denoted in § 2.2. Without
special treatment, this cost is the same for all algorithms.

4.1 Updating Miller function

The most costly operations in pairing computations are
operations in the full extension field Fpk . At high levels
of security (i.e. k large), the complexity of operations
in Fpk dominates the complexity of the operations that
occur in the lower degree subfields. In this subsection,
we only analyze the cost of updating the functions f, g
which are generally executed on the full extension field
Fpk .

It is clear to see that to update functions f and g, the
proposed algorithm requires 1Mpk +2Spk for a doubling
step (lines 1, 3), and 1Mpk for an addition step (lines 2,
4). TABLE 1 shows the number of operations needed in
Fpk for updating f, g in different algorithms.

TABLE 1
Comparison of Algorithm 2 with the previous algorithms

Doubling Addition
Algorithm 1 [15], [18] 2Spk + 3Mpk 2Mpk

Algorithm in [15] 1Spk + 1Mpk 1Mpk

Algorithm 2 2Spk + 1Mpk 1Mpk

Modified Algorithm (§ 3.3) 1Spk + 1Mpk 1Mpk

From TABLE 1, it can be seen that Algorithm 2 is
generally faster than the general results in [15] (Algo-
rithm 1). In comparison to Algorithm 1, the proposed
algorithm saves 2 multiplications in the full extension
field in doubling steps and one multiplication in the
full extension field in addition steps when updating the
Miller function.
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In comparison to Arene et al.’s algorithm [15], Algo-
rithm 2 requires one more squaring in the full exten-
sion field for each doubling step. However, as already
mentioned, Arene et al. can only be applied on Edwards
curves with an even embedding degree k for Tate pairing
computation, while our approach is generic. It can be
applied to any (pairing-friendly) Edwards curve and for
both the Weil and the Tate pairing. In the same setting
of curves, our modification (Section 3.3) needs no extra
effort to update f than the Arene et al.’s algorithm.

The refinements in [18] are described in radix 4.
Their algorithm allows to eliminate some rational func-
tions from Eq (3) during pairing computation. Let r =∑l′−1
i=0 qi4

i, with qi ∈ {0, 1, 2, 3}. TABLE 2 compares our
algorithm and their algorithm.

TABLE 2
Comparison of our algorithm with the refinements in [18].

Algorithm in [18] Algorithm 2
q = 0 5Spk + 3Mpk 4Spk + 2Mpk

q = 1 4Spk + 7Mpk 4Spk + 3Mpk

q = 2 4Spk + 7Mpk 4Spk + 3Mpk

q = 3 4Spk + 10Mpk 4Spk + 4Mpk

From TABLE 2, it clearly see that Algorithm 2 is gen-
erally faster than the refinements of Miller’s algorithm
in [18].

4.2 Analysis at the 128-bit Security Level

In this subsection, we give an analysis about the effi-
ciency of Miller algorithm for Ate pairing computation
over three families of pairing-friendly Edwards curves
with embedding degrees k = 8, 9, 10 at 128-bit security
level. The constructions of these families of curves were
presented in [25], [26]. Recall that the length of Miller
loop equals to log(r)/ϕ(k) for Ate pairing computation.
Then, the respective lengths of Miller loop are 64, 43,
and 64 for curves with k = 8, 9, and 10.

For a pairing-based cryptosystem to be secured, the
discrete logarithm problems in the largest subgroup of
points on E/Fp and in the multiplicative group F×

pk
must

both be computational infeasible. At 128-bit security
level, the subgroup size r must be equal to 256 and
pk ≥ 3072 (both in bits, see [27]). TABLE 3 shows sizes
in bits of r, p and pk corresponding different k.

TABLE 3
Security Matching for the 128-bits security level

k r (in bits) p (in bits) pk (in bits)
8 256 384 3072
9 256 341 3072
10 256 384 3840

In this analysis, we apply a twist of degree 4, 3, and 2
for curves with k = 8, 9, and 10, respectively. By carefully

choosing parameters, one can get a value of T such that
its Hamming weight is very low, where |T | = log(r)/ϕ(k)
as denoted in Section 2.2. Thus, one can only focus on
the cost of doubling steps. Let C denote the cost of Miller
loop in Ate pairing computation. Using Algorithm 2,
Arene et al.’s algorithm, and analysis in [15, §6], we have

Ck=8 = 64(1Sp81
+ 1Mp81

+ 6Mp21
+ 5Sp21

+
k

2
Mp1 + 2ma),

Ck=9 = 43(2Sp92
+ 1Mp92

+ 6Mp32
+ 5Sp32

+ kMp2 + 2ma),

Ck=10 = 64(1Sp103
+ 1Mp103

+ 6Mp53
+ 5Sp53

+ kMp3 + 2ma),

where size in bits of pi, i = 1, 2, 3 corresponding with
curves having k = 8, 9, 10 are described as in TABLE 3.
Using Toom-Cook and Karatsuba algorithms, we assume
Mp2mi

≈ 3Mpmi
, Sp2mi ≈ 3Spmi , and Mp3mi

≈ 5Mpmi
,

Sp3mi ≈ 5Spmi , for i = 1, 2, 3, and m ≥ 1. For field op-
erations in Fp53 , Montgomery [28] presented an efficient
formulas, for which Mp53

≈ 13Mp3 , Sp53 ≈ 13Sp3 . The
following table shows the theoretical analysis on Ate
pairing computation over the above curves at 128-bit
security level.

TABLE 4
Comparison of operation counts for different curves at

the 128-bit security level

k p (in bits) Number of operations
8 384 3136Mp1 + 2688Sp1 + 128ma

9 341 2752Mp2 + 3225Sp2 + 86ma

10 384 8128Mp3 + 6656Sp3 + 128ma

From TABLE 4, it is easy to see that pairing-friendly
Edwards curves with k = 9 offer a better performance
than that with even k = 10. There is no big difference
on the number of operations between curves with k = 8
and k = 9. But, it is worth to note that the size of the
base field Fp2 for curves with k = 9 is smaller than that
of the field Fp1 for curves with k = 8 (see TABLE 3).

At the 128-bit security level, Barreto-Naehrig (BN for
short) curves [29] achieved the most efficient imple-
mentations. There were many benchmarks reported in
papers [30], [31], [32], [33]. So far the fastest software
implementation presented in [33] allows us to compute
a pairing under 2 million cycles on 64-bit computing
platforms. Although Table 4 and Table 2 in [33] show
that the number of operations in Miller loop for curves
of embedding degrees k = 8, 9 is fewer than that for BN
curves, with many optimizations in both Miller loop [29],
[19], [34] and the final exponentiation [35], [36], [37], BN
curves are still suited for implementing a single pairing
at the 128-bit security level.

However, a BN curve cannot transform to an Edwards
curve whose order is a multiple of 4. Thus, public-
key cryptosystems implemented on BN curves don’t
benefit the fast group law operation as on Edwards
curves. In some pairing-based cryptosystems, they might
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require a number of scalar multiplications which is time-
consuming operation and this can be advantageous to
use Edwards. Furthermore, when computing several
pairings in parallel with only one final exponentiation,
such curves with shorter Miller loop (e.g., k = 9) may
be a good choice (see more discussion in [38]).

5 EXAMPLES OF PAIRING-FRIENDLY
EDWARDS CURVES

Edwards curves have a cofactor 4. Generation of
pairing-friendly Edwards curves are discussed in [15,
§7]. In this section, we present some examples of
pairing-friendly Edwards curves. Let ρ = log(p)/ log(r),
where p is the size of the finite field Fp, r is the size
of subgroup of points; D denote CM discriminant;
the number of points #E(Fp) = 4hr. The value
of log(r)/ϕ(k) implies the number of iterations that
Miller algorithm needs for optimal pairing computation.

5.1 At the 112 bits security level

k = 7, ρ = 1.33 following Construction 6.20 in [26]: D =
3, log(p) = 309, log(r) = 223, log(r)/ϕ(k) = 39.

r =11792486460390409119540171794482663984948784753

601049200190136218459

p =57360932776319280207874727702805176779012756816

0241412895701108728384314526281947151376858269

h =77 · 312 · 127 · 2772 · 397092

k = 8, ρ = 1.50 following Example 6.10 [26]: D = 1,
log(p) = 343, log(r) = 224, log(r)/ϕ(k) = 56.

r =1742298943046327438667756939961904207814288

1739698586710220582898697

p =10813434369352814954576413407087650262884981

25793222946509169874343448157047865842177638

7235773533870249

h =4723 · 50772

5.2 At the 128 bits security level

k = 8, ρ = 1.50 following Example 6.10 in [26]: D = 1,
log(p) = 401, log(r) = 258, log(r)/ϕ(k) = 65.

r =39582340297147856121327521222320014067371613303

4836043323801522110152596926737

p =32681600019537443452669476460183149414570521319

67115728952206651872840362786176908634547273737

380902692000013614786775869

h =37 · 337 · 1453 · 113931708944716295372312953567053661

k = 9, ρ = 4/3 following [25]: D = 3, log(p) = 340,
log(r) = 254, log(r)/ϕ(k) = 43.

r =17585923602443760494233455400229627974592727

36402347141193268746504567484534417

p =11958793459230290820953097887678427630245690

91004011123144944964165877854119429728328541

600674561175289

h =24 · 32 · 112 · 1792 · 1396027972

k = 10, ρ = 1.50 following Example 6.5 in [26]: D = 1,
log(p) = 395, log(r) = 257, log(r)/ϕ(k) = 65.

r =164092474074051317865366807534837269354653465

217545265000103807414123342165721

p =404660548222982482470614905446739394360194471

817304384520507106454804515590899958705320339

60965948006332423977863263969

h =181 · 50234 · 8552694

6 CONCLUSION

In this paper, we proposed a variant of Miller’s al-
gorithm on Edwards curves. The proposed algorithm
improves the computational performance of all pairings
on generic pairing-based Edwards curves. Our analysis
showed that the new algorithm is faster than previous
methods for curves with odd embedding degree and as
fast as those curves with even embedding degree.

Our algorithm is particularly interest to compute the
Ate pairings on Edwards curves having small embed-
ding degrees k, in the cases where denominators elimina-
tion technique is not possible (for example on Edwards
curves with odd embedding degrees). We believe that
there will be applications in pairing-based cryptography
using elliptic curves with embedding degree not of the
form 2i3j . Further work is needed to clarify such a
question.
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