

MDIS OPC UA

Companion Specification

Release 1.2

October 3, 2018

MDIS OPC UA Companion Specification Release 1.2 Page 2 of 114

Specification
Type:

Industry Standard
Specification

Comments:

Title: MDIS OPC UA
Companion Specification

Date: October 3rd, 2018

Version: Release 1.2 Software: MS-Word

 Source: MDIS Companion Specification Release
V1.2.doc

Author: MDIS Status: Release

MDIS OPC UA Companion Specification Release 1.2 Page 3 of 114

MDIS

UNIFIED ARCHITECTURE

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis
and design process completed by the MDIS member organisations to develop a standard interface to facilitate the
development of applications by multiple vendors that shall inter-operate seamlessly together.

Copyright © 2006-2017, OTM Consulting Ltd (on behalf of MDIS).

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorised use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems --without permission of the copyright
owner.

OPC Foundation members, MDIS Member and any non-members are prohibited from copying and redistributing this
specification. All copies must be obtained on an individual basis, directly from the OPC Foundation Web site

HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC and MDIS shall not be responsible for identifying patents for which a
license may be required by any OPC specification, or for conducting legal inquiries i nto the legal validity or scope of those
patents that are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION AND MDIS MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH
REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OPC FOUNDATION, MDIS OR OTM BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS
OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH
THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE PO SSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

COMPLIANCE

The OPC Foundation and MDIS shall at all times be the only entities that may authorise developers, suppliers and sellers
of hardware and software to use certification marks, trademarks or other special designations to indicate compliance with
these materials. Products developed using this specification may claim compliance or conformance with this specifica tion if
and only if the software satisfactorily meets the certification requirements set by the OPC Foundation and MDIS. Products
that do not meet these requirements may claim only that the product was based on this specification and must not claim
compliance or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

http://www.opcfoundation.org/

MDIS OPC UA Companion Specification Release 1.2 Page 4 of 114

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choic e or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:

HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

MDIS OPC UA Companion Specification Release 1.2 Page 5 of 114

Revision history

Revision summary

Revision 1.2 Highlights
The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

3937 Sync and read Time with MDIS Added functionality to specification

3843 Valve signature/profile retrieval Added functionality to allow a client to retrieve
signatures from a server

Rev. Date Description Prepared
by

Checked
by

Approved
By

1.0 01/13/2017 Initial release P. Hunkar

1.01 08/08/2017 Maintenance release P. Hunkar

1.2 10/22/2017 Updates for additional objects P. Hunkar MDIS MDIS

Rev. Affected sections Description of change

1.0 All Initial release

1.01 All Maintenance release, no functional changes, just clarification resulting
for test case definitions, inconsistence clarification and minor editorial
fixes. See mantis description for detail on all updates.

1.2 Multiple Added definitions for new Objects, including MDISTimeSync Object
(new section 5.1.11, 5.9), MDISBaseInformation Object (new section
5.1.12, 5.10,6.2, 7.2.1), Signature transfer additions (Additions to valve
definition in section 5.7, new reference type section 8.3, general
AddressSpace information (section 9.2). Profiles were updated to
include new profiles for new functionality (section 12)

MDIS OPC UA Companion Specification Release 1.2 Page 6 of 114

Table Of Contents

Revision history .. 5

Revision summary .. 5

Table Of Contents ... 6

List of figures ... 10

List of tables .. 11

1 MDIS .. 13

1.1 Introduction ... 13
1.2 Concepts / Definitions ... 13

1.2.1 Introduction .. 13
1.2.2 API Standard 17F concepts... 13
1.2.3 MDIS Mandatory & Optional Items / Objects ... 13
1.2.4 OPC Compliance & Certification ... 14

1.3 OPC Definitions .. 14
1.4 Industry Typical Abbreviations, Acronyms & Definitions .. 16

2 Reference documents .. 18

3 OPC UA Overview ... 19

3.1 Introduction ... 19
3.2 What is OPC UA? ... 19
3.3 Basics of OPC UA .. 19
3.4 Information Modelling in OPC UA ... 20

3.4.1 Concepts.. 20
3.4.2 Namespaces .. 23
3.4.3 Companion Specifications ... 23

4 Architectures .. 25

4.1 Overview ... 25
4.2 DCS Implemented Functions .. 26

4.2.1 Main Process Responsibility.. 26
4.2.2 Control and Monitoring of Subsea Equipment .. 26
4.2.3 Subscriptions ... 26

4.3 DCS or SCV Implemented Functions ... 26
4.3.1 Introduction .. 26
4.3.2 Data Arbitration .. 26
4.3.3 SEM Control Selection .. 26
4.3.4 Interlocks ... 27
4.3.5 Shutdown Sequences .. 27
4.3.6 Automated Control Sequences ... 27
4.3.7 Determining Valve Statuses .. 27
4.3.8 Determining / Updating Choke Calculated Position .. 27
4.3.9 HPU Interface .. 27
4.3.10 EPU Interface .. 27
4.3.11 Valve Profile / Signature Validation ... 27
4.3.12 Topsides Chemical Injection System Interface ... 27

4.4 Subsea Controls Vendor-Implemented Functions .. 28
4.4.1 Introduction .. 28
4.4.2 Managing Subsea Communications .. 28
4.4.3 Operation of Subsea Devices .. 28
4.4.4 Handing off Process Sensor Data to DCS .. 28
4.4.5 Configuration of Operational Parameters .. 28
4.4.6 Handing off Valve Profiles / Signatures ... 28
4.4.7 Calculation of Engineering Values .. 28
4.4.8 Handing off Product Statuses .. 28
4.4.9 Handing Off Diagnostic Information .. 28
4.4.10 EPU Interface .. 28

MDIS OPC UA Companion Specification Release 1.2 Page 7 of 114

4.4.11 Subsea Control Paths / Network Routing .. 28

5 MDIS ObjectTypes ... 30

5.1 Overview ... 30
5.1.1 MDISBaseObjectType ... 30
5.1.2 MDISDiscreteInstrumentObjectType ... 30
5.1.3 MDISDiscreteOutObjectType .. 30
5.1.4 MDISDigitalInstrumentObjectType .. 30
5.1.5 MDISDigitalOutObjectType ... 30
5.1.6 MDISInstrumentObjectType .. 30
5.1.7 MDISInstrumentOutObjectType .. 30
5.1.8 MDISChokeObjectType ... 30
5.1.9 MDISValveObjectType .. 30
5.1.10 MDISAggregateObjectType... 30
5.1.11 MDISTimeSyncObjectType ... 30
5.1.12 MDISInformationObjectType ... 31

5.2 MDISBaseObjectType .. 32
5.2.1 Overview .. 32
5.2.2 MDISBaseObjectType Definition ... 33
5.2.3 EnableDisable Method .. 33

5.3 MDISDiscreteInstrumentObjectType .. 34
5.3.1 Introduction .. 34
5.3.2 Overview .. 34
5.3.3 MDISDiscreteInstrumentObjectType Definition ... 35
5.3.4 MDISDiscreteOutObjectType Definition .. 35
5.3.5 WriteValue Method .. 36

5.4 MDISDigitalInstrumentObjectType ... 36
5.4.1 Introduction .. 36
5.4.2 Overview .. 37
5.4.3 MDISDigitalInstrumentObjectType Definition .. 37
5.4.4 MDISDigitalOutObjectType ... 38
5.4.5 WriteState Method ... 38

5.5 MDISInstrumentObjectType ... 39
5.5.1 Introduction .. 39
5.5.2 Overview .. 39
5.5.3 MDISInstrumentObjectType Definition .. 40
5.5.4 MDISInstrumentOutObjectType Definition .. 42
5.5.5 Instrument WriteValue Method .. 42

5.6 MDISChokeObjectType .. 43
5.6.1 Introduction .. 43
5.6.2 Overview .. 43
5.6.3 MDISChokeObjectType Definition ... 44
5.6.4 Choke Move Method ... 46
5.6.5 Choke Step Method ... 47
5.6.6 Choke Abort Method .. 47
5.6.7 Choke SetCalculatedPosition Method ... 48

5.7 MDISValveObjectType ... 48
5.7.1 Introduction .. 48
5.7.2 Overview .. 49
5.7.3 MDISValveObjectType Definition .. 50
5.7.4 Move Method ... 53

5.8 MDISAggregateObjectType .. 54
5.8.1 Overview .. 54
5.8.2 MDISAggregateObjectType Definition .. 55

5.9 MDISTimeSyncObjectType .. 57
5.9.1 Introduction .. 57
5.9.2 Overview .. 57
5.9.3 MDISTimeSyncObjectType Definition ... 57
5.9.4 SetTime Method .. 58

5.10 MDISInformationObjectType ... 58
5.10.1 Introduction .. 58
5.10.2 Overview .. 59

MDIS OPC UA Companion Specification Release 1.2 Page 8 of 114

5.10.3 MDISInformationObjectType Definition ... 59

6 MDIS VariableTypes .. 61

6.1 InterlockVariableType Definition ... 61
6.2 MDISVersionVariableType Definition ... 61

7 MDIS DataTypes .. 62

7.1 Enumerations .. 62
7.1.1 ChokeMoveEnum .. 62
7.1.2 ChokeCommandEnum .. 62
7.1.3 SetCalculatedPositionEnum .. 62
7.1.4 SignatureStatusEnum .. 62
7.1.5 CommandEnum ... 62
7.1.6 SEMEnum.. 62
7.1.7 ValvePositionEnum ... 63

7.2 Structures .. 63
7.2.1 MDISVersionDataType .. 63

8 MDIS ReferenceTypes ... 64

8.1 HasInterlock ReferenceType .. 64
8.2 InterlockFor ... 64
8.3 HasSignature ReferenceType .. 64

9 MDIS AddressSpace Information ... 66

9.2 Instance AddressSpace .. 66
9.3 Value reporting.. 67
9.4 UANodeSet Development ... 67
9.5 Object Development ... 67

9.5.1 Introduction .. 67
9.5.2 Object Collection, Aggregation and Extension Definition .. 68
9.5.3 Object Creation .. 69
9.5.4 Object Aggregation Example ... 69

10 Time Synchronisation ... 70

11 Redundancy ... 70

11.1 General .. 70
11.2 OPC UA Redundancy Overview ... 71
11.3 OPC UA MDIS Redundancy ... 71
11.4 MDIS Minimum Requirements .. 71

12 OPC UA MDIS Profiles and Conformance Units .. 72

12.1 Test requirements ... 72
12.2 ConformanceUnits .. 72

12.2.1 Overview .. 72
12.2.2 Server .. 72
12.2.3 Client .. 74

12.3 Facet ... 77
12.3.1 Overview .. 77
12.3.2 Server .. 78
12.3.3 Client .. 82

12.4 MDIS OPC UA Profiles ... 86
12.4.1 Overview .. 86
12.4.2 MDIS Solution Client Profile .. 87
12.4.3 MDIS Solution Server Profile ... 87

12.5 Equipment Certification ... 87

13 Namespaces ... 88

13.1 Status Codes ... 88
13.2 Handling of OPC UA Namespaces ... 88

Annex A Sequence Diagrams(Informative) ... 90

MDIS OPC UA Companion Specification Release 1.2 Page 9 of 114

A.1 Introduction ... 90
A.2 MDIS Discrete Instrument Object Sequence Diagrams ... 90

A.2.1 Enable Disable .. 90
A.3 MDIS Digital Instrument Object Sequence Diagrams... 91

A.3.1 Enable Disable .. 91
A.4 MDIS Instrument Object Sequence Diagrams .. 91

A.4.1 Enable Disable .. 91
A.4.2 Write to Setpoint .. 92
A.4.3 Display Limits .. 92
A.4.4 Display Engineering units .. 93

A.5 MDIS Choke Object Sequence Diagrams .. 93
A.5.1 Overview .. 93
A.5.2 Move to Position – Success .. 93
A.5.3 Move to Position – Fault .. 94
A.5.4 Move to Position – Failure, Interlock active ... 94
A.5.5 Abort Choke (Position) .. 95
A.5.6 Defeat / Override Interlock (Move) .. 96
A.5.7 Fault – No Move Operation ... 96
A.5.8 Step Open / Close – Success.. 97
A.5.9 Step Open / Close – Failure, choke fault ... 98
A.5.10 Abort Choke (Step) .. 99
A.5.11 Set Calculated Position ... 99
A.5.12 Enable Disable Choke ... 100
A.5.13 Defeat / Override Interlock (Step) .. 101

A.6 MDIS Valve Object Sequence Diagrams .. 101
A.6.1 Overview .. 101
A.6.2 Valve command – Success ... 102
A.6.3 Valve command – Overridden Interlock .. 102
A.6.4 Valve command –- Interlocked not overridden .. 103
A.6.5 Valve command – Disabled ... 103
A.6.6 Valve command – Failed – Fault case 1 ... 104
A.6.7 Valve command – Failed – Fault case 2 ... 105
A.6.8 Valve Signature Request – Completed ... 106
A.6.9 Valve command – Shutdown ... 107

Annex B Recommended Practice (Normative) ... 108

B.1 Introduction ... 108
B.2 Architecture Implementation ... 108
B.3 Security ... 108
B.4 Performance ... 109
B.5 Data Priority .. 109
B.6 Documentation .. 109
B.7 Interface Testing ... 109
B.8 Project Check List ... 110

B.8.1 Introduction .. 110
B.8.2 Front End Engineering Design (FEED) ... 110
B.8.3 Project Execution ... 112
B.8.4 Closeout... 113

Annex C Alternative MDIS Applications (Normative) .. 114

C.1 Introduction ... 114
C.2 Read Only Interface .. 114
C.3 Signature File Transfer ... 114

MDIS OPC UA Companion Specification Release 1.2 Page 10 of 114

List of figures

Figure 1 - The Scope of OPC UA within an Enterprise ... 19
Figure 2 - A Basic Object in an OPC UA Address Space ... 20
Figure 3 - The Relationship between Type Definitions and Instances .. 21
Figure 4 - Examples of References between Objects ... 22
Figure 5 - The OPC UA Information Model Notation .. 22
Figure 6 - A Visual Representation of the Sample ObjectType .. 24
Figure 7 - Architecture Overview ... 25
Figure 8 – Data Arbitration Example ... 26
Figure 9 - MDISBaseObjectType .. 32
Figure 10 - Base Object Hierarchy .. 32
Figure 11 - MDISDiscreteInstrumentObjectType & MDISDiscreteOutObjectType ... 35
Figure 12 - MDISDigitalInstrumentObjectType & MDISDigitalOutObjectType ... 37
Figure 13 - MDISInstrumentObjectType & MDISInstrumentOutObjectType .. 40
Figure 14 - MDISChokeObjectType .. 44
Figure 15 - Valve Object Overview ... 50
Figure 16 - Interlock example .. 52
Figure 17 – MDISAggregateObjectType ... 55
Figure 18 - MDISTimeSyncObjectType .. 57
Figure 19 - MDISInformationObjectType .. 59
Figure 20 - MDIS Instance illustration ... 66
Figure 21 - Aggregated Object Type Definition ... 70
Figure 22 - Discrete Instrument ... 90
Figure 23 - Digital Instrument .. 91
Figure 24 - Instrument Enable / Disable.. 91
Figure 25 - Instrument Setpoint changes .. 92
Figure 26 - Instrument Limits .. 92
Figure 27 - Instrument Engineering Units ... 93
Figure 28 - Choke Move to Position .. 93
Figure 29 - Choke Move Fault ... 94
Figure 30 - Choke Move Interlocked ... 94
Figure 31 - Choke Move Abort .. 95
Figure 32 - Choke Move Interlock Override .. 96
Figure 33 - Choke Fault... 96
Figure 34 - Choke Step Success .. 97
Figure 35 - Choke Step Fault .. 98
Figure 36 - Choke Step Abort ... 99
Figure 37 - Choke Set Position ... 99
Figure 38 - Choke Enable / Disable .. 100
Figure 39 - Choke Step Interlock Override.. 101
Figure 40 - Valve command - success .. 102
Figure 41 - Valve command – overridden Interlock .. 102
Figure 42 - Valve command – Failed - Interlocked ... 103
Figure 43 - Valve command – Failed- Disabled .. 103
Figure 44 - Valve command – Failed - Fault ... 104
Figure 45 - Valve command – Failed - Faulted ... 105
Figure 46 - Valve Profile Request – Completed .. 106
Figure 47 - Valve command – Shutdown .. 107

file:///C:/Users/jim.luth/Desktop/MDIS%20Companion%20Specification%20Release%20%20V1.2.doc%23_Toc6928196

MDIS OPC UA Companion Specification Release 1.2 Page 11 of 114

List of tables

Table 1 - OPC UA Terms and Definitions ... 14
Table 2 - Abbreviations, Acronyms and Definitions .. 16
Table 3 - Example ObjectType Definition.. 23
Table 4 - MDISBaseObjectType ... 33
Table 5 - EnableDisable Method parameters ... 34
Table 6 - EnableDisableMethod AddressSpace Definition ... 34
Table 7 - MDISDiscreteInstrumentObjectType ... 35
Table 8 - MDISDiscreteOutObjectType ... 36
Table 9 - WriteValue Method parameters ... 36
Table 10 - WriteValue Method AddressSpace Definition .. 36
Table 11 - MDISDigitalInstrumentObjectType .. 38
Table 12 - MDISDigitalOutObjectType .. 38
Table 13 – WriteState Method parameters ... 38
Table 14 - WriteState Method AddressSpace Definition ... 39
Table 15 - MDISInstrumentObjectType ... 41
Table 16 – AnalogItemType definition ... 41
Table 17 - MDISInstrumentOutObjectType ... 42
Table 18 – Instrument WriteValue Method parameters .. 42
Table 19 – Instrument WriteValue Method AddressSpace Definition ... 42
Table 20 - MDISChokeObjectType ... 45
Table 21 – Choke Move Method Arguments .. 46
Table 22 – Choke Move Method AddressSpace Definition .. 47
Table 23 – Choke Step Method Arguments .. 47
Table 24 – Choke Step Method AddressSpace Definition .. 47
Table 25 – Choke Abort Method AddressSpace Definition... 48
Table 26 – Choke SetCalculatedPosition Method Arguments .. 48
Table 27 – Choke SetCalculatedPosition Method AddressSpace Definition .. 48
Table 28 - MDISValveObjectType ... 51
Table 29 - Move Arguments .. 53
Table 30 - Move Method AddressSpace Definition ... 54
Table 31 – MDISAggregateObjectType .. 56
Table 32 - MDISTimeSyncObjectType .. 58
Table 33 - SetTime Method parameters ... 58
Table 34 - SetTime Method AddressSpace Definition .. 58
Table 35 – SetTime Result Codes .. 58
Table 36 – MDISInformationObjectType ... 59
Table 37 - InterlockVariableType .. 61
Table 38 - MDISVersionVariableType ... 61
Table 39 - ChokeMoveEnum .. 62
Table 40 - ChokeCommandEnum ... 62
Table 41 - SetCalculatedPositionEnum .. 62
Table 42 - SignatureStatusEnum .. 62
Table 43 - CommandEnum ... 62
Table 44 - SEMEnum .. 63
Table 45 - ValvePositionEnum .. 63
Table 46 – MDISVersionDataType Structure .. 63
Table 47 - HasInterlock Reference ... 64
Table 48 - InterlockFor Reference .. 64
Table 49 - HasSignature Reference .. 65
Table 50 – MDISInformation definition .. 67
Table 51 - Aggregation and Extension Decision Matrix .. 68
Table 52 - General rules that apply to existing MDIS types .. 68
Table 53 - Rules for subtypes ... 69
Table 54 - Aggregation Related Rules .. 69
Table 55 - MDIS Server Information Model ConformanceUnits ... 72
Table 56 – MDIS Server Behaviour ConformanceUnits ... 74
Table 57 – MDIS Server Aggregate & Extension ConformanceUnits ... 74
Table 58 - MDIS Client Information Model ConformanceUnits ... 75
Table 59 - MDIS Client Behaviour ConformanceUnits .. 77
Table 60 - MDIS Client Aggregation & Extension ConformanceUnits .. 77

MDIS OPC UA Companion Specification Release 1.2 Page 12 of 114

Table 61 - MDIS Profiles and Facets .. 77
Table 62 – MDIS Base Functionality Server Facet ... 78
Table 63 - MDIS Valve Model Server Facet.. 78
Table 64 - MDIS Instrument Model Server Facet ... 79
Table 65 - MDIS Instrument Out Model Server Facet ... 79
Table 66 - MDIS Discrete Model Server Facet ... 80
Table 67 - MDIS Discrete Out Model Server Facet .. 80
Table 68 - MDIS Digital Model Server Facet... 80
Table 69 - MDIS Digital Out Model Server Facet .. 80
Table 70 - MDIS Choke Model Server Facet .. 81
Table 71 - MDIS Redundancy Server Facet ... 81
Table 72 - MDIS Aggregate Object Server Facet ... 82
Table 73 - MDIS Extension Object Server Facet .. 82
Table 74 - MDIS Signature Transfer Server Facet ... 82
Table 75 - MDIS TimeSync Object Server Facet .. 82
Table 76 - MDIS Base Client Facet ... 82
Table 77 - MDIS Valve Model Client Facet ... 83
Table 78 - MDIS Instrument Model Client Facet ... 83
Table 79 - MDIS Instrument Out Model Client Facet .. 83
Table 80 - MDIS Discrete Model Client Facet ... 84
Table 81 - MDIS Discrete Out Model Client Facet .. 84
Table 82 - MDIS Digital Model Client Facet .. 84
Table 83 - MDIS Digital Out Model Client Facet ... 85
Table 84 - MDIS Choke Model Client Facet ... 85
Table 85 - MDIS Redundancy Client Facet .. 86
Table 86 - MDIS Aggregate Object Client Facet ... 86
Table 87 - MDIS Extension Object Client Facet ... 86
Table 88 - MDIS Extension Extra Object Client Facet .. 86
Table 89 - MDIS Signature Transfer Client Facet ... 86
Table 90 - MDIS TimeSync Object Client Facet ... 86
Table 91 - MDIS Solution Client Profile ... 87
Table 92 - MDIS Solution Server Profile ... 87
Table 93 - Method error codes .. 88
Table 94 – Namespaces used in a <title> Server ... 88
Table 95 – Namespaces used in this specification ... 89
Table 96 – Checklist – FEED Scope ... 110
Table 97 - Checklist - Project Execution ... 112
Table 98 - Checklist - Project Closeout ... 113

MDIS OPC UA Companion Specification Release 1.2 Page 13 of 114

1 MDIS

1.1 Introduction

This document defines the OPC UA MDIS companion specification. This standard is an Oil and Gas
standard for interfacing the Subsea Production Control System (SPCS), with a Master Control
Station (MCS) or a Subsea Gateway, to the Distributed Control System (DCS). This specification
includes:

• A description of common terms,

• Supported architectures,

• Information models representing the data that is shared between the systems,

• Methods used in the flow of information,

• Profile & ConformanceUnits describing the grouping of functionality,

• Recommended Practices for the use of MDIS.

MDIS was created to define a standard object model that is transpor ted on a common high
performance efficient interface between topside and subsea systems in Oil and Gas installations.
The selected protocol (OPC UA) includes independent third-party certification.

1.2 Concepts / Definitions

1.2.1 Introduction

This document makes use of a number of terms and concepts that are described in this section.
OPC defined terms or terms defined in this document are in italics and camel case.

1.2.2 API Standard 17F concepts

DCS (Distributed Control System) is the production facility control system provides a centralised
control system for the facility for the operators and is used to monitor and control the subsea
production system. The DCS system will normally host the OPC UA Client.

MCS (Master Control Station) is the central control node containing application software required to
control and monitor the subsea production system.

Subsea Gateway provides a communications interface on the surface to the subsea control
equipment over the subsea vendor’s communication system. The Subsea Gateway may form part of
the overall MCS. The MCS or Subsea Gateway will normally host the OPC UA Server.

SCV (Subsea Controls Vendor) equipment refers to the subsea vendor supplied equipment and
principally includes the subsea gateway in “Integrated” architecture or the subsea gateway and MCS
in “Interfaced” architecture (see section 4 for additional details). It is intended to classify the
functionality that is delivered by the subsea vendor whether it is implemented in the MCS or subsea
gateway.

Note: The MCS may be supplied by a vendor other than the subsea or DCS vendor .

HPU (Hydraulic Power Unit) is the unit which provides low pressure and high pressure hydraulic
supplies for the control of subsea wells.

EPU (Electrical Power Unit) is the unit which provides power to the subsea system.

The Customer is the end user, typically the “Operating Company”.

The Operator is the human being executing an operation, not to be confused with the “Operating
Company”.

1.2.3 MDIS Mandatory & Optional Items / Objects

MDIS has standardised on the following definitions for Mandatory and Optional items. In all cases
(Mandatory or Optional), if the item is available, the functionality described by the definition of the
item must be correct and verifiable.

Mandatory

MDIS OPC UA Companion Specification Release 1.2 Page 14 of 114

Objects specified as Mandatory will be required in all Objects and cannot be deleted. In OPC terms,
a Mandatory item must exist on every Node of the NodeClass, for example if an
MDISValveObjectType defines a Mandatory item Position then every instance of the
MDISValveObjectType must have an item Position available.

Optional

Objects have functionality that may or may not be included; if they are included the OPC Client will
know how to handle them. In OPC terms, an Optional item may or may not exist on every Node of
the NodeClass, for example if an MDISValveObjectType defines an Optional item OpenTimeDuration
then some instances of the MDISValveObjectType may contain an item OpenTimeDuration, but other
instances may not. Clients are required to be able to handle the case where the item does not exist.

1.2.4 OPC Compliance & Certification

In regard to OPC Testing for Compliance and Certification the following concepts apply. The actual
requirements for certification are defined on a project basis, but the standard t hird party certification
provided by the OPC Foundation provides the following:

Compliance - Assurance that the OPC UA Server or Client fulfils all functionality that it claims to
support in terms of Profiles and that of all exposed interfaces function as defined in the
specifications.

Interoperability - Testing of products against other products, this includes all functionality, data
types and access rights.

Robustness - The testing of failure cases including handling of lost communication, communication
recovery. All problems must not affect other connections, quality information must be correctly
reported, and audit entries are generated as needed. In short , end users are aware of any problem
and problems are resolved automatically where possible.

Efficiency - The testing of products under load, forcing of noisy / bad communications and ensuring
that products continue to work. Measuring CPU, RAM, threads, handles etc. and ensuring that even
under the poor communications, heavily loaded Servers and Clients continue to function and not
leak resources.

Usability - Verify that products are delivered with some level of documentation and that the
documentation that is provided is accurate and understandable. Verify that the product functions as
advertised and an end user would understand what is being provided.

Certification - Validation of Server or Client products. Certification includes compliance,
interoperability, robustness, efficiency and usability testing and results in a seal of approval from an
OPC Foundation test lab upon meeting or exceeding defined acceptance criteria.

1.3 OPC Definitions

Table 1 lists OPC UA definitions which are used in this document, they are included here as a
reference. Additional information can be found in the reference documents listed in section 2.

Table 1 - OPC UA Terms and Definitions

Term Definition

AddressSpace The collection of information that an OPC UA Server makes visible to its
Clients. See Part 3 – Address Space Model for a description of the contents
and structure of the Server AddressSpace.

Attribute A primitive characteristic of a Node. All Attributes are defined by OPC UA, and
may not be defined by Clients or Servers. Attributes are the only elements in
the AddressSpace permitted to have data values. See Part 3 – Address Space
Model for additional details.

MDIS OPC UA Companion Specification Release 1.2 Page 15 of 114

Term Definition

ConformanceUnit As defined by the OPC Foundation: a specific set of OPC UA features that can
be tested as a single entity. As it applies to MDIS a ConformanceUnit may
describe a specific Object or part of a specific Object. It may also describe
general functionality such as redundancy or performance. For each
ConformanceUnit one or more test cases will exist to ensure that the defined
functionality is provided. The test cases may be automatically executed in a
Compliance Test Tool (CTT) or they may require some level of manual
interaction. See Part 7 – Profiles for additional details.

Facet A Profile that describes a subset of functionality. This functionality must be
paired with other Facets or Profiles to provide an operating Server or Client.
See Part 7 – Profiles for additional details.

InformationModel An organisational framework that defines, characterises and relates
information resources of a given system or set of systems. The core address
space model supports the representation of InformationModels in the
AddressSpace. See Part 5 – Information Model for a description of the base
OPC UA Information Model.

Method A callable software function that is a component of an Object. See Part 4 –
Services for a basic definition and see Part 10 – Programs for advanced uses.

Node The fundamental component of an AddressSpace. See Part 3 – Address
Space Model for additional details.

NodeClass The class of a Node in an AddressSpace. NodeClasses define the metadata
for the components of the OPC UA Object Model. They also define constructs,
such as Views, that are used to organise the AddressSpace. See Part 3 –
Address Space Model for additional details.

Object Objects from an object-oriented technology point of view would have the
following definition. Objects share two characteristics: They have state
(Attribute) and behaviour (Method). A bicycle has states (current gear, current
pedal cadence, current speed) and behaviour (changing gear, changing pedal
cadence, applying brakes). An object stores its state in fields (Variables) and
exposes its behaviour through functions (Methods). Functions operate on an
object's internal state and serve as the primary mechanism for object-to-object
communication. Hiding internal state and requiring all interaction to be
performed through an object's functions is known as data encapsulation, a
fundamental principle of object-oriented programming. In programming
languages this object will have a third characteristic: The identity, which will
help to find and use the object.

From an OPC UA point of view the following definition is used:

A Node that represents a physical or abstract element of a system. Objects
are modelled using the OPC UA Object Model. Systems, subsystems and
devices are examples of Objects. An Object is defined as an instance of an
ObjectType. See Part 3 – Address Space Model for additional details.

Object Instance A synonym for Object. See Part 3 – Address Space Model and Part 5 –

Information Model for additional details.

ObjectType A Node that represents the TypeDefinition for an Object. See Part 3 – Address

Space Model and Part 5 – Information Model for additional details.

MDIS OPC UA Companion Specification Release 1.2 Page 16 of 114

Term Definition

Profile A specific set of capabilities, to which a Server or Client may claim
conformance. The capabilities are defined by a set of ConformanceUnits.
Each Server or Client may claim conformance to more than one Profile. The
OPC Foundation provides a base list of Server and Client Profiles and Facets
in an online database which is also documented in an OPC UA specification,
Part 7 – Profiles. The online database can be found here:

 (http://opcf.org/profilereporting/index.htm?All=true),

Property A Variable that is a leaf and cannot have any children. See Part 3 – Address

Space Model and Part 5 – Information Model for additional details.

Reference An explicit relationship (a named pointer) from one Node to another. The Node
that contains the Reference is the source Node, and the referenced Node is
the target Node. All References are defined by ReferenceTypes. See Part 3 –
Address Space Model and Part 5 – Information Model for additional details.

ReferenceType A Node that represents the TypeDefinition of a Reference. The
ReferenceType specifies the semantics of a Reference. The name of a
ReferenceType identifies how source Nodes are related to TargetNodes and
generally reflects an operation between the two, such as “A contains B”. See
Part 3 – Address Space Model and Part 5 – Information Model for additional
details.

UANodeSet The root of the AddressSpace defined in an XML document. It defines a set of
Nodes, their Attributes and References. See Part 6 – Mappings for additional
details.

Variable Variable is a Node that contains a value and can have children. See Part 3 –
Address Space Model and Part 5 – Information Model for additional details.

VariableType A Node that represents the TypeDefinition for a Variable. See Part 3 –
Address Space Model and Part 5 – Information Model for additional details.

1.4 Industry Typical Abbreviations, Acronyms & Definitions

The abbreviations, acronyms and definitions listed in Table 2 are typical and primarily focused on
Subsea projects although some Topsides specific terms are also included.

Table 2 - Abbreviations, Acronyms and Definitions

Abbreviations, Acronyms & Definitions

API American Petroleum Institute

CIMV Chemical Injection Metering Valves

CSV Comma Separated Values

DCS Distributed Control System

EPU Electrical Power Unit (Part of PCU)

ERP Enterprise Resource Planning

EU Engineering Units

FEED Front End Engineering Design

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

IEC International Electrotechnical Commission

JIP Joint Industry Project

LVDT Linear Variable Displacement (Differential) Transmitter

MCS Master Control Station (Subsea Process Control System)

http://opcf.org/profilereporting/index.htm?All=true

MDIS OPC UA Companion Specification Release 1.2 Page 17 of 114

Abbreviations, Acronyms & Definitions

MDIS MCS-DCS Interface Standardisation (Industry JIP)

MPFM Multiphase Flow Meters

NTP Network Time Protocol

OLE Object Linking & Embedding

OPC Open Process Control (original Classic was OLE for Process Control)

OPC UA OPC Unified Architecture

ROV Remotely Operated Vehicle

SCADA Supervisory Control And Data Acquisition

SCV Subsea Controls Vendor

SEM Subsea Electronics Module

SIS Safety Instrumented System

SPCS Subsea Production Control System

TCP/IP Transmission Control Protocol / Internet Protocol

UML Unified Modelling Language

URL Uniform Resource Locator

XML Extensible Mark-up Language

MDIS OPC UA Companion Specification Release 1.2 Page 18 of 114

2 Reference documents

The OPC UA Specifications are organised as a multi-part document. The following list of references
provide link to each of the parts. Also referenced are applicable API documents. This companion
specification assumes that all OPC UA Application support as a minimum version 1.02 of the OPC
UA specifications.

Part 1: OPC UA Specification: Part 1 – Concepts
http://www.opcfoundation.org/UA/Part1/

Part 2: OPC UA Specification: Part 2 – Security Model
http://www.opcfoundation.org/UA/Part2/

Part 3: OPC UA Specification: Part 3 – Address Space Model
http://www.opcfoundation.org/UA/Part3/

Part 4: OPC UA Specification: Part 4 – Services
http://www.opcfoundation.org/UA/Part4/

Part 5: OPC UA Specification: Part 5 – Information Model
http://www.opcfoundation.org/UA/Part5/

Part 6: OPC UA Specification: Part 6 – Mappings
http://www.opcfoundation.org/UA/Part6/

Part 7: OPC UA Specification: Part 7 – Profiles
http://www.opcfoundation.org/UA/Part7/

Part 8: OPC UA Specification: Part 8 – Data Access
http://www.opcfoundation.org/UA/Part8/

Part 9: OPC UA Specification: Part 9 – Alarms and Conditions
http://www.opcfoundation.org/UA/Part9/

Part 10: OPC UA Specification: Part 10 – Programs
http://www.opcfoundation.org/UA/Part10/

Part 11: OPC UA Specification: Part 11 – Historical Access
http://www.opcfoundation.org/UA/Part11/

Part 12: OPC UA Specification: Part 12 – Discovery
http://www.opcfoundation.org/UA/Part12/

Part 13: OPC UA Specification: Part 13 - Aggregates

http://www.opcfoundation.org/UA/Part13/

API Standard 17F - Standard for Subsea Production Control Systems:

http://www.api.org/products-and-services/standards/purchase

The OPC UA Specifications are also available from the IEC as IEC 62541

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part10/
http://www.opcfoundation.org/UA/Part11/
http://www.opcfoundation.org/UA/Part12/
http://www.opcfoundation.org/UA/Part13/
http://www.api.org/products-and-services/standards/purchase

MDIS OPC UA Companion Specification Release 1.2 Page 19 of 114

3 OPC UA Overview

3.1 Introduction

For the MDIS user who may not be familiar with OPC UA, the following section provides a brief
overview of key features. It does not describe how MDIS makes use of these features it only
describes the features available in OPC UA. MDIS specific functionality is specified in other sections
of this document.

3.2 What is OPC UA?

OPC UA is an open and royalty free standard designed as a universal communications protocol. It is
also available as IEC 62541.

OPC UA has a broad scope which delivers economies of scale for application developers. When
combined with powerful semantic models, OPC UA makes it easier for end users to access data via
generic commercial application. It provides an information modelling framework that allows
application developers to represent their data in a way that makes sense to them.

The OPC UA model is scalable from small devices to Enterprise Resource Planning (ERP) systems.
OPC UA devices process information locally and then provides that data in a consistent format to
any application requesting data. For a more complete overview see Part 1 – Concepts.

3.3 Basics of OPC UA

As an Open Standard, OPC UA is based on standard Internet technologies, such as TCP/IP, HTTP,
Ethernet, and XML. OPC UA provides a set of services (see Part 4 – Services) and a basic
information model framework.

As an Extensible Standard, OPC UA provides an information model framework which can expose
vendor defined information in a standard way. More importantly all OPC UA Clients are expected to
be able to discover and use vendor defined information. This means OPC UA users can benefit from
the economies of scale that come with generic visualisation and interface applications. This
specification is an example of an OPC UA InformationModel designed to meet the needs of
developers and users in the offshore oil and gas industry.

OPC UA Clients can be any consumer of data, from devices / controllers on the network; browser
based thin clients and higher level ERP systems. OPC UA applications are platform and
development language dependant. The full scope of OPC UA applications are illustrated in Figure 1.
For this companion specification the typical communication would be device to device or device to
SCADA type communications.

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Historian

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Figure 1 - The Scope of OPC UA within an Enterprise

MDIS OPC UA Companion Specification Release 1.2 Page 20 of 114

OPC UA provides a robust and reliable communication infrastructure having mechanisms for
handling lost messages, recovering from network interruptions, etc. With its binary encoded data it
offers a high-performance data exchange solution. Security is built into OPC UA, security
requirements are becoming more and more important as, increasingly, environments are connected
to the office network or the internet and attackers are starting to focus on automation systems

3.4 Information Modelling in OPC UA

3.4.1 Concepts

OPC UA provides a framework that can be used to represent complex information as Objects in an
AddressSpace which can be accessed with standard web services. These Objects consist of Nodes
connected by References. Different classes of Nodes convey different semantics. For example, a
Variable Node represents a value that can be read or written. The Variable Node has an associated
DataType that can define the actual value, such as a string, float, structure etc. It can also describe
the Variable value as a variant. A Method Node represents a function that can be called. Every Node
has a number of Attributes including a unique identifier called a NodeId and non-localised name
called a BrowseName. An Object representing a Heater is shown in Figure 2.

Heater

Heating
Element

 Sensor

Status
 Off

Temperature
Setpoint

100.0

Pressure
26.5

Temperature
90

Start

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 2 - A Basic Object in an OPC UA Address Space

Object and Variable Nodes are called Instance Nodes and they always reference a TypeDefinition
(ObjectType or VariableType) Node which describes their semantics and structure. Figure 3
illustrates the relationship between an instance and its TypeDefinition.

Type Nodes are templates that define all of the children that can be present in an instance of the
type. In the example in Figure 3 the BoilerType ObjectType defines two sensors: Pressure and
Temperature. All instances of BoilerType are expected to have the same children with the same
BrowseNames. Within a type the BrowseNames uniquely identify the child. This means Client
applications can be designed to search for children based on the BrowseNames from the type
instead of NodeIds. This eliminates the need for manual reconfiguration of systems if a Client uses
types that multiple devices implement.

OPC UA also supports the concept of subtyping. This allows a modeller to take an existing type and
extend it. There are rules regarding subtyping defined in Part 3 – Address Space Model, but in
general they allow the extension of a given type or the restriction of a DataType. For example, the
modeller may decide that the existing ObjectType in some cases needs an additional Variable. The
modeller can create a subtype of the Object and add the Variable. A Client that is expecting the
parent type can treat the new type as if it was of the parent type. With regard to DataTypes, if a

MDIS OPC UA Companion Specification Release 1.2 Page 21 of 114

Variable is defined to have a numeric value, a subtype could restrict the value to a float. This
standard adds additional rules for extensions.

BoilerUnit1

Presssure
28.6

Temperature
99.3

Pressure
Double

Temperature
Float

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of BoilerType represents a generic Boiler at a Power Plant
Structure: An instance of BoilerType has Actual values for Pressure and Temperature

BaseObjectType

BoilerType

Figure 3 - The Relationship between Type Definitions and Instances

References allow Nodes to be connected together in ways that describe their relationships. All
References have a ReferenceType that specifies the semantics of the relationship. References can
be hierarchical or non-hierarchical. Hierarchical References are used to create the structure of
Objects and Variables. Non-hierarchical References are used to create arbitrary associations.
Applications can define their own ReferenceType by creating subtypes of the existing
ReferenceType. Subtypes inherit the semantics of the parent but may add additional restrictions.
Figure 4 depicts several References connecting different Objects.

MDIS OPC UA Companion Specification Release 1.2 Page 22 of 114

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 4 - Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specifi cation. The notation is
summarised in Figure 5. UML representations can also be used; however, the OPC UA notation is
less ambiguous because there is a direct mapping from the elements in the figures to Nodes in the
AddressSpace of an OPC UA Server.

Object Variable Method View

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

Has
EventSource

Has
Component

Has
TypeDefinition

Has
Subtype

Has
Property

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Figure 5 - The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in Part 3 –
Address Space Model and the base OPC UA AddressSpace is described in Part 5 – Information
Model.

The OPC UA specification defines a very wide range of functionality in its basic information model. It
is not expected that all Clients or Servers support all functionality in the OPC UA specifications. OPC
UA includes the concept of Profiles, which segment the functionality into testable certifiable units .

MDIS OPC UA Companion Specification Release 1.2 Page 23 of 114

This allows the development of companion specifications (such as OPC UA MDIS) that can describe
the subset of functionality that is expected to be implemented. The Profiles do not restrict
functionality but generate requirements for a minimum set of functionality (see Part 7 – Profiles).

The OPC Foundation also defines a set of InformationModels that provide a basic set of
functionalities. The Data Access specification (see Part 8 – Data Access) provides a basic
InformationModel for typical process or measured data. The Alarm and Condition specification (see
Part 9 – Alarms and Conditions) defines a standard InformationModel for Alarms and Conditions.
The Programs specification (see Part 10 – Programs) defines a standard InformationModel for
extending the functionality available via Method calls and state machines. The Historical Access
specification (see Part 11 – Historical Access) defines the InformationModel associated with
Historical Data and Historical Events. The aggregates specification (see Part 13 - Aggregates)
defines a series of standard aggregate functions that allow a Client to request summary data.
Examples of aggregates include averages, minimums, time in state, standard deviation, etc.

3.4.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent
AddressSpace. Namespaces are used to make this possible by eliminating naming and id conflicts
between information from different sources. Namespaces in OPC UA have a globally unique string
called a NamespaceUri and a locally unique integer called a NamespaceIndex. The
NamespaceIndex is only unique within the context of a Session between an OPC UA Client and an
OPC UA Server. All of the web services defined for OPC UA use the NamespaceIndex to specify the
Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and
QualifiedNames. NodeIds are globally unique identifiers for Nodes. This means the same Node with
the same NodeId can appear in many Servers. This, in turn, means Clients can have built in
knowledge of some Nodes. OPC UA InformationModels generally define globally unique NodeIds for
the TypeDefinitions defined by the InformationModel.

QualifiedNames are non-localised names qualified with a Namespace. They are used for the
BrowseNames of Nodes and allow the same names to be used by different InformationModels
without conflict. The BrowseName is used to identify the children within a TypeDefinition. Instances
of a TypeDefinition are expected to have children with the same BrowseNames. TypeDefinitions are
not allowed to have children with duplicate BrowseNames; however, instances do not have that
restriction.

3.4.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an
InformationModel by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that
represent the concepts used in the vertical market. Table 3 contains an example of an ObjectType
definition.

Table 3 - Example ObjectType Definition

Attribute Value

BrowseName BoilerType

IsAbstract False

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType from Part 3 – Address Space Model.

HasProperty Variable Pressure Double PropertyType Mandatory

HasProperty Variable Temperature Float PropertyType Mandatory

HasProperty Variable Flow Double PropertyType Optional

The BrowseName is a non-localised name for an ObjectType.

IsAbstract is a flag indicating whether instances of the ObjectType can be created. If IsAbstract is
FALSE then instances of this ObjectType may be created. If IsAbstract is TRUE then instances of
the ObjectType cannot be created, the ObjectType must be subtyped.

The bottom of the table lists the child Nodes for the type. The Reference column is the type of
Reference between the Object instance and the child Node. The NodeClass is the class of Node.

MDIS OPC UA Companion Specification Release 1.2 Page 24 of 114

The BrowseName is the non-localised name for the child. The DataType is the structure of the Value
accessible via the Node (only used for Variable NodeClass Nodes) and the TypeDefinition is the
ObjectType or VariableType for the child.

The ModellingRule indicates whether a child is Mandatory or Optional. It can also indicate
cardinality. Note that the BrowseName is not defined if the cardinality is greater than 1. Figure 6
visually depicts the ObjectType defined in Table 3 along with two instances of the ObjectType. The
first instance includes the Optional Property while the second does not.

Boiler #1

Temperature
270.

Pressure
1650.34

Temperature
[Float]

Pressure
[Double]

BoilerType

Boiler #2

Temperature
260.

Pressure
1500.00

Flow
20.34

Flow
[Double]
Optional

Figure 6 - A Visual Representation of the Sample ObjectType

MDIS OPC UA Companion Specification Release 1.2 Page 25 of 114

4 Architectures

4.1 Overview

The following section describes the two architectures that are defined by this specification. The
Object models defined in other sections of this specification are affected by these architectures (see
Figure 7.)

DCS HMI DCS HMI

MCS (DCS
Ctlr)

DCS Ctlr /
Gateway

MCS

Subsea
Gateway

SPCS
Subsea Eq.

Subsea
Gateway

SPCS
Subsea Eq.

MDIS

MDIS

DCS Vendor
Scope

SPCS Vendor
Scope

Topside

Subsea

InterfacedIntegrated

Figure 7 - Architecture Overview

This narrative and associated architecture drawing are intended to identify and represent this
interface in the majority of typical system implementations. It is not intended to mandate the detailed
architecture of a DCS vendor or SPCS vendor’s control system, nor is it intended to suggest or
exclude a particular contracting / commercial strategy. This simplified version of the MDIS interface
was used to facilitate development of the data objects and to define the data content between the
DCS and SPCS vendor’s system.

Two major architectures, “Integrated” or “Interfaced”, are typically used througho ut the industry and
the choice will typically be decided by the Operat ing Company. Since the control aspects of the
subsea system can be accomplished by both the DCS system or by the subsea system, the actual
interface between the two systems may be different. In the Integrated architecture (Case 1), the
controls system is an integrated system where all control is performed by the DCS vendor’s
hardware and the standard needs to support communication of all information between the subsea
gateway and the DCS control system. This enables a single HMI (or set of HMIs) to control and
monitor platform and subsea operations. In the Interfaced architecture (Case 2), the SPCS vendor
provides the controls for the subsea aspects of the system and the DCS system is used for
monitoring and set point control purposes of the subsea system, along with topside controls. The
MDIS InformationModel is able to adapt to both of these architectures.

MDIS OPC UA Companion Specification Release 1.2 Page 26 of 114

4.2 DCS Implemented Functions

4.2.1 Main Process Responsibility

The DCS is the primary user interface to the overall facility process including the subsea system.
Process data management is handled by the DCS as well as all process alarming, alarm
management and event / data archiving. Although an MCS may have an alarm or event queue, the
primary facility alarm management occurs at the DCS level. Access to the various subsea control
functions are managed by the DCS user access level rather than in the subsea system. The DCS
also serves as the master for time synchronisation (for addition details see section 10).

4.2.2 Control and Monitoring of Subsea Equipment

Normal control and monitoring of the subsea production system is conducted at the DCS HMI. There
may be a separate maintenance or
configuration workstation used by the SCV, but
it is not within the scope of the MDIS interface.

4.2.3 Subscriptions

OPC UA supports Subscription and polling
(Read) manners of obtaining data. The
Subscription based manner of obtaining data
should be used by default. Subscription, which
is exception reporting, typically provides
improved performance over the polling
interface.

4.3 DCS or SCV Implemented Functions

4.3.1 Introduction

The functional elements of the system either
reside in the DCS or SPCS depending on a
particular vendor’s solution or customer’s
requirements. The “Operating Company” should
specify where each of these optional functions
should reside. See Figure 8 for an illustration.

4.3.2 Data Arbitration

Data Arbitration is the system function that
manages the reception and transmission of
dual / redundant SPCS data.

If the Subsea system performs this function,
only a single process value or operator
command is typically passed between the
SPCS and DCS system. If the DCS performs
this function, both the A and B data values
would typically be passed across the interface.

There are multiple types of data that could
require arbitration. Instruments can be
redundant, SEMs can be redundant and it is
possible that the different types of data maybe
arbitrated in different locations. I.e. in some
projects, sensor data may be arbitrated by the
DCS while the SEM may be arbitrated by the
SPCS. Data Arbitration choices can also affect redundancy.

4.3.3 SEM Control Selection

Certain subsea instruments may only be powered by
one SEM at a time, selectable by the operator. Also, a
SEM may have various modes, such as ROV mode or maintenance mode, which can be selected.

SCM

 DCS

PT A PT B

Process Pressure

SEM A SEM B

Comm.
Dist. Unit

A

Comm.
Dist. Unit

B

MCS A MCS B

Controller A Controller B

Topside

Subsea

Two Pressure
Transmitters

Two SEM
Each SEM
accesses
both PT

Two Comm
distribution
units -Each

accesses both

SEM

Multiple values
Multiple paths

Figure 8 – Data Arbitration Example

MDIS OPC UA Companion Specification Release 1.2 Page 27 of 114

4.3.4 Interlocks

4.3.4.1 Introduction

An Interlock is a control permissive that exists to prevent or warn an operator against potentially
undesired operator commands being issued to the subsea system. Depending on an operator’s
access level, he / she may be able to override the interlock in order to perform the desired operation.
Interlocks can be categorised into two types: process interlocks and product / system interlocks,
though not all customers or SCV’s make this distinction.

4.3.4.2 Process Interlocks

Process interlocks are interlocks which are specific to a particular project dependent on field layout,
tree functionality, etc. These are often defined by the customer’s process requirements or by
regulatory agencies; e.g., prevention of opening the tree crossover valve if the production master
valve and annulus master valve are open

4.3.4.3 Product or System Interlocks

Interlocks defined by the SCV for the protection of the subsea system; for example, low hydraulic
pressure inhibiting opening (pressurising) of a tree valve. These interlocks are typically not able to
be overridden by an operator.

4.3.5 Shutdown Sequences

These are defined subsea valve operation sequences that take the subsea system to a safe state.
They are initiated either by subsea process conditions, operator intervention or emergency
conditions triggered from external interfaces such as the facility Safety Instrumented System (SIS).

4.3.6 Automated Control Sequences

These are multi-step control sequences triggered by the issuance of a single operator command,
such as smart well (interval control valve) controls, hydrate prevention or preparation of a tree for
start-up.

4.3.7 Determining Valve Statuses

This refers to determination of the status of a subsea valve by evaluating some or all of the
following: hydraulic output function line pressure, hydraulic flow and last command received.

4.3.8 Determining / Updating Choke Calculated Position

This refers to the calculation of the assumed choke position based upon the number of step
commands issued to the subsea choke. It may be maintained in percentage open or step position
and is compared to the position transducer on the choke for calibration.

4.3.9 HPU Interface

The HPU interface may include HPU control capability, data monitoring and configuration such as
pump control setpoint changes.

4.3.10 EPU Interface

The interface to the EPU may include monitoring of the power supply to the subsea equipment
including input voltage / current, umbilical voltage(s) / current(s), line insulation monitoring data and
power alarm statuses (over-voltage and over-current).

4.3.11 Valve Profile / Signature Validation

A valve profile, or signature, is a representation of the performance of a subsea valve in terms o f its
hydraulic fluid pressure and flow characteristics as measured at the subsea control module. Valve
Profile / Signature Validation is a software function that compares a current valve profile/signature to
a baseline or template signature recorded previously, typically at subsea system commissioning. Not
all systems have this functionality.

4.3.12 Topsides Chemical Injection System Interface

MDIS OPC UA Companion Specification Release 1.2 Page 28 of 114

The chemical injection interface may include control and monitoring capability. Typically, the
interface includes verification to the subsea system of chemical delivery (flow rate and / or pressure)
from the topsides chemical injection system.

4.4 Subsea Controls Vendor-Implemented Functions

4.4.1 Introduction

These functions are assumed to be always implemented in the SPCS vendor’s equipment. In the
case that the MCS is provided by a third-party supplier, the references below to the DCS may also
pertain to the MCS.

4.4.2 Managing Subsea Communications

The SCV’s system will manage data traffic to and from the subsea system and issue device c ontrol
commands. The protocol is typically proprietary for a particular SCV and the medium and
redundancy requirements are dependent upon customer requirements. The interface from the
subsea gateway to the subsea system is not within the scope of the MDIS interface.

4.4.3 Operation of Subsea Devices

Ultimate operation or actuation of a subsea device is executed by the SCV’s system, whether
requested locally, such as from an SCV engineering workstation, or remotely from the DCS.

4.4.4 Handing off Process Sensor Data to DCS

The SCV’s system will provide current process data (e.g., pressures, temperatures, flow rates) and
statuses (e.g., valve positions) to the DCS.

4.4.5 Configuration of Operational Parameters

This includes settings for low-level subsea system functionality, such as solenoid pulse timers,
pressure check settings for evaluating valve position or unintended movement, timer setpoints for
determining valve failure, etc.

4.4.6 Handing off Valve Profiles / Signatures

Valve Profiles are made available for transmission from the SCV system. The output format may
vary among vendors and the data may be transmitted according to customer requirements.

4.4.7 Calculation of Engineering Values

The SCV system typically calculates process engineering values if raw data is received from subsea
devices, though there may be exceptions where raw data transmission is required.

4.4.8 Handing off Product Statuses

This refers to any available data in the subsea system not included within the definition of other
objects that may be transmitted via a “generic” discrete or analogue object. This includes data that
may have been considered “alarms” in legacy subsea systems, but are simply data points that are
available to the DCS to manage as alarms, events or to be logged as desired. The SCV may also
implement “roll-up” statuses that condense numerous statuses into fewer bits / words in order to
optimise data transfer.

4.4.9 Handing Off Diagnostic Information

Diagnostic information in regard to the health of the subsea system is managed in the SCV’s system.
This data would typically not be transmitted to the DCS except for summary product status data as
defined above. It would be transmitted via a “generic” discrete or analogue object as desired.

4.4.10 EPU Interface

The interface to the EPU may include monitoring of the power supply to the subsea equipment
including input voltage / current, umbilical voltage(s) / current(s), line insulation monitoring data and
power alarm statuses (over-voltage and over-current).

4.4.11 Subsea Control Paths / Network Routing

MDIS OPC UA Companion Specification Release 1.2 Page 29 of 114

The SCV defines the subsea communications system architecture. Communications link control and
monitoring is also performed by the SCV. Variable scan configurations (e.g. fast scan, normal scan,
slow scan) may be implemented and configured by the SCV as required.

MDIS OPC UA Companion Specification Release 1.2 Page 30 of 114

5 MDIS ObjectTypes

5.1 Overview

The following sections define the basic OPC UA Objects defined by MDIS. This includes Method
definition as needed. The use cases / object interactions for each Object are defined in a separate
section.

5.1.1 MDISBaseObjectType

The MDISBaseObjectType is a base object that all other MDIS objects are constructed from. It is an
abstract ObjectType and instances of it shall not exist. This Object will be used to create subtypes.

5.1.2 MDISDiscreteInstrumentObjectType

The MDISDiscreteInstrumentObjectType is a base type and can be subtyped or instances of it can
be directly created. The Object can be used with multi-state type of data (stopped, moving, faulted).
It could also be used for integer values from instruments. For a limit switch or on / off switch the
MDISDigitalInstrumentObjectType should be used.

5.1.3 MDISDiscreteOutObjectType

The MDISDiscreteOutObjectType is a subtype of MDISDiscreteInstrumentObjectType and can be
subtyped or instance of it can be directly created. The Object can be used for Tristate or Multistate
switches.

5.1.4 MDISDigitalInstrumentObjectType

The MDISDigitalInstrumentObjectType is a base type and can be subtyped or instance of it can be
directly created. The Object can be used to represent on / off type of functions.

5.1.5 MDISDigitalOutObjectType

The MDISDigitalOutObjectType is a subtype of MDISDigitalInstrumentObjectType and can be
subtyped or instance of it can be directly created. The Object can be used for switching on / off
types.

5.1.6 MDISInstrumentObjectType

The MDISInstrumentObjectType is a base type and can be subtyped or instances of it can be directly
created. The Object can be used for various types of analogues, e.g. pressure, temperatures, tank
levels etc.

5.1.7 MDISInstrumentOutObjectType

The MDISInstrumentOutObjectType is a subtype of MDISInstrumentObjectType and can be subtyped
or instance of it can be directly created. The Object can be used for writing floating point values.

5.1.8 MDISChokeObjectType

The MDISChokeObjectType object is a base type and can be subtyped or an instance of it can be
directly created. A choke is a device that restricts the flow of a fluid (gases, liquids, fluidised solids,
or slurries).

5.1.9 MDISValveObjectType

The MDISValveObjectType object is a base type and can be subtyped or an instance of it can be
directly created. A valve is a device that directs or controls the flow of a fluid (gases, liquids,
fluidised solids, or slurries). The MDISValveObjectType represents a two state valve type.

5.1.10 MDISAggregateObjectType

An abstract type that all aggregate ObjectTypes shall be derived from. This ObjectType allows Clients to
easily identify aggregate Objects. For more information about aggregation see 9.5

5.1.11 MDISTimeSyncObjectType

The MDISTimeSyncObject (see 5.9.3) is a base ObjectType. An instance of this ObjectType shall be exposed
as part of the MDISInformationObjectType,if the MDISTimeSyncObjectType is supported.

MDIS OPC UA Companion Specification Release 1.2 Page 31 of 114

5.1.12 MDISInformationObjectType

The MDISInformationObjectType (see 5.10) is a base ObjectType. An instance of this ObjectType shall be
exposed under the Objects folder. It provides information about the MDIS Information model that is supported
by the Server. It can also expose additional information related to MDIS.

MDIS OPC UA Companion Specification Release 1.2 Page 32 of 114

5.2 MDISBaseObjectType

5.2.1 Overview

The following section details the MDIS generic properties for the MDISBaseObjectType.
Implementations shall ensure adherence to Mandatory [M] aspects in order to comply with the MDIS
interface standardisation. Optional [O] may or may not be implemented within a projec t. Figure 9
provides an overview of the MDISBaseObjectType as defined by MDIS. This Object is intended to be
the base object for all other MDIS ObjectTypes (see Figure 10 for an overview of inherited types)

 Status Information Commands

Configuration

MDISBase

ObjectType

TagId(O)

Enabled (O)

EnableDisable (O)Fault

Warning(O)

FaultCode(O)

WarningCode(O)

Figure 9 - MDISBaseObjectType

MDISBase

ObjectType

MDISDigital

InstrumentObjectType

MDISValve

ObjectType

MDISInstrument

ObjectType

MDISChoke

ObjectType

MDISDigitalOut

ObjectType

MDISDiscrete

InstrumentObjectType

MDISDiscreteOut

ObjectType

MDISInstrument

OutObjectType
MDISAggregate

ObjectType

Figure 10 - Base Object Hierarchy

MDIS OPC UA Companion Specification Release 1.2 Page 33 of 114

5.2.2 MDISBaseObjectType Definition

The Table 4 defines the structure of an MDISBaseObjectType.

Table 4 - MDISBaseObjectType

Attribute Value

BrowseName MDISBaseObjectType

IsAbstract True

References Node
Class

BrowseName Data Type TypeDefinition Modelling
Rule

RW

Subtype of the BaseObjectType defined in OPC UA Part 5 – Information Model

HasComponent Variable Fault Boolean BaseDataVariableType Mandatory R

HasComponent Variable Warning Boolean BaseDataVariableType Optional R

HasComponent Variable Enabled Boolean BaseDataVariableType Optional R

HasProperty Variable TagId String PropertyType Optional R

HasComponent Method EnableDisable See 5.2.3 Optional

HasComponent Variable FaultCode UInt32 BaseDataVariableType Optional R

HasComponent Variable WarningCode UInt32 BaseDataVariableType Optional R

HasSubtype MDISDigitalInstrumentObjectType

HasSubtype MDISDiscreteInstrumentObjectType

HasSubtype MDISChokeObjectType

HasSubtype MDISInstrumentObjectType

HasSubtype MDISValveObjectType

HasSubtype MDISAggregateObjectType

The RW column indicates if a Node of Variable NodeClass is readable, writeable or both readable
and writeable. Other NodeClasses (Object, Method) do not support reading or writing and do not fill
in this column.

By definition a Profile can require that an Optional item be provided, it cannot change the behaviour
of an Object from what is described in this specification, which includes support for any Mandatory
items. Profiles are described in section 12.

Fault – The status of the object, true if any fault exists.

Warning – The status of the object, true if any warnings exist. A warning does not require immediate
operator action.

Enabled – This Variable is set as enabled (true) by default. When disabled the Object will not report
any dynamic information other than a bad status code (Bad_InvalidState). It will still report
configuration related information. For the MDISBaseObjectType the default is that only the Enabled
flag, TagId and Enable method report values or perform functions. Subtypes of this ObjectType may
describe additional requirements for disabled Objects.

TagId – The TagId is a unique equipment identifier. This is additional information that can be used to
help identify the Variable associated with the instance of this type. This field is intended to be used
to store the tag id from the P&ID

EnableDisable – This method allows a Client to disable or enable the Object.

FaultCode – An unsigned integer that describes a fault code(s), zero indicates no fault. The SPCS
vendor will provide a definition of what the number means. It might be a bit field or a fault code.

WarningCode – An unsigned integer that describes a warning code(s), zero indicates no warnin g.
The SPCS vendor will provide a definition of what the number means. It might be a bit field or an
error code. If a WarningCode is provided then the Warning flag shall also be provided.

5.2.3 EnableDisable Method

EnableDisable is used to disable or enable an Object. The enable / disable operation applies to the
Object in the UA Server. The call completes when the enable / disable operation is complete. The
Server may or may not pass the enable / disable down to lower levels. This is Server specific
behaviour.

MDIS OPC UA Companion Specification Release 1.2 Page 34 of 114

Method Declaration

EnableDisable (

 [in] Enable Boolean

);

Table 5 - EnableDisable Method parameters

Argument Description

Enable Boolean indicator of whether the Object is to be disabled or enabled. A true indicates that the Object
is enabled.

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services specification). They are described in
Table 93 for ease of reference.

Comments

The EnableDisable Method will disable or enable this Object. Once the state of an Object is changed
by this Method (i.e. disabled) the state will be maintained until this Method is called again to change
the state (i.e. enable). The Method will report if any error occurs while disabling or enabling the
Object. Table 6 specifies the AddressSpace representation for the EnableDisable Method.

Table 6 - EnableDisableMethod AddressSpace Definition

Attribute Value

BrowseName Disable

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.3 MDISDiscreteInstrumentObjectType

5.3.1 Introduction

The following section details the generic MDISDiscreteInstrumentObjectType structure and defines
the properties associated with it. Additional sections define a subtype MDISDiscreteOutObjectType
that allows updates to the discrete value. This is in general a vendor and operator independent
description, but all users of the MDISDiscreteInstrumentObjectType or MDISDiscreteOutObjectType
can add vendor specific data. The vendor specific data should be defined as part of a subtype of the
MDISDiscreteInstrumentObjectType or MDISDiscreteOutObjectType defined in this document. It is
assumed that the subsea system is the Server and host of the instance of the
MDISDiscreteInstrumentObjectType or MDISDiscreteOutObjectType. The DCS based system is the
Client in the system. It is assumed that all interactions with the instance of the
MDISDiscreteInstrumentObjectType are initiated by the Client and are directed to the Server.

5.3.2 Overview

The following section details the MDIS generic properties for the
MDISDiscreteInstrumentObjectType. Implementation shall ensure adherence to Mandatory [M]
aspects in order to comply with the MDIS interface standardisation. Optional [O] may or may not be
implemented within a project. Figure 11 provides an overview of the
MDISDiscreteInstrumentObjectType as defined by MDIS, including some nested types. This figure
includes all items that are inherited from the MDISBaseObjectType.

MDIS OPC UA Companion Specification Release 1.2 Page 35 of 114

Commands

 Process Information

MDISDiscreteInstrument

ObjectType

State

MDISDiscreteOut

ObjectType

WriteValue

 Status Information

Commands

Configuration

TagId(O)

Enabled (O)

EnableDisable (O)

Fault

Warning(O)

MDISBaseObjectType

FaultCode(O)

WarningCode(O)

Figure 11 - MDISDiscreteInstrumentObjectType & MDISDiscreteOutObjectType

5.3.3 MDISDiscreteInstrumentObjectType Definition

Table 7 defines the structure of an MDISDiscreteInstrumentObjectType . Any vendor specified
properties that have been implemented within a project should be documented within a simi lar
format and supplied to the DCS vendor. The addition of vendor specific properties will result in a
subtype of the MDISDiscreteInstrumentObjectType.

Table 7 - MDISDiscreteInstrumentObjectType

Attribute Value

BrowseName MDISDiscreteInstrumentObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISBaseObjectType (see section 5.1.1)

HasComponent Variable State UInt32 BaseDataVariableType Mandatory R

HasSubtype MDISDiscreteOutObjectType

State – The state of the instance of MDISDiscreteInstrumentObjectType. This state is represented
as a UInt32.

5.3.4 MDISDiscreteOutObjectType Definition

Table 8 defines the structure of an MDISDiscreteOutObjectType. Any vendor specified properties
that have been implemented within a project should be documented within a similar format and

MDIS OPC UA Companion Specification Release 1.2 Page 36 of 114

supplied to the DCS vendor. The addition of vendor specific properties will result in a subtype of the
MDISDiscreteOutObjectType.

Table 8 - MDISDiscreteOutObjectType

Attribute Value

BrowseName MDISDiscreteOutObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISDiscreteInstrumentObjectType (see section 5.1.2)

HasComponent Method WriteValue See 5.3.5 Mandatory

WriteValue – This Method allows a Client to change the value of State on an instance of
MDISDiscreteOutObjectType. The Method will return any errors that occurred on setting the value.
The Client shall verify that the State actually changed to confirm the update.

5.3.5 WriteValue Method

WriteValue Method (defined in Table 9) is used to change the value of the State Variable in an
instance of the MDISDiscreteOutObjectType. The WriteValue operation applies to the object in the
subsea system. Some systems will be able to report any errors immediately others will only be able
to report that the operation was not refused. Clients are expected to monitor the State and ensure
that the operation completed. If an error occurs after the Method has returned, a Fault flag shall be
set and an appropriate FaultCode will be returned. The Fault (and FaultCode) will reset on the next
successful WriteValue Method invocation.

Method Declaration

WriteValue (

 [in] State UInt32

);

Table 9 - WriteValue Method parameters

Argument Description

State UInt32 value Variable, that indicates the target state of the Variable

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments

The WriteValue Method will change the value of the State Variable. The Method will report if any
error occurs while writing the state of the Object. Table 10 specifies the AddressSpace
representation for the WriteValue Method.

Table 10 - WriteValue Method AddressSpace Definition

Attribute Value

BrowseName State

References Node Class BrowseName DataType TypeDefinition Modelling Rule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.4 MDISDigitalInstrumentObjectType

5.4.1 Introduction

The following section describes the generic MDISDigitalInstrumentObjectType structure and defines
the properties associated with it. Additional sections define a subtype MDISDigitalOutObjectType
that allows updates to the digital value. This is in general a vendor and operator independent
description, but all users of the MDISDigitalInstrumentObjectType or MDISDigitalOutObjectType can
add vendor specific data. The vendor specific data should be defined as part of a subtype of the
MDISDigitalInstrumentObjectType or MDISDigitalOutObjectType defined in this document. It is

MDIS OPC UA Companion Specification Release 1.2 Page 37 of 114

assumed that the subsea system is the Server and host of the instance of
MDISDigitalInstrumentObjectType or MDISDigitalOutObjectType. The DCS based system is the
Client in the system. It is assumed that all interactions with the instance of the
MDISDigitalInstrumentObjectType are initiated by the Client and are directed to the Server.

5.4.2 Overview

The following section details the MDIS generic properties for the MDISDigitalInstrumentObjectType;
implementation shall ensure adherence to Mandatory [M] aspects in order to comply with the MDIS
interface standardisation. Optional [O] may or may not be implemented within a project. Figure 12
provides an overview of the MDISDigitalInstrumentObjectType as defined by MDIS, including some
nested types. This figure includes all items that are inherited from the MDISBaseObjectType.

Commands

 Process Information

 Status Information

Commands

Configuration

MDISDigitalInstrument

ObjectType

TagId(O)

Enabled (O)

EnableDisable (O)

State

Fault

Warning(O)

MDISBaseObjectType

MDISDigitalOutObjectType

WriteState

FaultCode(O)

WarningCode(O)

Figure 12 - MDISDigitalInstrumentObjectType & MDISDigitalOutObjectType

5.4.3 MDISDigitalInstrumentObjectType Definition

Table 11 defines the structure of an MDISDigitalInstrumentObjectType. Any vendor specified
properties that have been implemented within a project should be documented within a similar
format and supplied to the DCS vendor. The addition of vendor specific properties will result in a
subtype of the MDISDigitalInstrumentObjectType .

MDIS OPC UA Companion Specification Release 1.2 Page 38 of 114

Table 11 - MDISDigitalInstrumentObjectType

Attribute Value

BrowseName MDISDigitalInstrumentObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISBaseObjectType (see section 5.1.1)

HasComponent Variable State Boolean BaseDataVariableType Mandatory R

HasSubtype MDISDigitalOutObjectType

State – The state of the instance of MDISDigitalInstrumentObjectType. This state is represented as a
Boolean, where true indicates on and false indicates off.

5.4.4 MDISDigitalOutObjectType

Table 12 defines the structure of an MDISDigitalOutObjectType. Any vendor specified properties that
have been implemented within a project should be documented within a similar f ormat and supplied
to the DCS Vendor. The addition of vendor specific properties will result in a subtype of the
MDISDigitalOutObjectType.

Table 12 - MDISDigitalOutObjectType

Attribute Value

BrowseName MDISDigitalOutObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISDigitalInstrumentObjectType

HasComponent Method WriteState See 5.4.5 Mandatory

WriteState – This Method allows a Client to change the value of State on an instance of
MDISDigitalOutObjectType. The Method will return any errors that occurred on setting the value. The
Client shall verify that the State actually changed to confirm the update.

5.4.5 WriteState Method

WriteState Method (defined in Table 13) is used to change the state of the State Variable in an
instance of the MDISDigitalOutObjectType. The WriteState operation applies to the object in the
subsea system. Some systems will be able to report any errors immediately others will only be able
to report that the operation was not refused. Clients are expected to monitor the State and ensure
that the operation completed. If an error occurs after the Method has returned, a Fault flag shall be
set and an appropriate FaultCode will be returned. The Fault (and FaultCode) will reset on the next
successful WriteState Method invocation.

Method Declaration

WriteState (

 [in] State Boolean

);

Table 13 – WriteState Method parameters

Argument Description

State Boolean indicator of the target state of the variable

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments

The WriteState Method will change the state of the State Variable. The Method will report if any error
occurs while writing the state of the Object. Table 14 specifies the AddressSpace representation for
the WriteState Method.

MDIS OPC UA Companion Specification Release 1.2 Page 39 of 114

Table 14 - WriteState Method AddressSpace Definition

Attribute Value

BrowseName State

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.5 MDISInstrumentObjectType

5.5.1 Introduction

The following section details the generic MDISInstrumentObjectType structure and defines the
properties associated with it. Additional sections define a subtype MDISInstrumentOutObjectType
that allows updates to the instrument value. This is in general a vendor and operator independent
description, but all users of the MDISInstrumentObjectType or MDISInstrumentOutObjectType can
add vendor specific data. The vendor specific data should be defined as part of a subtyp e of the
MDISInstrumentObjectType defined in this document. It is assumed that the subsea system is the
Server and host of the instance of the MDISInstrumentObjectType or
MDISInstrumentOutObjectType. The DCS based system is the Client in the system. It is assumed
that all interactions with the MDISInstrumentObjectType are initiated by the Client and are directed
to the Server.

5.5.2 Overview

The following section details the MDIS generic properties for the MDISInstrumentObjectType.
Implementation shall ensure adherence to Mandatory [M] aspects in order to comply with the MDIS
interface standardisation. Optional [O] may or may not be implemented within a project. Figure 13
provides an overview of the MDISInstrumentObjectType as defined by MDIS, including some nested
types. Figure 13 includes all of the items that are inherited from the MDISBaseObjectType.

MDIS OPC UA Companion Specification Release 1.2 Page 40 of 114

 Process Information

 Status Information

Configuration

MDISInstrument

ObjectType

HHlimit (O)

Llimit (O)

Hlimit (O)

ProcessVariable::

AnalogItemType

HHSetPoint (O)

HSetPoint (O)

LSetPoint (O)

LLSetPoint (O)

LLlimit (O)

 Status Information

Commands

Configuration

TagId(O)

Enabled (O)

EnableDisable (O)

Fault

Warning(O)

MDISBaseObjectType

FaultCode(O)

WarningCode(O)

Commands

WriteValue

MDISInstrumentOut

ObjectType

Figure 13 - MDISInstrumentObjectType & MDISInstrumentOutObjectType

5.5.3 MDISInstrumentObjectType Definition

Table 15 defines the structure of an MDISInstrumentObjectType. Any vendor specified properties
that have been implemented within a project should be documented within a similar format and
supplied to the DCS vendor. The addition of vendor specific properties will result in a subtype of the
MDISInstrumentObjectType. If a MDISInstrumentObjectType instance is disabled, the
MDISBaseObjectType defaults are followed and only the HHSetPoint,HSetpoint,LSetpoint and
LLSetpoint object values will be available

MDIS OPC UA Companion Specification Release 1.2 Page 41 of 114

Table 15 - MDISInstrumentObjectType

Attribute Value

BrowseName MDISInstrumentObjectType

IsAbstract False

References Node
Class

BrowseName DataTyp
e

TypeDefinition Modelling
Rule

RW

Subtype of the MDISBaseObjectType (defined in 5.1.1)

HasComponent Variable ProcessVariable Float AnalogItemType (see Part 8 – Data
Access)

Mandatory R

HasComponent Variable HHlimit Boolean BaseDataVariableType Optional R

HasComponent Variable Hlimit Boolean BaseDataVariableType Optional R

HasComponent Variable Llimit Boolean BaseDataVariableType Optional R

HasComponent Variable LLlimit Boolean BaseDataVariableType Optional R

HasProperty Variable HHSetPoint Float PropertyType Optional RW

HasProperty Variable HSetPoint Float PropertyType Optional RW

HasProperty Variable LSetPoint Float PropertyType Optional RW

HasProperty Variable LLSetPoint Float PropertyType Optional RW

ProcessVariable – a Variable in engineering units that represents the value of the instance of an
MDISInstrumentObjectType. It includes properties that represent the engineering units; the
engineering units range and optionally the instrument range, see Table 16 for an illustration, for
actual definition see AnalogItemType in OPC UA Part 8. Both the engineering units and engineering
units’ range are required.

 Table 16 – AnalogItemType definition

The EUInformation DataType is defined in Part 8 – Data Access

HHlimit – The instrument HH state is active

Hlimit – The instrument H state is active

Llimit – The instrument L state is active

LLlimit – The instrument LL state is active

HHSetPoint – Configuration of HHSetPoint which will set HHlimit be TRUE when the
ProcessVariable value is greater than “set point value”. If this limit Variable exists on an object, but
has not been configured, the HHSetPoint shall have a status code of Bad_ConfigurationError and
Clients shall ignore the value. When the HHSetPoint has a Status of Bad_configurationError, if the
HHlimit exists, it shall have a status code of Bad_ConfigurationError and the value is ignored.

HSetPoint – Configuration of HSetPoint which will set Hlimit be TRUE when the ProcessVariable
value is greater than “set point value”. If this limit Variable exists on an object, but has not been
configured, the HSetPoint shall have a status code of Bad_ConfigurationError and Clients shall
ignore the value. When the HSetPoint is ignored, if the Hlimit exists, it shall have a status code of
Bad_ConfigurationError and the value is ignored.

LSetPoint – Configuration of LSetPoint which will set Llimit be TRUE when the ProcessVariable
value is less than “set point value”. If this limit Variable exists on an object, but has not been
configured, the LSetPoint shall have a status code of Bad_ConfigurationError and Clients shall
ignore the value. When the LSetPoint is ignored, if the Llimit exists, it shall have a status code of
Bad_ConfigurationError and the value is ignored.

LLSetPoint – Configuration of LLSetPoint which will set LLlimit be TRUE when the ProcessVariable
value is less than “set point value”. If this limit Variable exists on an object, but has not been

Attribute Value

BrowseName AnalogItemType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InstrumentRange Range PropertyType Optional

HasProperty Variable EURange Range PropertyType Mandatory

HasProperty Variable EngineeringUnits EUInformation PropertyType Mandatory

MDIS OPC UA Companion Specification Release 1.2 Page 42 of 114

configured, the LLSetPoint shall have a status code of Bad_ConfigurationError and Clients shall
ignore the value. When the LLSetPoint is ignored, if the LLlimit exists, it shall have a status code of
Bad_ConfigurationError and the value is ignored.

5.5.4 MDISInstrumentOutObjectType Definition

Table 17 defines the structure of an MDISInstrumentOutObjectType. Any vendor specified properties
that have been implemented within a project should be documented within a similar format and
supplied to the DCS vendor. The addition of vendor specific properties will result in a subtype of the
MDISInstrumentOutObjectType.

Table 17 - MDISInstrumentOutObjectType

Attribute Value

BrowseName MDISInstrumentOutObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISInstrumentObjectType

HasComponent Method WriteValue See 5.5.5 Mandatory

WriteValue – This Method allows a Client to change the value of ProcessVariable on an instance of
the MDISInstrumentOutObjectType. The Method will return any errors that occurred on setting the
value. If the Instrument is disabled, an error Bad_InvalidState shall be returned. The Client shall
verify that the ProcessVariable actually changed to confirm the update.

5.5.5 Instrument WriteValue Method

Instrument WriteValue Method is used to change the value of the ProcessVariable in the
MDISInstrumentOutObjectType. The Instrument WriteValue Method operation applies to the object in
the subsea system. Some systems will be able to report any errors immediately others will only be
able to report that the operation was not refused. Clients are expected to monitor the
ProcessVariable and ensure that the operation completed successfully. If an error occurs after the
Method has returned, a Fault flag shall be set and an appropriate FaultCode will be returned. The
Fault (and FaultCode) will reset on the next successful Instrument WriteValue Method invocation.

Method Declaration

WriteValue (

 [in] Value Float

);

Table 18 – Instrument WriteValue Method parameters

Argument Description

Value Float value Variable, that indicates the target state of the Variable

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments

The WriteValue Method will change the value of the ProcessVariable Variable. The Method will
report if any error occurs while writing the value of the Object. Table 19 specifies the AddressSpace
representation for the WriteInstrumentValueMethod.

Table 19 – Instrument WriteValue Method AddressSpace Definition

Attribute Value

BrowseName Value

References Node Class BrowseName DataType TypeDefinition Modelling Rule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

MDIS OPC UA Companion Specification Release 1.2 Page 43 of 114

5.6 MDISChokeObjectType

5.6.1 Introduction

The following section details the generic MDISChokeObjectType structure and defines the properties
associated with it. This is in general a vendor and operator independent descrip tion, but all users of
the MDISChokeObjectType can add vendor specific data. The vendor specific data should be
defined as part of a subtype of the MDISChokeObjectType defined in this document. It is assumed
that the subsea system is the Server and host of the instance of the MDISChokeObjectType. The
DCS based system is the Client in the system. It is assumed that all interactions with the instance of
the MDISChokeObjectType are initiated by the Client and are directed to the Server.

5.6.2 Overview

The MDISChokeObjectType is a basic component of any subsea control system. Subsea and surface
trees have a choke valve and it is used for regulating the flow volume and with it the back pressure
of liquids or gas. This document will address the hydraulic choke valve found in subsea production
and water injection trees. Implementation shall ensure adherence to Mandatory [M] aspects in order
to comply with the MDIS interface standardisation. Optional [O] may or may not be implemented
within a project. Figure 14 provides an overview of the Choke Object as defined by MDIS. It includes
all items that are defined by the MDISBaseObjectType. It illustrates that an interlock might have one
or more Interlockvariables associated with it, or that they might not have an actual interlock
associated.

MDIS OPC UA Companion Specification Release 1.2 Page 44 of 114

Process Information

<Interlocks>

Commands

Configuration

MDISChoke

ObjectType

Status Information

CalculatedPosition

Moving

NonDefeatable

OpenInterlock (O)

Defeatable

OpenInterlock (O)

NonDefeatable

CloseInterlock (O)

Defeatable

CloseInterlock (O)

PositionInSteps (O)

Move

StepDuration

Open(O)

StepDuration

Close(O)

Step (O)

Abort

TotalSteps(O)

<InterlockVariable> (O) HasInterlock

SetCalculated

Position

 Status Information

Commands

Configuration

TagId(O)

Enabled (O)

EnableDisable (O)

Fault

Warning(O)

MDISBaseObjectType

FaultCode(O)

WarningCode(O)

<InterlockVariable> (O)

InterlockFor

InterlockFor

CommandRejected

(O)

Figure 14 - MDISChokeObjectType

5.6.3 MDISChokeObjectType Definition

Table 20 defines the structure of an MDISChokeObjectType. Any vendor specified properties that
have been implemented within a project should be documented within a similar f ormat and supplied
to the DCS vendor. The addition of vendor specific properties will result in a subtype of the
MDISChokeObjectType. When an MDISChokeObjectType Instance is disabled the
MDISBaseObjectType defaults are followed and only the StepDurationOpen, StepDurationClose and
TotalSteps values will be available.

MDIS OPC UA Companion Specification Release 1.2 Page 45 of 114

Table 20 - MDISChokeObjectType

Attribute Value

BrowseName MDISChokeObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISBaseObjectType

HasComponent Variable CalculatedPosition Float BaseDataVariableType Mandatory R

HasComponent Variable SetCalculatedPositionStat
us

SetCalculatedPosi
tionEnum

BaseDataVariableType Optional R

HasComponent Variable PositionInSteps Int16 BaseDataVariableType Optional R

HasComponent Variable Moving ChokeMoveEnum BaseDataVariableType Mandatory R

HasComponent Variable CommandRejected Boolean BaseDataVariableType Optional R

HasComponent Method Move See 5.6.4 Mandatory

HasComponent Method Step See 5.6.5 Optional

HasComponent Method Abort See 5.6.6 Mandatory

HasComponent Method SetCalculatedPosition See 5.6.7 Mandatory

HasComponent Variable NonDefeatableOpenInterl
ock

Boolean BaseDataVariableType Optional R

HasComponent Variable DefeatableOpenInterlock Boolean BaseDataVariableType Optional R

HasComponent Variable NonDefeatableCloseInterl
ock

Boolean BaseDataVariableType Optional R

HasComponent Variable DefeatableCloseInterlock Boolean BaseDataVariableType Optional R

HasProperty Variable StepDurationOpen Duration PropertyType Optional R

HasProperty Variable StepDurationClose Duration PropertyType Optional R

HasProperty Variable TotalSteps UInt16 PropertyType Optional R

HasInterlock Variable <InterlockPlaceholder> InterlockVariableType OptionalPlac
eholder

CalculatedPosition – A floating point number that represents the estimated percent open of the
choke. This value can be updated using the SetCalculatedPosition Method.

SetCalculatedPositionStatus – an enumeration that reflect the status of a SetCalculatedPosition
Command. This variable is present if the SetCalculatedPosition command can return
asynchronously.

PositionInSteps – An int16 that represents position in steps for the choke.

CommandRejected –– A flag that, if set to True, indicates that the choke has rejected the last
command issued to it. The command could be rejected for a number of reasons. Possible reasons
for rejecting a command include:

o Loss of subsea communication reported by the SPCS.
o An active interlock.
o The choke is in the disabled state

Enabled – This Boolean reflects if the choke is available for control. If it is disabled (FALSE) then the
choke will not act on any Move command, Step Command or SetCalculatedPosition Command and is
not available from a functional point of view. The choke will still report any status information.

Moving – An enumeration indicating the confirmed operation of the choke, (confirmed by SPCS
Vendor). Possible status for a choke is moving and stopped.

Move – This Method allows an operator to increase or decrease the size of the opening in the choke.
This command moves the choke to the percent value provided as part of the command.

Step – This Method allows an operator to increase or decrease the size of the opening in the choke.
This command moves the choke the number of steps provided as part of the command .

Abort – This Method allows an operator to cancel any currently active move or step command.

MDIS OPC UA Companion Specification Release 1.2 Page 46 of 114

SetCalculatedPosition – This Method is used to calibrate the CalculatedPosition. It can only be
called when the choke is not moving.

EnableDisable – The choke, when disabled, places a non-defeatable interlock set on Move and Step
functionality, in addition to the functionality described in the MDISBaseObjectType.

StepDurationOpen – SPCS open step duration period. This is the time in milliseconds for the choke
to open one step.

StepDurationClose – SPCS close step duration period. This is the time in milliseconds for the choke
to close one step.

TotalSteps – Total number of steps is the max steps of a choke.

<InterlockPlaceholder> – The number of interlock Variables will change based on the project and
even choke instance. The Variables shall be of InterlockVariableType or a subtype of it. They will be
referenced by a HasInterlock Reference and will contain an InterlockFor Reference. Clients can use
this information to categorise the interlocks appropriately.

The following Variables indicate that an interlock is set (TRUE) or is not set (FALSE). The Variable
shall be the target of an InterlockFor Reference from an instance of an InterlockVariableType that
describes the actual interlock.

NonDefeatableOpenInterlock – The open choke command is interlocked and cannot be overridden.

DefeatableOpenInterlock – The open choke command is interlocked and can be overridden.

NonDefeatableCloseInterlock – The close choke command is interlocked and cannot be overridden.

DefeatableCloseInterlock – The close choke command is interlocked and can be overridden.

5.6.4 Choke Move Method

Move Method is used to adjust the opening size in a choke.

Method Declaration:

Move(

 [in] Position Float,

 [in] OverrideInterlocks Boolean,

 [in] SEM SEMEnum

);

Table 21 – Choke Move Method Arguments

Argument Description

Position A number (in percent) indicating the percent open to be moved to when operated.

OverrideInterlocks Boolean indicating if the open or close command should override any defeatable interlocks

SEM The selection of which SEM to send the command to.

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments:

The Move Method initiates a move command. Parameters include the position value in percent,
overriding of any interlocks and the SEM selection to use for the command. After receiving the new
commanded position, the choke will start to move. The Method will complete when the command has
been accepted. The move operation may or may not have completed when the Method returns. The
Method returns errors only if the operation cannot be started. The Client must monitor the Moving
Variable to determine when the move operation actually finishes.

If a Server does not support an Override of defeatable interlocks, then this parameter will be ignored
by the Server. If any interlocks are active the appropriate error code is returned.

MDIS OPC UA Companion Specification Release 1.2 Page 47 of 114

If a Server does not support the selection of SEM, this parameter is ignored.

Table 22 specifies the AddressSpace representation for the ChokeMoveMethod.

Table 22 – Choke Move Method AddressSpace Definition

Attribute Value

BrowseName Move

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.6.5 Choke Step Method

Choke Step Method is used to adjust the opening size in a choke.

Method Signature:

Step(

 [in] Direction ChokeCommandEnum,

[in] Steps UInt16,

 [in] OverrideInterlocks Boolean,

 [in] SEM SEMEnum

);

Table 23 – Choke Step Method Arguments

Argument Description

Direction Enumeration to indicate if an open request or close request is being initiated

Steps The number of steps to either open or close the choke

OverrideInterlocks Boolean indicating if the open or close command should override any defeatable interlocks

SEM The selection of which SEM to send the command to.

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments

The choke Step Method initiates a move command. Parameters include the direction (open or close),
the number of steps to step, overriding of any interlocks and the SEM selection to use for the
command. After receiving the command, the choke will start to move. The Method will complete
when the command has been accepted. The move operation may or may not have completed when
the Method returns. The Method returns errors only if the operation cannot be started. The Client
must monitor the Moving Variable to determine when the Step command actually finishes.

If a Server does not support an override of defeatable interlocks, then the OverrideInterlocks
parameter will be ignored by the Server and if any interlocks are active the appropriate error code is
returned.

If a Server does not support the selection of SEM, the SEM parameter is ignored.

Table 24 specifies the AddressSpace representation for the ChokeStepMethod.

Table 24 – Choke Step Method AddressSpace Definition

Attribute Value

BrowseName Step

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.6.6 Choke Abort Method

Choke Abort Method is used to cancel any active move command in the Choke.

MDIS OPC UA Companion Specification Release 1.2 Page 48 of 114

Method Signature

Abort ();

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments

The choke Abort Method will try to cancel any active choke Move or Step commands. If no Move or
Step command is in progress, the command will be ignored and return successful. The Method will
complete when the command has been accepted. The abort operation may or may not have
completed when the Method returns. The Method returns errors only if the operation cannot be
started. The Client shall monitor the Moving and if provided the CommandRejected Variables to
determine if the abort was successful or failed. Table 25 specifies the AddressSpace representation
for the choke Abort Method.

Table 25 – Choke Abort Method AddressSpace Definition

Attribute Value

BrowseName Abort

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

5.6.7 Choke SetCalculatedPosition Method

SetCalculatedPosition Method is used to synchronise the CalculatedPosition to the actual choke
position.

Method Signature:

SetCalculatedPosition(

 [in] CalculatedPosition Float

);

Table 26 – Choke SetCalculatedPosition Method Arguments

Argument Description

CalculatedPosition A number (in percent)

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments:

The SetCalculatedPosition Method is used to set the CalculatedPosition. It can only be called when
the choke is not moving. The parameter is the calculated position. This method may return when the
CalculatedPosition has been updated or it may return a status of Completes_Asynchronously. If it
returns Completes_Asynchronously the Client will have to monitor the SetCalculatedPostionStatus to
determine if an error occurred or the command completed. The SetCalculatedPositionStatus will
reset on the next successful SetCalculatedPostion Method invocation.

Table 27 specifies the AddressSpace representation for the SetCalculatedPosition Method.

Table 27 – Choke SetCalculatedPosition Method AddressSpace Definition

Attribute Value

BrowseName SetCalculatedPosition

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.7 MDISValveObjectType

5.7.1 Introduction

MDIS OPC UA Companion Specification Release 1.2 Page 49 of 114

The following section details the generic MDISValveObjectType structure and defines the properties
associated with it. This is in general a vendor and operator independent description, but all users of
this MDISValveObjectType can add vendor specific data. The vendor specific data should be defined
as part of a subtype of the MDISValveObjectType defined in this document. It is required that the
subsea system is the Server and host of the valve Object. The DCS based system is the Client in the
system. It is required that all interaction with the valve Object is initiated by the Client and is directed
to the Server.

5.7.2 Overview

The valve Object is a basic component of any subsea control system. Subsea and surface trees
have a large variety of valve configurations and combinations of manual and / or actuated (hydraulic
or pneumatic) valves. Implementation shall ensure adherence to Mandatory [M] aspects in order to
comply with the MDIS interface standardisation. Optional [O] may or may not be implemented within
a project. Figure 15 provides an overview of the MDISValveObjectType as defined by MDIS. The
figure includes all items inherited from the MDISBaseObjectType. It illustrates that an interlock might
have one or more Interlockvariables associated with it, or that they might not have an actual
interlock associated.

MDIS OPC UA Companion Specification Release 1.2 Page 50 of 114

Valve Signatures (Profiles)
Process Information

<Interlocks>

 Status

Commands

Configuration

MDISValve

ObjectType

LastCommand (O)

NonDefeatable

OpenInterlock (O)

Defeatable

OpenInterlock (O)

NonDefeatable

CloseInterlock (O)

Defeatable

CloseInterlock (O)

 SignatureRequest

Status (O)

OpenTimeDuration

(O)

CloseTime

Duration (O)

Position

CommandRejected

(O)

Move

InterlockVariableType::

<InterlockPlaceholder>

 Status Information

Commands

Enabled (O)

EnableDisable (O)

Fault

Warning(O)

MDISBaseObjectType

FaultCode(O)

WarningCode(O)

InterlockVariableType::

<InterlockPlaceholder>InterlockFor

H
a
s
In

te
rlo

c
k

InterlockFor

Configuration

TagId(O)

FileType::

<ValveSignature>FileType::

<ValveSignature>
Has

Signature

Figure 15 - Valve Object Overview

5.7.3 MDISValveObjectType Definition

Table 28 details the generic properties for the MDISValveObjectType. Any vendor specified
properties that have been implemented within a project should be documented within a similar
format and supplied to the DCS vendor. The addition of vendor specific properties will resu lt in a
subtype of the MDISValveObjectType. When an MDISValveObjectType Instance is disabled the
MDISBaseObjectType defaults are followed and only the OpenTimeDuration and CloseTimeDuration
values will be available.

MDIS OPC UA Companion Specification Release 1.2 Page 51 of 114

Table 28 - MDISValveObjectType

Attribute Value

BrowseName MDISValveObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the MDISBaseObjectType

HasComponent Variable Position ValvePositionEnum BaseDataVariableType Mandatory R

HasComponent Variable CommandRejected Boolean BaseDataVariableType Optional R

HasComponent Variable SignatureRequestStatus SignatureStatusEnum BaseDataVariableType Optional R

HasComponent Variable LastCommand CommandEnum BaseDataVariableType Optional R

HasComponent Variable NonDefeatableOpenInterlo
ck

Boolean BaseDataVariableType Optional R

HasComponent Variable DefeatableOpenInterlock Boolean BaseDataVariableType Optional R

HasComponent Variable NonDefeatableCloseInterlo
ck

Boolean BaseDataVariableType Optional R

HasComponent Variable DefeatableCloseInterlock Boolean BaseDataVariableType Optional R

HasComponent Method Move See 5.7.4 Mandatory

HasInterlock Variable <InterlockPlaceholder> InterlockVariableType OptionalPl
aceholder

R

HasProperty Variable OpenTimeDuration Duration PropertyType Optional R

HasProperty Variable CloseTimeDuration Duration PropertyType Optional R

HasSignature Object <ValveSignature> FileType Optional

The following items describe status information from the valve:

• SignatureRequestStatus – The collection of data required for a valve s ignature may take
some time after the completion of a Move command. The SignatureRequestStatus Variable
indicates the status of the current signature request (see 7.1.4 for a description of the
possible enumerations).

• LastCommand – The enumeration reflects the last command sent to the equipment by the
SPCS (see 7.1.5 for a description of the possible enumerations).

• Enabled – This Boolean reflects if the valve is available for control. If it is disabled (FALSE)
than the valve will not act on any Move command and is not available from a functional point
of view. The valve will still report any status information (CommandRejected). One of the
cases for a disabled valve is when the valve is placed out of service.

• Position – This enumeration provides information about the current position of the valve (see
section 7.1.7 for additional details).

• CommandRejected – A flag that, if set to True, indicates that the valve has rejected the last
command issued to it. The command could be rejected for a number of reasons. Possible
reasons for rejecting a command include:

o Loss of subsea communication reported by the SPCS.
o An active interlock.
o The valve is in the disabled state.

For any of the following Variables, if they are true, there shall be at least one instance of an
InterlockVariableType that describes the active interlock.

• NonDefeatableOpenInterlock – The open valve command is interlocked and cannot be
overridden.

• DefeatableOpenInterlock – The open valve command is interlocked and can be overridden.

• NonDefeatableCloseInterlock – The close valve command is interlocked and cannot be
overridden.

• DefeatableCloseInterlock – The close valve command is interlocked and can be overridden.

MDIS OPC UA Companion Specification Release 1.2 Page 52 of 114

The following items are related to valve control: These items allow information to flow from the DCS
to the SPCS. All commands from the DCS to SPCS may require access controls to ensure that only
appropriate personnel initiate them.

• Move – This Method causes the valve to open or close (see 5.7.4 for additional details).

<InterlockPlaceholder> –The number of interlock Variables will change based on the project and
even valve instance. The Variables shall be of InterlockVariableType or a subtype of it. The interlock
contains an InterlockFor Reference to one of the previously described flags. Clients can use this
information to categorise the interlocks appropriately. Figure 16 provides an example of how this
interlock Variable is used and could be deployed.

Defeatable

OpenInterlock

NonDefeatable

OpenInterlock

Defeatable

CloseInterlock

NonDefeatable

CloseInterlock
InterlockVariableType::

PressureWarning

Myvalve1

InterlockFor

InterlockVariableType::

CIT2andPSDVOpen

InterlockVariableType::

ROVLockOut

InterlockFor

InterlockFor

InterlockVariableType::

PWVandAMVOpen InterlockFor

InterlockFor

HasInterlock

InterlockFor

Myvalve2 Myvalve3

NonDefeatable

CloseInterlock

NonDefeatable

OpenInterlock

InterlockVariableType::

LpSupplyLow

InterlockFor

HasInterlock

MyWell

HasInterlock

Figure 16 - Interlock example

Note: in OPC UA it is allowed to have a Node which is the target of multiple HasComponent
References, this allows a single interlock to be shared between multiple Objects; such as a low
pressure interlock that maybe shared by all of the valves and chokes in a system.

The following items describe configuration related items:

• OpenTimeDuration – Estimated max time to travel to open position, used for DCS systems to
indicate a move fail condition if time is exceeded. Time is provided in milliseconds. The
OpenTimeDuration can be used for any kind of valve (hydraulic, electric, etc.) . [Note: this

MDIS OPC UA Companion Specification Release 1.2 Page 53 of 114

time is an estimate and Clients may need to allow for additional delays in transmitting and
receiving any move commands].

• CloseTimeDuration - Estimated max time to travel to close position, used for DCS systems to
indicate a move fail condition if time is exceeded. Time is provided in milliseconds. The
CloseTimeDuration can be used for any kind of valve (hydraulic, electric, etc.) [Note: this
time is an estimate and Clients may need to allow for additional delays in transmitting and
receiving any Move commands].

• <ValveSignature> - The reference shall point to an instance of FileType, where the file
contains valve signature information. The name of this object is project or vendor specific,
but it should be related to the name of the instance of the ValveObjectType. The name shall
include a timestamp. The FileType ObjectType (defined in Part 5 – Information Model)
includes two properties (illustrated below), for all MDIS instances both of these properties
shall have the value False. For additional detail see 5.10.3.

HasProperty Variable Writable Boolean PropertyType Mandatory

HasProperty Variable UserWritable Boolean PropertyType Mandatory

Vendor specific subtypes of this object type are allowed. They may add additional vendor specific
information or may change some Optional items to Mandatory.

5.7.4 Move Method

Move Method is used to open or close a valve.

Method Declaration:

Move(

 [in] Direction CommandEnum,

 [in] OverrideInterlocks Boolean,

 [in] SEM SEMEnum,

[in] Signature Boolean,

[in] ShutdownRequest Boolean

);

Table 29 - Move Arguments

Argument Description

Direction The enumeration indicates whether the command is to open the valve or to close the valve

OverrideInterlocks Boolean indicating if the open or close command should override any defeatable interlocks

SEM The enumeration indicates which SEM to send the command to.

Signature Boolean indicating if a profile /signature should be generated by this move command
request. If the optional Variable SignatureRequestStatus is not provided on the Object, this
parameter is ignored by the Server.

ShutdownRequest Boolean indicates that this command is part of a shutdown sequence.

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments:

The Move Method initiates a move operation. Parameters include opening or closing of the valve,
overriding of any interlocks, the SEM selection to use for the command, if a profile / signature is
being requested for this move operation or if a shutdown is being requested. The Method will
complete when the command has been accepted. If the command has not been accepted by the
Server, then the Method returns an error indicating the operation could not be performed. In the case
when the Move command is accepted by the Server, the move operation may or may not be
complete at the time the Method returns to the Client. Therefore, the Client must monitor the
Position of the valve to determine when the Move command actually finishes.

The OverrideInterlocks, SEM, Signature and Shutdown are optional parameters, but OPC UA
Methods do not allow for optional parameters. These parameters must always be provided. On a
Server basis the parameter may be configured to not be utilised. If a Server is configured to not
utilise a parameter, this is because the functionality is not required.

MDIS OPC UA Companion Specification Release 1.2 Page 54 of 114

Table 30 specifies the AddressSpace representation for the Move Method.

Table 30 - Move Method AddressSpace Definition

Attribute Value

BrowseName Move

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

5.8 MDISAggregateObjectType

5.8.1 Overview

The following tables detail the generic properties for the MDISAggregateObjectType; implementation
shall ensure adherence to Mandatory [M] aspects to comply with the MDIS interface standardisation.
Optional [O] may or may not be implemented within a project . Figure 17 provides an overview of the
MDISAggregateObjectType as defined by MDIS. This Object is intended to be the base object for all
aggregate ObjectTypes. See section 9.5 for additional details on data aggregation.

MDIS OPC UA Companion Specification Release 1.2 Page 55 of 114

Sample Aggregate

 Status Information

Commands

Configuration

MDISAggregateObjectType

TagId(O)

Enabled (O)

EnableDisable (O)

Fault

Warning(O)

MDISBaseObjectType

MPFMObjectType

FaultCode(O)

WarningCode(O)

<InstrumentPlaceholder>::

MDISInstrumentObjectType

<DigitalPlaceholder>::

MDISDigitalInstrumentObjectType

<DiscretePlaceholder>::

MDISDiscreteInstrumentObjectType

<InstrumentOutPlaceholder>::

MDISInstrumentOutObjectType

<DigitalOutPlaceholder>::

MDISDigitalOutObjectType

<DiscreteOutPlaceholder>::

MDISDiscreteOutObjectType

<ValvePlaceholder>::

MDISValveObjectType

<ChokePlaceholder>::

MDISChokeObjectType

GasFlow::

MDISInstrumentObjectType

WaterFlow::

MDISInstrumentObjectType

OilFlow::

MDISInstrumentObjectType

<InterlockPlaceholder>::

InterlockVariableType

Figure 17 – MDISAggregateObjectType

5.8.2 MDISAggregateObjectType Definition

Table 31 defines the structure of an MDISAggregateObjectType. The MDISAggregateObjectType is
a subtype of MDISBaseObjectType and requires that all subtypes include, as a minimum, the Fault
information. All other components are Optional and only components that are required by the
aggregate are needed.

MDIS OPC UA Companion Specification Release 1.2 Page 56 of 114

Table 31 – MDISAggregateObjectType

Attribute Value

BrowseName MDISAggregateObjectType

IsAbstract True

References Node
Class

BrowseName Data
Type

TypeDefinition Modelling
Rule

RW

Subtype of the MDISBaseObjectType defined in section 5.1.1

HasComponent Object <InstrumentPlaceholder> MDISInstrumentObjectType Optional
Placeholder

HasComponent Object <InstrumentOutPlaceholder> MDISInstrumentOutObjectType Optional
Placeholder

HasComponent Object <DigitalInstrumentPlaceholder> MDISDigitalInstrumentObjectType Optional
Placeholder

HasComponent Object <DiscreteInstrumentPlaceholder> MDISDiscreteInstrumentObjectType Optional
Placeholder

HasComponent Object <DigitalOutPlaceholder> MDISDigitalOutObjectType Optional
Placeholder

HasComponent Object <DiscreteOutPlaceholder> MDISDiscreteOutObjectType Optional
Placeholder

HasComponent Object <ValvePlaceholder> MDISValveObjectType Optional
Placeholder

HasComponent Object <ChokePlaceholder> MDISChokeObjectType Optional
Placeholder

HasComponent Variable <InterlockPlaceholder> InterlockVariableType Optional
Placeholder

The MDISAggregateObjectType is an abstract ObjectType; instances of this ObjectType cannot be
created. Object instances can only be created of subtypes of this ObjectType. In OPC UA it is legal
to add additional Object or Variable Reference(s) to an instance of an Object, (i.e. add Variable or
Object to an instance that are not defined in the type), but in MDIS we are restricting this in that a
Client is not required to process or handle any Objects or Variables that are not part of a type.

The subtypes of MDISAggregateObjectType are allowed to include other subtypes of
MDISAggregateObjectType. For example, a Well that is defined as a subtype of
MDISAggregateObjectType might include an MPFMAggregateObjectType which is also a subtype of
MDISAggregateObjectType.

<InstrumentPlaceholder> denotes that a subtype of this ObjectType may define any number of
Objects of this type as part of a subtype. Each object instance shall have a unique BrowseName and
must be of MDISInstrumentObjectType.

<InstrumentOutPlaceholder> denotes that a subtype of this ObjectType may define any number of
Objects of this type as part of a subtype. Each object instance shall have a unique BrowseName and
must be of MDISInstrumentOutObjectType.

<DigitalInstrumentPlaceholder> denotes that a subtype of this ObjectType may define any number of
Objects of this type as part of a subtype. Each object instance shall have a unique BrowseName and
must be of MDISDigitalInstrumentObjectType.

<DiscreteInstrumentPlaceholder> denotes that a subtype of this ObjectType may define any number
of Objects of this type as part of a subtype. Each object instance shall have a unique BrowseName
and must be of MDISDiscreteInstrumentObjectType.

<DigitalOutPlaceholder> denotes that a subtype of this ObjectType may define any number of
Objects of this type as part of a subtype. Each object instance shall have a unique BrowseName and
must be of MDISDigitalOutObjectType.

<DiscreteOutPlaceholder> denotes that a subtype of this ObjectType may define any number of
Objects of this type as part of a sub type. Each object instance shall have a unique BrowseName
and must be of MDISDiscreteOutObjectType.

<ValvePlaceholder> denotes that a subtype of this ObjectType may define any number of Objects of
this type as part of a subtype. Each object instance shall have a unique BrowseName and must be of
MDISValveObjectType .

MDIS OPC UA Companion Specification Release 1.2 Page 57 of 114

<ChokePlaceholder> denotes that a subtype of this ObjectType may define any number of Objects of
this type as part of a subtype. Each object instance shall have a unique BrowseName and must be of
MDISChokeObjectType.

<InterlockPlaceholder> denotes that a subtype of this VariableType may define any number of
Variables of this type as part of a subtype. Each Variable instance shall have a unique BrowseName
and must be of InterlockVariableType.

5.9 MDISTimeSyncObjectType

5.9.1 Introduction

In some systems, a MDIS Server might be on an isolated network, one in which there is no NTP or
other source of time synchronization signals. In these systems, the MDIS Server would need to be
able to obtain a minimum time synchronization signal from the Client. This ObjectType and
associated method is designed to allow this minimum time synchronization. It should only be used i f
a better time synchronization system, such as NTP, is not available. The accuracy of this type of
time synchronization could be in the range of seconds.

If this Object is supported, a single instance of this Object shall exist on a Server. The Object shall
have a name TimeSynchronization and the instance shall exist as part of the
MDISInformationObject.

5.9.2 Overview

The following section details the MDISTimeSyncObjectType. This optional type allows a Client to
provide time synchronization information to a Server. The Client can call the SetTime Method
periodically to ensure the Server time does not drift. This Method does not return until the time on
the Server has been updated or an error is returned.

Commands

SetTime

MDISTimeSyncObjectType

BaseObjectType

Figure 18 - MDISTimeSyncObjectType

5.9.3 MDISTimeSyncObjectType Definition

Table 32 defines the structure of an MDISTimeSyncObjectType.

The current time on the Server is available as part of the ServerStatus provided by all OPC UA
Servers.

MDIS OPC UA Companion Specification Release 1.2 Page 58 of 114

Table 32 - MDISTimeSyncObjectType

Attribute Value

BrowseName MDISTimeSyncObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

R
W

Subtype of the BaseObjectType

HasComponent Method SetTime SetTime Method is defined in 5.9.4 Mandatory

SetTime – This method allows a Client to set time on the Server.

5.9.4 SetTime Method

SetTime Method (defined in Table 33) is used to set the time on the Server. If an error occurs this
Method shall return an error code indicating the failure to set the time (see Table 35).

Method Declaration

SetTime (

 [in] TargetTime UtcTime

);

Table 33 - SetTime Method parameters

Method result codes are defined as part of the Call Service (see OPC UA Services Part 4 – Services
specification). They are described in Table 93 for ease of reference.

Comments

The SetTime Method will change the time on the Server. Table 10 specifies the AddressSpace
representation for the SetTime Method.

Table 34 - SetTime Method AddressSpace Definition

Table 35 – SetTime Result Codes

Symbolic Id Description

Bad_InvalidTimestamp The timestamp is outside the range allowed by the Server or an error occurred setting the
Server time.

 .

5.10 MDISInformationObjectType

5.10.1 Introduction

MDIS defines flags, general status information and other optional data collections that need to exist
in a standard manner on MDIS Servers to allow for easier interoperation between Clients and
Servers. This information is provided via the MDISInformationObjectType.

Argument Description

TargetTime The UTC Time that the Server shall use to update its internal clock.

Attribute Value

BrowseName SetTime

References Node
Class

BrowseName DataType TypeDefinition Modelling Rule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

MDIS OPC UA Companion Specification Release 1.2 Page 59 of 114

5.10.2 Overview

The following section details the MDISInformationObjectType. This ObjectType defines a standard
structure for organization of some basic Server information. An instance of this object is required for
all versions of MDIS Servers 1.2 and greater. An instance of this ObjectType shall exist under the
Objects folder on all OPC UA MDIS Servers. Clients are required to be able to handle Servers which
do not contain this object. The Client shall assume any Server that does not contain an instance of
this ObjectType is a version 1.1 or 1.0 MDIS Server.

Components

 Properties

MDISVersion

MDISInformationObjectType

BaseObjectType

Objects

Server

MDISInformation

 Valve Signatures

Signatures

::FolderType

TimeSynchronization

::MDISTimeSyncObjectType

Figure 19 - MDISInformationObjectType

5.10.3 MDISInformationObjectType Definition

Table 7 defines the structure of an MDISInformationObjectType.

Table 36 – MDISInformationObjectType

Attribute Value

BrowseName MDISInformationObjectType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

R
W

Subtype of the BaseObjectType (see Part 5 – Information Model)

HasComponent Object TimeSynchronization MDISTimeSyncObjectType Optional

HasComponent Object Signatures FolderType Optional

HasComponent Variable MDISVersion MDISVersionData
Type

MDISVersionVariableType Mandatory R

TimeSynchronization – this is an instance of the MDISTimeSynchronizationType object, that allows a
Client to provide time information to a Server if required. See 5.1.11 for additional details.

Signatures is a folder that contains all of the currently available signatures (profiles). The individual
signature(s) are stored as FileObjects and the format of the file(s) is vendor specific.

MDIS OPC UA Companion Specification Release 1.2 Page 60 of 114

MDISVersion provides information about the version of the MDIS specification that is implemented
by the Server. This is provided to assist the Client in determining what should be available and can
also be used for automated testing of the Server.

MDIS OPC UA Companion Specification Release 1.2 Page 61 of 114

6 MDIS VariableTypes

6.1 InterlockVariableType Definition

This VariableType is a Boolean indicating if the interlock is active. The instance of a Variable of
InterlockVariableType shall have a descriptive name (display name) and include a description . The
description shall describe the type of interlock. On a project basis an optional summary that details
active interlocks may be implemented to support understanding of the open / close interlock status
within the Object. For a given instance of an Object, any number of referenced interlocks may exist,
where each instance would represent a specific interlock. The number of interlocks is determined at
configuration time of the Object and could be different for each Object in a given well. Each interlock
variable shall contain an InterlockFor reference to at least one of the following:

• NonDefeatableOpenInterlock,

• DefeatableOpenInterlock ,

• NonDefeatableCloseInterlock,

• DefeatableCloseInterlock .

A given instance of an InterlockVariableType might be referenced by more than one valve Object or
choke Object, but for all objects that reference a given instance of an InterlockVariableType there
must be at least one InterlockFor reference.

Table 37 - InterlockVariableType

Attribute Value

BrowseName InterlockVariableType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType Boolean

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the BaseDataVariableType defined in OPC UA Part 5

6.2 MDISVersionVariableType Definition

This VariableType defines a standard representation of the version information that is related the
MDIS Specification.

Table 38 - MDISVersionVariableType

Attribute Value

BrowseName MDISVersionVariableType

IsAbstract False

ValueRank -1 (-1 = Scalar)

DataType MDISVersionDataType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the BaseDataVariableType defined in OPC UA Part 5

HasProperty Variable MajorVersion Byte BaseDataVariableType Mandatory R

HasProperty Variable MinorVersion Byte BaseDataVariableType Mandatory R

HasProperty Variable Build Byte BaseDataVariableType Mandatory R

MajorVersion number is the major version of the MDIS OPC UA companion specification. For example for
version 1.2 of the MDIS Specification this will be a 1.

MinorVersion number is the minor version of the MDIS OPC UA companion specification. For example, for
version 1.2 of the MDIS Specification this will be a 2.

Build number is additional version information that can be associated with minor updates, patches that could
be provided by the MDIS organization related to the MDIS Information model NodeSet file. Typically, this will
be 0.

MDIS OPC UA Companion Specification Release 1.2 Page 62 of 114

7 MDIS DataTypes

7.1 Enumerations

7.1.1 ChokeMoveEnum

Table 39 defines the valid states for the ChokeMoveEnum.

Table 39 - ChokeMoveEnum

Name Description

Moving_1 The choke is currently moving (in progress)

Stopped_2 The move has stopped

7.1.2 ChokeCommandEnum

Table 40 defines the valid states for the ChokeCommandEnum.

Table 40 - ChokeCommandEnum

Name Description

Close_1 The command to the Choke is Close

Open_2 The command to the Choke is Open

7.1.3 SetCalculatedPositionEnum

Table 40 defines the valid states for the SetCalculatedPositionEnum.

Table 41 - SetCalculatedPositionEnum

Name Description

Initial_0 no command(initial state)

Inprogress_1 command in progress

Complete_2 command completed

Fault_4 command fault

7.1.4 SignatureStatusEnum

Table 42 defines the valid states for the SignatureStatusEnum.

Table 42 - SignatureStatusEnum

Name Description

NotAvailable_1 The profile / signature is not available (in progress)

Completed_2 The profile / signature request has completed

Failed_4 The profile / signature request has failed

Retrieval of a signature is outside of the scope of this interface. A NotAvailable_1 indicates that the
current profile / signature request is not available.

7.1.5 CommandEnum

Table 43 defines the valid states for the CommandEnum. This might not be the actual state of the
valve, it is just the last command sent to the valve.

Table 43 - CommandEnum

Name Description

Close_1 The last command to the valve was Close

Open_2 The last command to the valve was Open

None_4 No known command has been sent to the valve. The initial setting on start-up of a server.

7.1.6 SEMEnum

Table 44 defines the valid states for the SEMEnum.

MDIS OPC UA Companion Specification Release 1.2 Page 63 of 114

Table 44 - SEMEnum

Name Description

SEM_A_1 Valve move command selection SEM A

SEM_B_2 Valve move command selection SEM B

Auto_4
Subsea equipment vendor decides how to send the command. In some cases, this would be
both SEMs, in others it would mean a subsea system’s choice of a SEM.

7.1.7 ValvePositionEnum

Table 45 defines the valid states for the ValvePositionEnum.

Table 45 - ValvePositionEnum

Name Description

Close_1 The Valve is Closed

Open_2 The Valve is Open

Moving_4 The Valve is Moving

Unknown_8
The Valve is in an unknown state. This value can be used when a subsea vendor does not
have any last command information and does not know the state of the valve.

7.2 Structures

7.2.1 MDISVersionDataType

The MDISVersionDataType provides a single structure that provides all of the version information for the
Server. There is a corresponding variable structure that provides each of the elements.

This VariableType is defined in 6.2.

Table 46 – MDISVersionDataType Structure

Name Type Description

MDISVersionDataType Structure Information that describes MDIS Specification version.

 MajorVersion Byte The Major Version number from the specification

 MinorVersion Byte The minor version number from the specification

 Build Byte The BuildNumber associated – typically always 0

MDIS OPC UA Companion Specification Release 1.2 Page 64 of 114

8 MDIS ReferenceTypes

8.1 HasInterlock ReferenceType

The HasInterlock ReferenceType is a concrete ReferenceType that can be used directly. It is a
subtype of the HasComponent ReferenceType.

The semantic is a part-of relationship. Figure 16 provides an illustration of how this ReferenceType
is used. Multiple SourceNodes can reference the same TargetNode and a SourceNode can
reference multiple TargetNodes.

Like all other ReferenceTypes, this ReferenceType does not specify anything about the ownership of
the parts, although it represents a part-of relationship semantic. That is, it is not specified if the
TargetNode of a Reference of the HasInterlock ReferenceType is deleted when the SourceNode is
deleted.

The TargetNode of this ReferenceType shall be the InterlockVariableType or a Variable of
InterlockVariableType or a subtype of InterlockVariableType.

The SourceNode shall be an instance of MDISChokeObjectType or MDISValveObjectType or a
subtype of MDISAggregateObjectType that is being used for aggregation or one of these
ObjectTypes.

Table 47 - HasInterlock Reference

Attributes Value

BrowseName HasInterlock

InverseName InterlockOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

8.2 InterlockFor

The InterlockFor ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of NonHierarchicalReferences. The inverse reference shall also exist for all uses of this
ReferenceType.

The semantic of this ReferenceType is to relate InterlockVariableType Nodes to the Variable Node
that represents an interlock flag.

The SourceNode of this ReferenceType shall be an instance of InterlockVariableType.

The TargetNode of this ReferenceType shall be a Variable that is one of
NonDefeatableOpenInterlock, DefeatableOpenInterlock, NonDefeatableCloseInterlock or
DefeatableCloseInterlock. The Variable shall be part of an MDISValveObjectType or
MDISChokeObjectType or MDISAggregateObjectType, a subtype of one of these types or an
instance of one of these types.

Table 48 - InterlockFor Reference

Attributes Value

BrowseName InterlockFor

InverseName HasInterlockInformation

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

8.3 HasSignature ReferenceType

The HasSignature ReferenceType is a concrete ReferenceType that can be used directly. It is a
subtype of the HasComponent ReferenceType.

The semantic is a part-of relationship. Figure 20 provides an illustration of how this ReferenceType
is used. A TargetNode can be referenced by a single SourceNode and a SourceNode can reference
multiple TargetNodes.

MDIS OPC UA Companion Specification Release 1.2 Page 65 of 114

Like all other ReferenceTypes, this ReferenceType does not specify anything about the ownership of
the parts, although it represents a part-of relationship semantic. That is, it is not specified if the
TargetNode of a Reference of the HasSignature ReferenceType is deleted when the SourceNode is
deleted.

The TargetNode of this ReferenceType shall be an instance of FileType. The FileType instance shall
contain valve signature information.

The SourceNode shall be an instance of MDISValveObjectType or a subtype of
MDISValveObjectType. It might also be a MDISChokeObjectType or any other MDIS ObjectType
that might need to report a signature.

Table 49 - HasSignature Reference

Attributes Value

BrowseName HasSignature

InverseName SignatureOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

MDIS OPC UA Companion Specification Release 1.2 Page 66 of 114

9 MDIS AddressSpace Information

9.1 Introduction

This section defines information related to Instance Objects, value handling, UANodeSet, and
customised Objects

9.2 Instance AddressSpace

An MDIS Server shall include an instance of the MDISInformationObjectType under the Objects folder.

H
a
s
S

ig
n
a

tu
re

MDISTimeSyncObjectType

Server

FileType

MDISInformation

TimeSync

ValveSignatures

::FolderType

Tree1-Valve1-

20180301:10:10:10

Tree1-Valve2-

20180301:12:35:58

Tree1-Valve3-

20180301:15:23:30

Objects::FolderType

Tree1

Valve1

Valve2

Valve3

MDISInformationObjectType

H
a
s
S

ig
n
a

tu
re

H
a
s
S

ig
n
a

tu
re

H
a
s
S

ig
n
a

tu
re

Tree1-Valve3-

20180301:18:30:10

Tree2

Valve1

Valve2

Valve3

Tree2-Valve2-

20180301:12:35:58

Tree2-Valve3-

20180301:15:23:30

H
a
s
S

ig
n
a

tu
re

H
a
s
S

ig
n
a

tu
re

Figure 20 - MDIS Instance illustration

Any other structure under in the MDIS Server is vendor or project specific. Figure 20 provides an illustration of
one possible instance structure, it is not the only available structure. Several of the items are optional and
might not appear. The valve signature objects illustrate that valves might include multiple signature for a given
valve, no signatures for a given valve and that the single folder might contain signature from multiple trees.
The naming use is project / vendor specific but might have to handle all of these cases. Signatures might also
exist for other objects such as chokes.

The MDISInformation node is formally defined in Table 50.

MDIS OPC UA Companion Specification Release 1.2 Page 67 of 114

Table 50 – MDISInformation definition

Attribute Value

BrowseName MDISInformation

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in Part 5 – Information Model

HasTypeDefinition ObjectType BaseObjectType

9.3 Value reporting

Data overflow at the SPCS shall be detected by the Client. This shall be performed through the use
of a queue size greater than 1 on subscriptions and monitoring of the overfl ow bit in all received
values. If an overflow occurs the Client shall generate some notification, but the exact notification is
Client vendor specific.

9.4 UANodeSet Development

In OPC UA an AddressSpace is separated into Namespaces, where each Namespace defines the
owner of the address space contained in it. The MDIS Namespace shall not be modified in any
manner, it is owned by MDIS. Any implementation (custom types / instances) shall be in a separate
Namespace from the MDIS Namespace.

Any custom types or subtypes of the standard MDIS Types, as defined in Section 9.5.2 should be
separated from instances via Namespaces. This enables custom types to be shared across DCS
vendors and SPCS vendors during early phases of project development and allows the DCS vendors
to begin implementation of the custom types within the DCS software. It also allows reuse of types
between projects.

When UANodeSet files are passed from the SPCS vendors to the DCS vendors, the whole address
space is to be exchanged (i.e. the exchanged UANodeSet files shall include the MDIS Namespace
and any custom Namespaces). A Namespace can be in a single UANodeSet file and multiple files
are provided or the entire address space can be in a single UANodeSet file. Having all Namespaces
shall enable the DCS vendors to understand any forward References as forward References can
create ambiguity within developed UANodeSet files.

The length of the namespace URLs used for defining Namespaces should be less than 128
characters. This is to enable smaller devices like controllers to be able to store Namespaces.
NamespaceUri usually reference back to the company that is the owner of the Namespace.

The NodeIds should be integers. If using strings, the length of the NodeIds shall be less than 32
characters. This shall enable smaller devices like controllers to process NodeIds efficiently.

NodeIds shall be fixed. When a Server restarts NodeIds shall not be changed. NodeIds should not
be reused on a project. Any change in NodeIds shall require Clients to reconfigure the connection
based on new generated UANodeSet files. Once a Nodeset file is delivered to a DCS vendor from
the SPCS vendor the NodeIds in the file are fixed. Future NodeSet files might add or delete nodes.
But in any future Nodeset file shall not change the Nodeid of any Objects that have been delivered in
the prior NodeSet file.

For custom types the instance hierarchy shall be represented via HasComponent (standard OPC UA
Reference) or a custom ReferenceType that has been subtyped from HasComponent or Organizes
References only.

9.5 Object Development

9.5.1 Introduction

This section provides guidance on creation of modified and composite objects for use in compliance
with MDIS standards. Standard MDIS Objects defined in Section 5 shall be used wherever possible.
In the event that standard Objects cannot represent a given subsea component or piece of
equipment, a new Object shall be developed by collection, aggregation or extension of existing
Objects. Use of collection, aggregation or extension to model subsea equipment is dependent on
vendor implementations.

MDIS OPC UA Companion Specification Release 1.2 Page 68 of 114

9.5.2 Object Collection, Aggregation and Extension Definition

Object collection shall be implemented using folders or Objects derived from
MDISAggregateObjectType and should be used to group components or equipment that are
physically grouped together in a common structure. Several examples of where object collection
could be utilised would include modelling Subsea Electronics Modules, Electronic Power Units and
Wells.

Object aggregation shall be implemented by creating a new type or subtype and should be used to
group relevant objects to represent a complex piece of equipment that cannot be repres ented by a
single MDIS Object. Specific examples of where Object aggregation could be used include modelling
Multiphase Flow Meters (MPFMs) or Chemical Injection Metering Valves (CIMVs). Aggregated
Objects have specific rules, defined below, to allow Clients to be able to discover them and easily
support them.

Object extension shall be implemented by creating a subtype of an existing MDIS Object and should
be used when an existing MDIS Object, such as a valve Object, has additional information or
functionality that needs to be represented. Extension of Objects applies to all models defined in
section 5 (i.e. MDISDiscreteInstrumentObjectType, MDISDigitalInstrumentObjectType,
MDISInstrumentObjectType, MDISValveObjectType, MDISChokeObjectType or any subtype of these
types). Subtyping MDISBaseObjectType is not allowed.

Rules for developing aggregated and extended objects are provided in Table 51. To minimise
variability, when aggregating or extending objects only instances of the following VariableTypes and
ObjectTypes shall be used:

• Standard MDIS Objects defined in section 5.

• BaseDataVariableType

• DiscreteItemType (Variable)

• AnalogItemType (Variable)

Table 51 - Aggregation and Extension Decision Matrix

Description Aggregation Extension

Require new NodeId on TypeDefinition level Yes Yes

0) Define new ObjectType with any non-MDIS parent No No

1) Define new ObjectType with any MDIS parent (subtyping MDIS ObjectTypes -
MDISValveObjectType, MDISChokeObjectType, MDISDigitalInstrumentObjectType,
MDISInstrumentObjectType, MDISDiscreteInstrumentObjectType or any subtype of
these types) No Yes

2) Define new ObjectType with MDISAggregateObjectType as parent Yes No

The operations described in Table 52 are valid operations in a generic OPC UA Server, but for an
MDIS Server they are restricted as described in the table. All changes shall be based on type
changes. Instance specific changes are not allowed.

Table 52 - General rules that apply to existing MDIS types

Description Aggregation Extension

Add MDIS Object instance to an instance of an existing MDIS ObjectType (or subtype). No No

Add non-MDIS Object instance to existing MDIS ObjectType (or subtype). No No

Add non-MDIS Object instance to an instance of an existing MDIS ObjectType (or
subtype). No No

Add Method to an existing MDIS ObjectType (or subtype). No No

Add a Variable instance to an instance of an existing MDIS ObjectType (or subtype). No No

Add a Variable instance to an existing MDIS ObjectType. No No

Base MDIS Object’s compliance to MDIS OPC UA specs shall be demonstrable (CTT). Yes Yes

When extending an existing ObjectType, the rules described in

Table 53 apply to the MDIS Objects defined in Section 5. These rules apply to
MDISValveObjectType, MDISChokeObjectType, MDISInstrumentObjectType,
MDISDigitalInstrumentObjectType, MDISDiscreteInstrumentObjectType or any subtype of these
types; they do not apply to the MDISBaseObjectType and the MDISAggregateObjectType. The

MDIS OPC UA Companion Specification Release 1.2 Page 69 of 114

MDISBaseObjectType cannot be extended or subtyped by a vendor or project. Only the MDIS
working group can extend the MDISBaseObjectType or create new a subtype of it. The
MDISAggregateObjectType has its own set of rules. Extending existing ObjectTypes are restricted to
limit available additions to allow Clients to pick up the new types without requir ing coding changes to
the Client.

Table 53 - Rules for subtypes

Description Extension

Add a BaseDataVariableType instance to the newly create subtype of an MDIS ObjectType
(MDISValveObjectType, MDISChokeObjectType, MDISDigitalInstrumentObjectType,
MDISDiscreteInstrumentObjectType, MDISInstrumentObjectType or any subtype of these types), with a
DataType of one of the OPC BaseDataType excluding structure. Yes

Add an instance of an AnalogItemType to the newly created subtype of an MDIS ObjectType. Yes

Add an instance of a DiscreteItemType to the newly created subtype of an MDIS ObjectType. Yes

Change ModellingRule from Optional -> Mandatory for any of existing properties or components. Yes

Table 54 describes rules for creating an aggregate object. They only apply as described.

Table 54 - Aggregation Related Rules

Description Aggregate

Add MDIS Object InstanceDeclaration to the newly created subtype of MDISAggregateObjectType Yes

Add a MDIS Variable instance to the newly created sub type of the MDISAggregateObjectType Yes

Add a MDIS defined Reference to the newly created subtype of MDISAggregateObjectType. Yes

Clients are expected to be able to handle new aggregate Objects, even if the Client only lists them
as separate MDIS Objects and Variables of which they are composed. Clients are not required to
handle an extension Object’s additional Variables, but they are required to support instances of the
extension object. Clients that are unable to handle the extension Object’s additional Variables shall
treat the extension object as an instance of the parent standard MDIS ObjectType. It is expected that
some projects will require supporting the additional Variables defined in an extension Object.

9.5.3 Object Creation

ObjectTypes that are not an aggregated, extended or collection ObjectType can only be defined by
the MDIS organisation. If a vendor (or group of vendors) determines that an ObjectType might be a
candidate for creation as a new ObjectType, the proposed ObjectType needs to be submitted to or
proposed to the MDIS organisation. If the MDIS organisation determines that a new ObjectType is to
be created, it will be incorporated into the MDIS OPC UA Companion Specification. These new
Objects shall be reviewed and validated by the MDIS organisation members.

9.5.4 Object Aggregation Example

The following is an example for creating an aggregated model of a simple CIMV Object. A generic
model of a CIMV could have the following items:

• Valve Position Target (32 bit, float) – Read / Write

• Valve Flow Target (32 bit, float) – Read / Write

• Valve Status (8 bit, word) – Read Only

• Valve Device State (8 bit, word) – Read Only

The following figure illustrates the resulting TypeDefinition with example Object instances. It includes
two instances of MDISDiscreteInstrumentObjectType Objects that represent the Valve Status and
the Valve Device State, two instances of MDISInstrumentOutObjectType Objects that provide the
ability to set the Position and Flow target values and two instances of MDISInstrumentObjectType
Objects that provide feedback on the set Position and Flow target. As can be seen in the example
figure, a common type definition allows for multiple identical Object instances to be created.

MDIS OPC UA Companion Specification Release 1.2 Page 70 of 114

DeviceStatus ::
MDISDiscreteInstrument

ObjectType

ValveStatus ::
MDISDiscreteInstrument

ObjectType

FlowTarget ::
MDISInstrumentOut

ObjectType

PositionTarget ::
MDISInstrumentOut

ObjectType

FlowFeedback ::
MDISInstrument

ObjectType

PositionFeedback ::
MDISInstrument

ObjectType

CIMV_XT2CI1

DeviceStatus

ValveStatus

FlowTarget

PositionTarget

FlowFeedback

PositionFeedback

CIMV_XT1CI1

DeviceStatus

ValveStatus

FlowTarget

PositionTarget

FlowFeedback

PositionFeedback

Object InstancesType Definition

CIMVType

MDISAggregate

ObjectType

Figure 21 - Aggregated Object Type Definition

A vendor does not have to generate aggregate Objects; it can just provide a list of the base MDIS
Objects that are being exposed. For example, a Well might not be configured as a subtype of
MDISAggregateObjectType it might be a folder that contains the MDIS Objects that comprise the
Well. If a structure is to be repeated, generating a subtype of the MDISAggregateObjectType for the
structure can simplify testing and Client configuration work.

10 Time Synchronisation

MDIS expects system clocks to be time synchronised. NTP is the recommended method for time
synchronisation; however use of alternate time synchronisation method is acceptable. For a system
where NTP or other similar time synchronization is not available, the time on the Server can be set
using the TimeSyncObject defined in 5.1.11.

11 Redundancy

11.1 General

This section details requirements to standardise redundancy across the MDIS interface. SPCS and
DCS should be connected using two segregated communication channels. Designation of the
primary communication channel between the SPCS and DCS shall be controlled at the DCS.
Automatic reconnection / recovery in the event of a failed communication channel shall be
implemented. Failure of either channel shall generate an alarm at the DCS. Communication
configurations other than what is defined here may be used. However, it should be specified
elsewhere and should be agreed between all parties prior to implementation. Additional redundancy
options including physical and logical configuration should be based on required project availability.

In general, redundant communication between the SPCS and DCS shall:

1. Facilitate active redundancy which enables a seamless transfer to a secondary controller in
the event of a primary controller failure.

MDIS OPC UA Companion Specification Release 1.2 Page 71 of 114

2. Prevent or minimise the loss of subsea production due to a single-component failure or
common-mode failure.

The information model available in MDIS OPC UA servers is affected by data arbitration choices
(see 4.3.2).

OPC Redundancy is described in the following section.

11.2 OPC UA Redundancy Overview

OPC UA redundancy provides a standard manner for OPC UA Clients to determine which OPC UA
Servers are redundant and the status of the Servers. In OPC UA redundant system all redundant
servers provide:

• an identical information model,

• an identical instance address space.

The structures, redundancy objects and redundancy behaviours are described in Part 4 – Services
and further defined in Part 5 – Information Model.

11.3 OPC UA MDIS Redundancy

In an MDIS system, the information in an OPC UA server maybe identical in some cases. The
information model between redundant servers is always identical. MDIS systems typically include
arbitration which is described in Section 4.3.2. The arbitration process can result in Servers in which
the Servers have an identical instance address space, but it can also result in Servers that do not
have identical instance address space.

11.4 MDIS Minimum Requirements

In all MDIS redundant Servers, the standard Redundancy Objects as described in Part 4 and Part 5
shall be supported. In addition, depending on if the data is identical on the servers the following
apply:

On Servers where all data is identical: The server pair shall support either TRANSPARENT_4
redundancy or HOT_3 redundancy or HOT_AND_MIRRORED_5 redundancy including all
associated objects and behaviours as described in Part 4 and Part 5.

• On Servers where not all data is identical: The Server redundancy type cannot be specified
and redundancy support shall always identify as NONE_0.

In both cases the ServerArray in each Server in the redundant set shall list the URL’s for all other
Servers in the redundant set.

MDIS OPC UA Companion Specification Release 1.2 Page 72 of 114

12 OPC UA MDIS Profiles and Conformance Units

12.1 Test requirements

All mandatory Profiles shall be certified and any optional Profiles that are supported should be
certified by an OPC Foundation certification authority (see 1.2.4 for additional details)

12.2 ConformanceUnits

12.2.1 Overview

This section defines ConformanceUnits that are specific to the MDIS information model. These
ConformanceUnits are separated into ConformanceUnits that are Server specific and those that are
Client specific.

12.2.2 Server

Table 55 defines the Server based ConformanceUnits. These units are related to MDIS information
models. Table 56 describes general functionality based ConformanceUnits.

Table 55 - MDIS Server Information Model ConformanceUnits

Category Title Description

Server MDIS Base Fault Support the Fault flag

Server MDIS Base FaultCode Support FaultCodes

Server MDIS Base Warning Support the Warning flag

Server MDIS Base WarningCode Support WarningCodes

Server MDIS Base Enabled Support the Enabled flag and the EnableDisable Method to toggle the flag.

Server MDIS Base TagId Support the TagId Property.

Server MDIS Base Functionality Supports all required Namespaces, queue sizes greater than 1, notification of
queue overflows, NodeId and Namespace restrictions

Valve

Server MDIS Valve Base Supports the base required aspect of the MDISValveObjectType. This includes
position information and the Move Method for basic functionality. The Move
Method basic functionality includes Direction, OverrideInterlocks, SEM and
ShutdownRequest.

Server MDIS Valve
SignatureRequestStatus

Supports providing information about an existing signature/profile requests,
including the request of a profile/signature via the Move command.

Server MDIS Valve
CommandRejected

Supports the CommandRejected

Server MDIS Valve LastCommand Supports the LastCommand.

Server MDIS Valve
DefeatableCloseInterlock

Supports information related to DefeatableCloseInterlock. This includes
DefeatableCloseInterlock flag and providing at least one InterlockFor reference to
a Variable of InterlockVariableType.

Server MDIS Valve
DefeatableOpenInterlock

Supports information related to DefeatableOpenInterlock. This includes
DefeatableOpenInterlock flag and providing at least one InterlockFor reference to
a Variable of InterlockVariableType.

Server MDIS Valve
NonDefeatableCloseInterlock

Supports information related to NonDefeatableCloseInterlock. This includes
NonDefeatableCloseInterlock flag and providing at least one InterlockFor
reference to a Variable of InterlockVariableType.

Server MDIS Valve
NonDefeatableOpenInterlock

Supports information related to NonDefeatableOpenInterlock. This includes
NonDefeatableCloseInterlock flag and providing at least one InterlockFor
reference to a variable of InterlockVariableType.

Server MDIS Valve Duration Supports the inclusion of OpenTimeDuration and CloseTimeDuration duration
information for the valve.

Instrument

Server MDIS Instrument Base Supports the base required aspect of the MDISInstrumentObjectType. This
includes the ProcessVariable. The ProcessVariable includes EURange and
EngineeringUnits

MDIS OPC UA Companion Specification Release 1.2 Page 73 of 114

Category Title Description

Server MDIS Instrument Limits Supports at least one of the following limit flags: HHlimit, Hlimit, Llimit, LLlimit. The
actual list of supported limits is reported as part of the ConformanceUnit.

Server MDIS Instrument Setpoints Supports at least one of the following set points: HHSetPoint, HSetPoint,
LSetPoint, LLSetPoint. The actual list of supported setpoints is reported as part of
the ConformanceUnit.

Instrument Out

Server MDIS Instrument Out Base Supports the base required aspect of the MDISInstrumentOutObjectType. This
includes the ProcessVariable of the Object and the WriteValue Method.

Discrete Instrument

Server MDIS Discrete Instrument
Base

Supports the base required aspect of the MDISDiscreteInstrumentObjectType.
This includes the State of the Object.

Discrete Instrument Out

Server MDIS Discrete Out Base Supports the base required aspect of the MDISDiscreteOutObjectType. This
includes the State of the Object and the WriteValue Method.

Digital Instrument

Server MDIS Digital Instrument Base Supports the base required aspect of the MDISDigitalInstrumentObjectType. This
includes the State of the Object.

Digital Instrument Out

Server MDIS Digital Out Base Supports the base required aspect of the MDISDigitalOutObjectType. This
includes the State of the Object and the WriteState Method.

Choke

Server MDIS Choke Base Supports the base required aspect of the MDISChokeObjectType. This includes
CalculatedPosition information, Moving flag, the Move Method
(ChokeMoveMethod), Abort Method (ChokeAbortMethod), The Move Method
basic functionality includes Position, OverrideInterlocks, and SEM. The
SetCalculatedPosition Method basic functionality includes CalculatedPosition and
if required the SetCalculatedPositionStatus

Server MDIS choke
SetCalculatedPositionStatus

Supports the optional variable SetCalculatedPositionStatus

Server MDIS Choke
CommnadRejected

Supports the CommandRejected.

Server MDIS Choke
DefeatableCloseInterlock

Supports the optional aspect of the MDISChokeObjectType related to
DefeatableCloseInterlock. This includes DefeatableCloseInterlock flag and
providing at least one InterlockFor reference to a Variable of
InterlockVariableType.

Server MDIS Choke
DefeatableOpenInterlock

Supports the optional aspect of the MDISChokeObjectType related to
DefeatableOpenInterlock. This includes DefeatableOpenInterlock flag and
providing at least one InterlockFor reference to a Variable of
InterlockVariableType.

Server MDIS Choke
NonDefeatableCloseInterlock

Supports the optional aspect of the MDISChokeObjectType related to
NonDefeatableCloseInterlock. This includes NonDefeatableCloseInterlock flag
and providing at least one InterlockFor reference to a Variable of
InterlockVariableType.

Server MDIS Choke
NonDefeatableOpenInterlock

Supports the optional aspect of the MDISChokeObjectType related to
NonDefeatableOpenInterlock. This includes NonDefeatableOpenInterlock flag and
providing at least one InterlockFor reference to a Variable of
InterlockVariableType.

Server MDIS Choke Step Duration Supports the inclusion of StepDurationOpen and StepDurationClose time
information for the MDISChokeObjectType.

Server MDIS Choke Total Steps Supports the inclusion of the TotalSteps for the MDISChokeObjectType.

Server MDIS Choke Step Method Supports the inclusion of the Step (ChokeStepMethod) and the PositionInSteps
for the MDISChokeObjectType. The Step Method basic functionality includes
Direction, Steps, OverrideInterlocks, and SEM.

TimeSync Object

Server MDIS Timesync Object Supports the TimeSync Object, including allow a client to set the server time.

Information

MDIS OPC UA Companion Specification Release 1.2 Page 74 of 114

Category Title Description

Server MDIS Information version Supports version information for the MDIS Server

Server MDIS Information Signatures Supports providing Signatures as FileType Objects

Table 56 – MDIS Server Behaviour ConformanceUnits

Category Title Description

Server MDIS Redundancy
Base

Supports one of the optional redundancy behaviours

Server MDIS Redundancy
None

Supports MDIS defined side by side redundancy. Server can provide side by side
redundant data as specified including identical NodeIds or naming conventions as
required.

Server MDIS Redundancy Hot Supports the OPC UA defined redundancy concept of “Hot”

Server MDIS Redundancy
HotPlusMirrored

Supports the OPC UA defined redundancy concept of “HotPlusMirrored”

Server MDIS Redundancy
Transparent

Supports the OPC UA defined redundancy concept of “Transparent”

Table 57 – MDIS Server Aggregate & Extension ConformanceUnits

Category Title Description

Server MDIS Aggregate Object The MDIS Server supports aggregate Objects based on
MDISAggregateObjectType.

Server MDIS Extension The Server defines new ObjectTypes that are extensions of the existing MDIS
ObjectTypes (MDISValveObjectType, MDISChokeObjectType,
MDISDigitalInstrumentObjectType, MDISDiscreteInstrumentObjectType,
MDISInstrumentObjectType or any subtype of these types).

12.2.3 Client

Table 58 defines the Client based ConformanceUnits. These units are related to MDIS
InformationModels.

MDIS OPC UA Companion Specification Release 1.2 Page 75 of 114

Table 59 describes general functionality based ConformanceUnits

Table 58 - MDIS Client Information Model ConformanceUnits

Category Title Description

Client MDIS Client Base Fault The Client actively monitors the value of the Fault flag and reports the value.

Client MDIS Client Base
FaultCode

The Client displays or reports FaultCode.

Client MDIS Client Base
Warning

The Client makes use of and displays or reports the Warning flag.

Client MDIS Client Base
WarningCode

The Client displays or reports WarningCode.

Client MDIS Client Base
Enabled

The Client makes use of and displays or reports the Enabled flag and the
EnableDisable Method.

Client MDIS Client Base
TagId

The Client can display or report the TagId Property.

Valve

Client MDIS Valve Client
Base

Uses the base required aspect of the MDISValveObjectType. This includes position
information and the Move Method for basic functionality. The Move Method basic
functionality includes Direction, OverrideInterlocks, SEM and ShutdownRequest. If
present the CommandRejected is handled

Client MDIS Valve Client
SignatureRequestStatu
s

Makes use of signature/profile information and asks for signature/profile via the
Move command.

Client MDIS Valve Client
LastCommand

Makes use of the LastCommand.

Client MDIS Valve Client
DefeatableCloseInterlo
ck

Makes use of information related to DefeatableCloseInterlock. This includes
DefeatableCloseInterlock flag and examining the instance of InterlockVariableType
referenced by the InterlockFor reference.

Client MDIS Valve Client
DefeatableOpenInterlo
ck

Makes use of information related to DefeatableOpenInterlock. This includes
DefeatableOpenInterlock flag and examining the instance of InterlockVariableType
reference by the InterlockFor reference.

Client MDIS Valve Client
NonDefeatableCloseInt
erlock

Makes use of information related to NonDefeatableCloseInterlock. This includes
NonDefeatableCloseInterlock flag and examining the instance of
InterlockVariableType reference by the InterlockFor reference.

Client MDIS Valve Client
NonDefeatableOpenInt
erlock

Makes use of information related to NonDefeatableOpenInterlock. This includes
NonDefeatableOpenInterlock flag and examining the instance of
InterlockVariableType reference by the InterlockFor reference.

Client MDIS Valve Client
Duration

Makes use of the OpenTimeDuration and CloseTimeDuration duration information
for the valve.

Instrument

Client MDIS Instrument Client
Base

Makes use of the base required aspects of instance of the
MDISInstrumentObjectType. This includes the ProcessVariable.

Client MDIS Instrument Client
Limits

Makes use of at least one of the following limit flags: HHlimit, Hlimit, Llimit, LLlimit.

Client MDIS Instrument Client
Setpoints

Makes use of at least one of the following set points: HHSetPoint, HSetPoint,
LSetPoint, LLSetPoint.

Instrument Out

Client MDIS Instrument Out
Client Base

Makes use of the base required aspect of the MDISInstrumentOutObjectType. This
includes the ProcessVariable of the Object and the WriteValue Method.

Discrete

Client MDIS Discrete
Instrument Client Base

Makes use of the base required aspect of the MDISDiscreteInstrumentObjectType.
This includes the State of the Object.

Discrete Out

Client MDIS Discrete Out
Client Base

Makes use of the base required aspect of the MDISDiscreteOutObjectType. This
includes the State of the Object and the WriteValue Method.

Digital

MDIS OPC UA Companion Specification Release 1.2 Page 76 of 114

Category Title Description

Client MDIS Digital
Instrument Client Base

Makes use of the base required aspect of the MDISDigitalInstrumentObjectType.
This includes the State of the Object.

Digital Out

Client MDIS Digital Out Client
Base

Makes use of the base required aspect of the MDISDigitalOutObjectType. This
includes the State of the Object and the WriteState Method.

Choke

Client MDIS Choke Client
Base

Makes use of the base required aspect of the MDISChokeObjectType. This
includes CalculatedPosition information, Moving flag, the Move
(ChokeMoveMethod), Abort (ChokeAbortMethod), SetCalculatedPosition
(ChokeSetCalculatedPositionMethod). The Move Method basic functionality
includes Position, OverrideInterlocks, and SEM, The SetCalculatedPosition Method
basic functionality includes CalculatedPosition and if required the
SetCalculatePositionStatus. If present the CommandRejected is handled.

Client MDIS Choke Client
DefeatableCloseInterlo
ck

Makes use of information related to DefeatableCloseInterlock. This includes
DefeatableCloseInterlock flag and examining the instance of InterlockVariableType
referenced by the InterlockFor reference.

Client MDIS Choke Client
DefeatableOpenInterlo
ck

Makes use of information related to DefeatableOpenInterlock. This includes
DefeatableOpenInterlock flag and examining the instance of InterlockVariableType
referenced by the InterlockFor reference.

Client MDIS Choke Client
NonDefeatableCloseInt
erlock

Makes use of information related to NonDefeatableCloseInterlock. This includes
NonDefeatableCloseInterlock flag and examining the instance of
InterlockVariableType referenced by the InterlockFor reference.

Client MDIS Choke Client
NonDefeatableOpenInt
erlock

Makes use of information related to NonDefeatableOpenInterlock. This includes
NonDefeatableOpenInterlock flags and examining the instance of
InterlockVariableType referenced by the InterlockFor reference.

Client MDIS Choke Client
Step duration

Makes use of the StepDurationOpen and StepDurationClose time information for
the MDISChokeObjectType.

Client MDIS Choke Client
Total Steps

Makes use of the TotalSteps for the MDISChokeObjectType.

Client MDIS Choke Client
Step method

Makes use of the Step (ChokeStepMethod) and the PositionInSteps for the Choke.
The Step Method basic functionality includes Direction, Steps, OverrideInterlocks,
and SEM.

TimeSync Object

Client MDIS TimeSync Client Can be configured to call the Timesync Object at a periodic rate, providing time
synchronization to the server

Information

Client MDIS Signature Client The Client can access the instance of FileType objects to obtain signatures

Client MDIS Information
Client

The Client makes use of the version information to identify supported functionality
of the server, including handling server that are of different versions.

MDIS OPC UA Companion Specification Release 1.2 Page 77 of 114

Table 59 - MDIS Client Behaviour ConformanceUnits

Category Title Description

Client MDIS Client
Redundancy

Can communicate with a MDIS Server that transmits data redundantly. Selecting
appropriate channel, handling Server failovers and generally supporting all
specified actions.

Table 60 - MDIS Client Aggregation & Extension ConformanceUnits

Category Title Description

Client MDIS Client Aggregate The Client can process and / or display information from an instance of an
MDISAggregateObjectType subtype on a Server.

Client MDIS Client Extension The Client can process and / or display information from an instance of Extension
types defined by the Server. This includes extension to all of the existing type and
subtypes of them.

Client MDIS Client Extension
Extra

The Client can process and / or display information from the extended fields in an
Extension Object defined in a Server, without programming changes, i.e. only
requiring configuration changes

12.3 Facet

12.3.1 Overview

The section describes the various Facets that are provided as part of the MDIS OPC UA
InformationModel. These Facets include MDIS InformationModel ConformanceUnits, but they also
include ConformanceUnits or Facets from the Part 7 – Profiles specification. They are summarised in
Table 61

Table 61 - MDIS Profiles and Facets

Profile Related
Category

URI

MDIS Base Functionality Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/BaseFunctionServer

MDIS Valve Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/ValveModel

MDIS Instrument Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/InstrumentModel

MDIS Instrument Out Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/InstrumentOutModel

MDIS Choke Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/ChokeModel

MDIS Discrete Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/DiscreteModel

MDIS Discrete Out Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/DiscreteOutModel

MDIS Digital Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/DigitalModel

MDIS Digital Out Model Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/DigitalOutModel

MDIS Redundancy Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/Redundancy

MDIS Aggregate Object Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/AggregateObject

MDIS Extension Object Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/ExtensionObject

MDIS Signature Transfer Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/SignatureTransfer

MDIS TimeSync Object Server Facet MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/TimeSyncObject

MDIS Base Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Base

MDIS Valve Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Valve

MDIS Instrument Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Instrument

MDIS Instrument Out Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/InstrumentOut

MDIS Choke Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Choke

MDIS Discrete Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Discrete

MDIS Discrete Out Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/DiscreteOut

http://opcfoundation.org/UA-Profile/Server/MDIS/BaseFunctionServer
http://opcfoundation.org/UA-Profile/Server/MDIS/ValveModel
http://opcfoundation.org/UA-Profile/Server/MDIS/InstrumentModel
http://opcfoundation.org/UA-Profile/Server/MDIS/InstrumentOutModel
http://opcfoundation.org/UA-Profile/Server/MDIS/ChokeModel
http://opcfoundation.org/UA-Profile/Server/MDIS/DiscreteModel
http://opcfoundation.org/UA-Profile/Server/MDIS/DiscreteOutModel
http://opcfoundation.org/UA-Profile/Server/MDIS/DigitalModel
http://opcfoundation.org/UA-Profile/Server/MDIS/DigitalOutModel
http://opcfoundation.org/UA-Profile/Server/MDIS/Redundancy
http://opcfoundation.org/UA-Profile/Server/MDIS/AggregateObject
http://opcfoundation.org/UA-Profile/Server/MDIS/ExtensionObject
http://opcfoundation.org/UA-Profile/Server/MDIS/SignatureTransfer
http://opcfoundation.org/UA-Profile/Server/MDIS/TimeSyncObject
http://opcfoundation.org/UA-Profile/Client/MDIS/Base
http://opcfoundation.org/UA-Profile/Client/MDIS/ValveInterfaced
http://opcfoundation.org/UA-Profile/Client/MDIS/InstrumentInterfaced
http://opcfoundation.org/UA-Profile/Client/MDIS/InstrumentOut
http://opcfoundation.org/UA-Profile/Client/MDIS/ChokeInterfacedServer
http://opcfoundation.org/UA-Profile/Client/MDIS/DiscreteInterfaced
http://opcfoundation.org/UA-Profile/Client/MDIS/DiscreteOut

MDIS OPC UA Companion Specification Release 1.2 Page 78 of 114

Profile Related
Category

URI

MDIS Digital Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Digital

MDIS Digital Out Model Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/DigitalOut

MDIS Redundancy Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Redundancy

MDIS Aggregate Object Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/AggregateObject

MDIS Extension Object Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/ExtensionObject

MDIS Extension Extra Object Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/ExtensionExtra

MDIS Signature Transfer Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/SignatureTransfer

MDIS TimeSync Object Client Facet MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/TimeSyncObject

MDIS Solution Client Profile MDIS http://opcfoundation.org/UA-Profile/Client/MDIS/Solution

MDIS Solution Server Profile MDIS http://opcfoundation.org/UA-Profile/Server/MDIS/Solution

12.3.2 Server

12.3.2.1 MDIS Base Functionality Server Facet

Table 62 defines a Facet that describes the base characteristics that all OPC UA Servers shall
support, if they support the MDIS companion specification.

Table 62 – MDIS Base Functionality Server Facet

Group Conformance Unit / Profile Title Optional

Profile Standard DataChange Subscription Server Facet

Profile Core Server Facet

Profile UA-TCP UA-SC UA Binary

Profile Data Access Server Facet

Monitored Item
Services

Monitor MinQueueSize_05 False

Profile Method Server Facet

Profile Security Time Synchronization

MDIS Model MDIS Base Functionality False

MDIS Model MDIS Information Version True

This Profile includes a number of Profiles and ConformanceUnits.

12.3.2.2 MDIS Valve Model Server Facet

Table 63 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISValveObjectType model.

Table 63 - MDIS Valve Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Valve Base False

http://opcfoundation.org/UA-Profile/Client/MDIS/Digital
http://opcfoundation.org/UA-Profile/Client/MDIS/DigitalOut
http://opcfoundation.org/UA-Profile/Client/MDIS/AdvanceFunctions
http://opcfoundation.org/UA-Profile/Client/MDIS/AggregateObject
http://opcfoundation.org/UA-Profile/Client/MDIS/ExtensionObject
http://opcfoundation.org/UA-Profile/Client/MDIS/ExtensionExtra
http://opcfoundation.org/UA-Profile/Client/MDIS/Solution
http://opcfoundation.org/UA-Profile/Server/MDIS/Solution

MDIS OPC UA Companion Specification Release 1.2 Page 79 of 114

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Valve CommandRejected True

MDIS Model MDIS Valve SignatureRequest True

MDIS Model MDIS Valve LastCommand True

MDIS Model MDIS Valve DefeatableCloseInterlock True

MDIS Model MDIS Valve DefeatableOpenInterlock True

MDIS Model MDIS Valve NonDefeatableCloseInterlock True

MDIS Model MDIS Valve NonDefeatableOpenInterlock True

MDIS Model MDIS Valve Duration True

MDIS Model MDIS Information signatures True

12.3.2.3 MDIS Instrument Model Server Facet

Table 64 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISInstrumentObjectType model.

Table 64 - MDIS Instrument Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Instrument Base False

MDIS Model MDIS Instrument Limits True

MDIS Model MDIS Instrument Setpoints True

12.3.2.4 MDIS Instrument Out Model Server Facet

Table 65 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISInstrumentOutObjectType model.

Table 65 - MDIS Instrument Out Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Instrument Out Base False

MDIS Model MDIS Instrument Limits True

MDIS Model MDIS Instrument Set points True

12.3.2.5 MDIS Discrete Model Server Facet

Table 66 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISDiscreteInstrumentObjectType model.

MDIS OPC UA Companion Specification Release 1.2 Page 80 of 114

Table 66 - MDIS Discrete Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Discrete Instrument Base False

12.3.2.6 MDIS Discrete Out Model Server Facet

Table 67 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISDiscreteOutObjectType model.

Table 67 - MDIS Discrete Out Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Discrete Out Base False

12.3.2.7 MDIS Digital Model Server Facet

Table 68 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISDigitalInstrumentObjectType.

Table 68 - MDIS Digital Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Digital Instrument Base False

12.3.2.8 MDIS Digital Out Model Server Facet

Table 69 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISDigitalOutObjectType.

Table 69 - MDIS Digital Out Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS OPC UA Companion Specification Release 1.2 Page 81 of 114

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Digital Out Base False

12.3.2.9 MDIS Choke Model Server Facet

Table 70 defines a Facet that describes the base characteristics for an OPC UA Server that is
exposing the MDISChokeObjectType.

Table 70 - MDIS Choke Model Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Base Fault False

MDIS Model MDIS Base FaultCode True

MDIS Model MDIS Base Warning True

MDIS Model MDIS Base WarningCode True

MDIS Model MDIS Base Enabled True

MDIS Model MDIS Base TagId True

MDIS Model MDIS Choke Base False

MDIS Model MDIS Choke DefeatableCloseInterlock True

MDIS Model MDIS Choke DefeatableOpenInterlock True

MDIS Model MDIS Choke NonDefeatableCloseInterlock True

MDIS Model MDIS Choke NonDefeatableOpenInterlock True

MDIS Model MDIS Choke Step Duration True

MDIS Model MDIS Choke Total Steps True

MDIS Model MDIS Choke Step method True

MDIS Model MDIS Choke CommandRejected True

MDIS Model MDIS Choke SetCalculatedPositionStatus True

12.3.2.10 MDIS Redundancy Server Facet

Table 71 defines a Facet that describes Redundancy functionality that a Server would support. The
Server must support at least one of the optional conformance units

Table 71 - MDIS Redundancy Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Redundancy Base False

MDIS Model MDIS Redundancy None True

MDIS Model MDIS Redundancy Hot True

MDIS Model MDIS Redundancy HotPlusMirrored True

MDIS Model MDIS Redundancy Transparent True

12.3.2.11 MDIS Aggregate Object Server Facet

Table 72 defines a Facet that describes Aggregate functionality based on MDISAggregateObjectType
that a Server would support.

MDIS OPC UA Companion Specification Release 1.2 Page 82 of 114

Table 72 - MDIS Aggregate Object Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Aggregate Object False

12.3.2.12 MDIS Extension Object Server Facet

Table 73 defines a Facet that describes Object extension functionality that a Server would support.

Table 73 - MDIS Extension Object Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Extension False

12.3.2.13 MDIS Signature Transfer Server Facet

Table 74 defines a Facet that describes Signature transfer functionality that a Server would support.

Table 74 - MDIS Signature Transfer Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Information Signatures False

12.3.2.14 MDIS TimeSync Object Server Facet

Table 75 defines a Facet that describes TimeSync Object extension functionality that a Server would
support.

Table 75 - MDIS TimeSync Object Server Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Timesync Object False

12.3.3 Client

12.3.3.1 MDIS Base Client Facet

Table 76 defines a Facet that describes the base characteristics for all OPC UA Clients that make
use of this companion specification. Additional Profiles will define support for various object models
that are part of this specification.

Table 76 - MDIS Base Client Facet

Group Conformance Unit / Profile Title Optional

Profile AddressSpace Lookup Client Facet

Profile DataAccess Client Facet

Profile DataChange Subscriber Client Facet

Profile Method Client Facet

Profile UA-TCP UA-SC UA Binary

Profile Security Time Synchronisation

Session Services Session Client Base False

Session Services Session Client Renew NodeIds False

Session Services Session Client KeepAlive False

Session Services Session Client Detect Shutdown False

MDIS Model MDIS Information Client

MDIS OPC UA Companion Specification Release 1.2 Page 83 of 114

12.3.3.2 MDIS Valve Model Client Facet

Table 77 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISValveObjectType model.

Table 77 - MDIS Valve Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Valve Client Base False

MDIS Model MDIS Valve Client SignatureRequestStatus True

MDIS Model MDIS Valve Client LastCommand True

MDIS Model MDIS Valve Client DefeatableCloseInterlock True

MDIS Model MDIS Valve Client DefeatableOpenInterlock True

MDIS Model MDIS Valve Client NonDefeatableCloseInterlock True

MDIS Model MDIS Valve Client NonDefeatableOpenInterlock True

MDIS Model MDIS Valve Client Duration True

12.3.3.3 MDIS Instrument Model Client Facet

Table 78 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISInstrumentObjectType model.

Table 78 - MDIS Instrument Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Instrument Client Base False

MDIS Model MDIS Instrument Client Limits True

MDIS Model MDIS Instrument Client Setpoints True

12.3.3.4 MDIS Instrument Out Model Client Facet

Table 79 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISInstrumentOutObjectType model.

Table 79 - MDIS Instrument Out Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS OPC UA Companion Specification Release 1.2 Page 84 of 114

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Instrument Client Base False

MDIS Model MDIS Instrument Client Limits True

MDIS Model MDIS Instrument Client Setpoints True

MDIS Model MDIS Instrument Out Client Base False

12.3.3.5 MDIS Discrete Model Client Facet

Table 80 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISDiscreteInstrumentObjectType model.

Table 80 - MDIS Discrete Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Discrete Client Base False

12.3.3.6 MDIS Discrete Out Model Client Facet

Table 81 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISDiscreteOutObjectType.

Table 81 - MDIS Discrete Out Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Discrete Client Base False

MDIS Model MDIS Discrete Out Client Base False

12.3.3.7 MDIS Digital Model Client Facet

Table 82 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISDigitalInstrumentObjectType model.

Table 82 - MDIS Digital Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS OPC UA Companion Specification Release 1.2 Page 85 of 114

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Digital Client Base False

12.3.3.8 MDIS Digital Out Model Client Facet

Table 83 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISDigitalOutObjectType model.

Table 83 - MDIS Digital Out Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Digital Client Base False

MDIS Model MDIS Digital Out Client Base False

12.3.3.9 MDIS Choke Model Client Facet

Table 84 defines a Facet that describes the base characteristics for an OPC UA Client using the
MDISChokeObjectType model.

Table 84 - MDIS Choke Model Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Base Fault False

MDIS Model MDIS Client Base FaultCode True

MDIS Model MDIS Client Base Warning True

MDIS Model MDIS Client Base WarningCode True

MDIS Model MDIS Client Base Enabled True

MDIS Model MDIS Client Base TagId True

MDIS Model MDIS Choke Client Base False

MDIS Model MDIS Choke Client DefeatableCloseInterlock True

MDIS Model MDIS Choke Client DefeatableOpenInterlock True

MDIS Model MDIS Choke Client NonDefeatableCloseInterlock True

MDIS Model MDIS Choke Client NonDefeatableOpenInterlock True

MDIS Model MDIS Choke Client Step duration True

MDIS Model MDIS Choke Client Total Steps True

MDIS Model MDIS Choke Client Step method True

12.3.3.10 MDIS Redundancy Client Facet

Table 85 defines a Facet that describes Redundancy that a Client would support.

MDIS OPC UA Companion Specification Release 1.2 Page 86 of 114

Table 85 - MDIS Redundancy Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Redundancy False

12.3.3.11 MDIS Aggregate Object Client Facet

Table 86 defines a Facet that describes Aggregate Object functionality that a Client would support.

Table 86 - MDIS Aggregate Object Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Aggregate False

12.3.3.12 MDIS Extension Object Client Facet

Table 87 defines a Facet that describes Extension Object functionality that a Client would support.

Table 87 - MDIS Extension Object Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Extension False

12.3.3.13 MDIS Extension Extra Object Client Facet

Table 88 defines a Facet that describes Extension Object extra Fields functionality that a Client would
support.

Table 88 - MDIS Extension Extra Object Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Client Extension Extra False

12.3.3.14 MDIS Signature Transfer Client Facet

Table 89 defines a Facet that describes signature transfer functionality that a Client would support.

Table 89 - MDIS Signature Transfer Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS Signature Client False

12.3.3.15 MDIS TimeSync Object Client Facet

Table 90 defines a Facet that describes TimeSync functionality that a Client would support.

Table 90 - MDIS TimeSync Object Client Facet

Group Conformance Unit / Profile Title Optional

MDIS Model MDIS TimeSync Client False

12.4 MDIS OPC UA Profiles

12.4.1 Overview

This specification has defined a number of individual Facets that a Server and / or a Client are
expected to combine and utilise in an application. The following Profiles provide a recommended
combination of functionality that a Server or Client should include. These are complete Profiles that
include all required Profiles and ConformanceUnits to implement a Server or a Client.

MDIS OPC UA Companion Specification Release 1.2 Page 87 of 114

12.4.2 MDIS Solution Client Profile

Table 91 defines a Full Featured Profile that describes the characteristics for an OPC UA Client. The
OPC UA Client may expose additional functionality as separate Profiles.

Table 91 - MDIS Solution Client Profile

Group Conformance Unit / Profile Title Optional

Profile MDIS Base Functionality Client Facet

Profile MDIS Valve Model Client Facet

Profile MDIS Instrument Model Client Facet

Profile MDIS Choke Model Client Facet

Profile MDIS Discrete Model Client Facet

Profile MDIS Digital Model Client Facet

12.4.3 MDIS Solution Server Profile

Table 92 defines a full featured Profile that describes the base characteristics for an OPC UA Server.
The OPC UA Server may expose additional functionality as Profiles.

Table 92 - MDIS Solution Server Profile

Group Conformance Unit / Profile Title Optional

Profile MDIS Base Functionality Server Facet

Profile MDIS Valve Model Server Facet

Profile MDIS Instrument Model Server Facet

Profile MDIS Choke Model Server Facet

Profile MDIS Discrete Model Server Facet

Profile MDIS Digital Model Server Facet

12.5 Equipment Certification

The MDIS interface shall be certified at an OPC Foundation Certification Test Laboratory on a product basis.
Any major release of the product shall be recertified. Recertification can also be required if there are any
changes to the standard or test cases defined by MDIS. The certification documentation shall include

• a list of valid MDIS Profiles and optional ConformanceUnits for which the vendor equipment is
certified,

• vendor equipment information used for testing,

• equipment architecture and configuration used for testing during the certification process.

Extensions or aggregate Objects added during a project do not need to be recertified.

MDIS OPC UA Companion Specification Release 1.2 Page 88 of 114

13 Namespaces

13.1 Status Codes

Table 93 defines the list of standard Method call error codes generated by a MDIS Server.

Table 93 - Method error codes

Result Code Description

Good_Completes_Ascyn
chronously

See OPC UA Part 4 – Services for the description of this result code. (The Method id
does not refer to a Method for the specified Object.)

Bad_MethodInvalid See OPC UA Part 4 – Services for the description of this result code. (The Method id
does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC UA Part 4 – Services for the description of this result code. (Requested
operation is not implemented.)

 Bad_NodeIdUnknown See OPC UA Part 4 – Services for the description of this result code. (Used to indicate
that the specified Object is not valid)

Bad_ArgumentsMissing See OPC UA Part 4 – Services for the description of this result code (The Client did not
specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC UA Part 4 – Services for the description of this result code (The Client specified
more input arguments than defined for the Method.)

Bad_InvalidArgument See OPC UA Part 4 – Services for the description of this result code. (Used to indicate in
the operation level results that one or more of the input arguments are invalid. The
inputArgumentResults contain the specific status code for each invalid argument.)

Bad_TypeMismatch See OPC UA Part 4 – Services for the description of this result code. (Used to indicate
that an input argument does not have the correct data type.)

Bad_OutOfRange See OPC UA Part 4 – Services for the description of this result code. (Used to indicate
that an input argument is outside the acceptable range.)

Bad_Timeout See OPC UA Part 4 – Services for the description of this result code. (The operation
timed out. – the Server did not respond to the command)

Bad_InvalidState See OPC UA Part 4 – Services for the description of this result code. (The operation
cannot be completed because the Object is closed, uninitialized or in some other invalid
state.)

Bad_AccessDenied See OPC UA Part 4 – Services for the description of this result code. (The operation
cannot be completed because the server does not allow the client to perform the
operation)

13.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities.
The Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is
unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to
unambiguously identify a Node. Different Nodes may have the same BrowseName. They are used to
build a browse path between two Nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the namespace of
the standards body although the namespace of the NodeId reflects something else, for example the
EngineeringUnits Property. All NodeIds of Nodes not defined in this specification shall not use the
standard namespaces.

Table 94 provides a list of mandatory and optional namespaces used in an <title> OPC UA Server.

Table 94 – Namespaces used in a <title> Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the OPC UA
specification. This namespace shall have namespace index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may include
types and instances used in an AutoID Device represented by the
Server. This namespace shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA//MDIS Namespace for NodeIds and BrowseNames defined in This
specification. The namespace index is Server specific.

Mandatory

Vendor specific types A Server may provide vendor-specific types like types derived from
ObjectTypes defined in this specification in a vendor-specific
namespace.

Optional

MDIS OPC UA Companion Specification Release 1.2 Page 89 of 114

NamespaceURI Description Use

Vendor specific instances A Server provides vendor-specific instances of the standard types or
vendor-specific instances of vendor-specific types in a vendor-
specific namespace.

It is recommended to separate vendor specific types and vendor
specific instances into two or more namespaces.

Mandatory

Table 95 provides a list of namespaces and their index used for BrowseNames in this specification.
The default namespace of this specification is not listed since all BrowseNames without prefix use
this default namespace.

Table 95 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

This section defines the numeric identif iers for all of the numeric NodeIds defined by the MDIS OPC
UA Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an
Instance Node that appears in the specification and the Identifier is numeric value for the NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the instance
Node to BrowseName for the containing instance or type. A ‘_’ character is used to separate each
BrowseName in the path. For example, OPC UA Part 5 defines the ServerType ObjectType Node
which has the NamespaceArray Property. The SymbolName for the NamespaceArray
InstanceDeclaration within the ServerType declaration is: ServerType_NamespaceArray. OPC UA
Part 5 also defines a standard instance of the ServerType ObjectType with the BrowseName
‘Server’. The BrowseName for the NamespaceArray Property of the standard Server Object is:
Server_NamespaceArray.

The CSV associated with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/MDIS/1.2/MDIS.csv

The XML UANodeSet file that is a definition of the InformationModel generated by this specification.
The UANodeSet description is available from the OPC Foundation web site
(http://www.opcfoundation.org/UA/schemas/MDIS/1.2/OPC.MDIS.NodeSet2.xml) as an XML file. It
uses the import/export format defined in OPC UA Part 5. This file can be directly used by a Server
that wishes to expose the InformationModel (types) defined in this specification.

http://www.opcfoundation.org/UA/schemas/MDIS/1.2/MDIS.csv
http://www.opcfoundation.org/UA/schemas/MDIS/1.2/OPC.MDIS.NodeSet2.xml

MDIS OPC UA Companion Specification Release 1.2 Page 90 of 114

Annex A Sequence Diagrams(Informative)

A.1 Introduction

The following section provides sample sequence diagrams for each of the MDIS ObjectTypes. These
sample sequences are not mandated or the only valid variant.

A.2 MDIS Discrete Instrument Object Sequence Diagrams

A.2.1 Enable Disable

Discrete

Instrument

(DCS)

Discrete

Instrument

(Subsea)

Method Enable::

Discrete Instrument

Discrete Instrument::Enabled

Discrete Instrument::Disabled

Discrete Instrument ::Enabled

Method Enable::

Enable Discrete Instrument

Observe that the value no

longer updates and

reports bad quality

But configuration

information is available

Discrete Instrument ::Bad Quality

Figure 22 - Discrete Instrument

MDIS OPC UA Companion Specification Release 1.2 Page 91 of 114

A.3 MDIS Digital Instrument Object Sequence Diagrams

A.3.1 Enable Disable

Digital

Instrument

(DCS)

Digital

Instrument

(Subsea)

Method Enable::

Disable Digital Instrument

Digital Instrument::Enabled

Digital Instrument::Disabled

Digital Instrument ::Enabled

Method Enable::

Enable Digital Instrument

Observe that the value no

longer updates and

reports bad quality

But configuration

information is available

Digital Instrument ::Bad Quality

Figure 23 - Digital Instrument

A.4 MDIS Instrument Object Sequence Diagrams

A.4.1 Enable Disable

Instrument

(DCS)

Instrument

(Subsea)

Method Enable::Disable Instrument

Instrument::Enabled

Instrument::Disabled

Instrument::Enabled

Method Enable::Enable Instrument

Observe that values no

longer update

But configuration

information is available

Figure 24 - Instrument Enable / Disable

MDIS OPC UA Companion Specification Release 1.2 Page 92 of 114

A.4.2 Write to Setpoint

Instrument

(DCS)

Instrument

(Subsea)

Instrument Write::HHSetpoint

Instrument::Enabled

Instrument::HHsetpoint

Observe that values are

updated

Repeat for all setpoints

Instrument Write::HSetpoint

Instrument::HSetpoint

Instrument Write::LSetpoint

Instrument::LSetpoint

Instrument Write::LLSetpoint

Instrument::LLSetpoint

Figure 25 - Instrument Setpoint changes

A.4.3 Display Limits

Instrument

(DCS)

Instrument

(Subsea)

Instrument::HHLimit

Observe that limits flags

are set as needed

Repeat for all limits

Instrument::HLimit

Instrument::LLimit

Instrument::LLLimit

Figure 26 - Instrument Limits

MDIS OPC UA Companion Specification Release 1.2 Page 93 of 114

A.4.4 Display Engineering units

Instrument

(DCS)

Instrument

(Subsea)

Instrument:: ProcessVariable -

Engineering units
Observe that the

engineering unit assigned

to the instrument is

displayed by the client

Figure 27 - Instrument Engineering Units

A.5 MDIS Choke Object Sequence Diagrams

A.5.1 Overview

The following sequence diagrams indicate the intended SPCS and DCS interface operational steps.
The sequence diagrams are used only to visualise different choke operations and to provide helpful
information for implementation of the MDISChokeObjectType in OPC UA.

A.5.2 Move to Position – Success

Choke

(DCS)

Choke

(Subsea)

Choke Moving::Moving_1

PositioninSteps::Steps

CalculatedPosition::%

Move Method::Position

Choke Status::Stopped_2

Position in Steps::Steps

Calculated Position::%

Choke Status::Enabled

Choke Moving

Choke Reached Position

Interlock not present

Move Method return successful

PositioninSteps::Steps

CalculatedPosition::%

Figure 28 - Choke Move to Position

Sequence description; the above sequence details a successful execution of a Move to Position
command [open or close] from the DCS to SPCS in addition to intermediate acknowledgements and
states.

MDIS OPC UA Companion Specification Release 1.2 Page 94 of 114

A.5.3 Move to Position – Fault

Choke

(DCS)

Choke

(Subsea)

Method Choke::Move:: return

Success

Method Choke::Move:: Position

OverideInterlock:: False

Choke::Enabled

Command accepted

Move starts

Fault:: True

PositionInSteps:: Steps

CalculatedPosition:: %

Fault occurs

Figure 29 - Choke Move Fault

Sequence description; the above sequence details a Fault during the execution of a Move to Position
command [open or close] from the DCS to SPCS in addition to intermediate states.

A.5.4 Move to Position – Failure, Interlock active

Choke

(DCS)

Choke

(Subsea)

Choke Method Move:: return

Failure or Success

Command Rejected:: True

Choke Method Move:: Position

OverideInterlock:: False

Choke::Enabled

Interlock present

Figure 30 - Choke Move Interlocked

Sequence description; the above sequence details a failed execution of a Move to Position command
[open or close] from the DCS to SPCS due to an Interlock being active.

MDIS OPC UA Companion Specification Release 1.2 Page 95 of 114

A.5.5 Abort Choke (Position)

Choke

(DCS)

Choke

(Subsea)

Method Move::Position

Choke::Moving_1

PositionInSteps::Steps

CalculatedPosition::%

Choke::Stopped_2

PositionInSteps::Steps

CalculatedPosition::%

Choke::Enabled

Method Abort

Interlock not present

Choke Moving

Choke Stationary

Method:: return success

Method:: return success

Figure 31 - Choke Move Abort

Sequence description; the above sequence details abort of a Move to Position command [open or
close] from the DCS to SPCS.

MDIS OPC UA Companion Specification Release 1.2 Page 96 of 114

A.5.6 Defeat / Override Interlock (Move)

Choke

(DCS)

Choke

(Subsea)

Method Move::Defeat/override Interlock

Position

Choke::Enabled

Choke::Defeatable Open Interlock

Interlock Overridden

Choke::Moving_1

PositionInSteps::Steps

CalculatedPosition::%

Choke::Stopped_2

PositionInSteps::Steps

CalculatedPosition::%

Choke Moving

Method::Returned

Figure 32 - Choke Move Interlock Override

A.5.7 Fault – No Move Operation

Choke

(DCS)

Choke

(Subsea)

Choke::Enabled

Fault:: True
Fault occurs

Figure 33 - Choke Fault

MDIS OPC UA Companion Specification Release 1.2 Page 97 of 114

A.5.8 Step Open / Close – Success

Choke

(DCS)

Choke

(Subsea)

Method Step::Number of Steps

Step Close

Choke Status::Moving_1

Position in Steps::Steps

Calculated Position::%

Choke Status:: Stopped_2

Position in Steps::Steps

Calculated Position::%

Choke Status::Enabled

Interlock not present

Choke Moving

Choke Reached Position

Method:: return successful

Figure 34 - Choke Step Success

Sequence description; the above sequence details a successful execution of a Step Open / Close
command from the DCS to SPCS in addition to intermediate acknowledgements and states. The
sequence diagram also includes information from instruments such as the Linear Variable
Displacement (Differential) Transmitter (LVDT) to help illustrate what the actual information flow is .

MDIS OPC UA Companion Specification Release 1.2 Page 98 of 114

A.5.9 Step Open / Close – Failure, choke fault

Choke

(DCS)

Choke

(Subsea)

Method Step::Number of Steps

Step Open

Choke::Moving_1

PositionInSteps::Steps

CalculatedPosition::%

Choke::Fault

PositionInSteps::Steps

CalculatedPosition::%

Fault::Fault Information

Choke::Enabled

Command Success

Choke Fault

Method:: return successful

Choke Moving

Figure 35 - Choke Step Fault

Sequence description; the above sequence details a fai led execution of a Step Open / Close
command from the DCS to SPCS due to a choke fault.

MDIS OPC UA Companion Specification Release 1.2 Page 99 of 114

A.5.10 Abort Choke (Step)

Choke

(DCS)

Choke

(Subsea)

Method Step::Number of Steps

Step Close

Choke::Moving_1

PositionInSteps::Steps

CalculatedPosition::%

Choke::Stopped_2

PositionInSteps::Steps

CalculatedPosition::%

Choke::Enabled

Method Abort

Interlock not present

Choke Moving

Choke Stationary

Method:: return success

Method:: return success

Figure 36 - Choke Step Abort

Sequence description; the above sequence details a successful execution of a Choke Abort
command from the DCS to SPCS in addition to intermediate acknowledgements and states.

A.5.11 Set Calculated Position

Choke

(DCS)

Choke

(Subsea)

Write::CalculatedPosition

Calculated Position Updated

Choke Status::Enabled

Choke Status::Not Moving

Figure 37 - Choke Set Position

Sequence description; the above sequence details a successful execution of a Set Calculated
Position command from the DCS to SPCS.

MDIS OPC UA Companion Specification Release 1.2 Page 100 of 114

A.5.12 Enable Disable Choke

Choke

(DCS)

Choke

(Subsea)

Method Enable::Disable Choke

Choke Status::Enabled

Choke Status::Disabled

Method Step::Open, Steps

Choke Status::Command Rejected

Choke Status::Enabled

Method Enable::Enable Choke

Interlock present

Figure 38 - Choke Enable / Disable

Sequence description; the above sequence details a successful execution of an Enable / Disable
Choke from the DCS to SPCS in addition to intermediate acknowledgements and states.

MDIS OPC UA Companion Specification Release 1.2 Page 101 of 114

A.5.13 Defeat / Override Interlock (Step)

Choke

(DCS)

Choke

(Subsea)

Method Step::Defeat/override Interlock

Number of Steps

Open

Choke::Enabled

Choke::Defeatable Open Interlock

Interlock Overridden

Choke::Moving

PositionInSteps::Steps

CalculatedPosition::%

Choke::Stopped

PositionInSteps::Steps

CalculatedPosition::%

Choke Moving

Method::Returned success

Figure 39 - Choke Step Interlock Override

Sequence description; the above sequence details a successful execution of a Defeat / Override
Interlock Choke command from the DCS to SPCS in addition to intermediate acknowledgements and
states

A.6 MDIS Valve Object Sequence Diagrams

A.6.1 Overview

The general functionality of the valve is to control the flow, in that it is either open and flowing or
closed and not flowing. The MDISValveObjectType provides the information available for valves and
provides access to control and management functionality in the valve. The following sequence
diagrams indicate the intended subsea and DCS interface operational requirements and should be
used in conjunction with the MDISValveObjectType generic properties. The final result described in
the sequence diagram will be held until the next command is issued to the Valve, or until the state of
the Valve changes (Fault or Interlock clears).

[Note: in most of the failure cases described below, the Method call should not have been made. But
the error case is still described, since the Server still needs to be able to correctly handle the case
where a Client sends an inappropriate command. Warning states do not affect commands .]

MDIS OPC UA Companion Specification Release 1.2 Page 102 of 114

A.6.2 Valve command – Success

Valve

(DCS)

Valve

(Subsea System)

Move Method::Open_2

Valve moving

Interlock not present,

 Enabled, no Fault, Closed

Valve Position::Moving_4

Last Command::Open_2

Valve reached open
Valve Position::Open_2

Valve Position::Close_1

Move Method::Returns

 Successful

Moving

takes

between

5 & 30

seconds

Figure 40 - Valve command - success

Sequence description; the above sequence details a successful execution of a command [Open or
Close] from the DCS to SPCS in addition to intermediate state changes.

A.6.3 Valve command – Overridden Interlock

Valve

(DCS)

Valve

(Subsea System)

Move Method::Open_2,

Override Interlocks (True)

Valve moving

Defeatable interlock Present

on Open Command

Position::Moving

LastCommand::Open_2

Valve reached open

Position::Open_2

DefeatableOpenInterlock::

Set (True)

Move Method Returns

 (successful)

Only DefeatableInterlock,

Enabled, no Fault,

Position Closed

This test illustrates Open

– The Close case should

also be tested

Figure 41 - Valve command – overridden Interlock

Sequence description; the above sequence details a successful execution of a command [Open or
Close] with an interlock override active from the DCS to SPCS in addition to intermediate states
changes. The Interlocks listed in the interlocks folder that are overridden are updated to reflect not
interlocked.

MDIS OPC UA Companion Specification Release 1.2 Page 103 of 114

A.6.4 Valve command –- Interlocked not overridden

Valve
(DCS)

Valve
(Subsea System)

Move Method::
Direction: Open_2

OverrideInterlocks: True

Non-Defeatable interlock status

Command Rejected:: Set True
LastCommand:: Open_2

NonDefeatableOpenInterlock::
Set True

Method Returns::
Success or Failure

Non-Defeatable interlock Set,
 commands Fails

Figure 42 - Valve command – Failed - Interlocked

Sequence description; the above sequence details the rejection to execute a command [open or
close] owing to a non-defeatable interlock active status in the subsea system. The interlock is one
reason a command may be rejected but there are others.

A.6.5 Valve command – Disabled

Valve
(DCS)

Valve
(Subsea
System)

Move Method::
Direction: Open_2

Disable Valve

Command Rejected::
 Set True

LastCommand:: Open_2

Enabled:: Set False

Method Returns::
Success or Failure

Enables Set false,
 commands Fails

EnableDisable Method:: Disable

Method:: returns Successful

When disable it fails for
either open or closed

Figure 43 - Valve command – Failed- Disabled

Sequence description; the above sequence details the rejection to execute a command [Open or
Close] owing to the valve being disabled. The move Method may return successful or a failure
depending on whether it knows if the valve is disabled.

MDIS OPC UA Companion Specification Release 1.2 Page 104 of 114

A.6.6 Valve command – Failed – Fault case 1

Valve
(DCS)

Valve
(Subsea
System)

Move Method::
Direction: Open_2

Fault:: Set True
Faults Folder::

Condition Updated to reflect fault
Position:: Closed_1

Method Returns::Success

No Interlocks, enabled,
Position Closed

Valve Moving, then fault

Position Moving
LastCommand:: Open_2

This test applies to either
Open or Closed – Open

Illustrated

Figure 44 - Valve command – Failed - Fault

Sequence description; the above sequence is a failure of a command. The value fault maybe the
result of the lack of action from the valve for a period of time greater that the OpenTimeDuration, it
could also be some other fault that is reported from the subsea system.

MDIS OPC UA Companion Specification Release 1.2 Page 105 of 114

A.6.7 Valve command – Failed – Fault case 2

Valve
(DCS)

Valve
(Subsea
System)

Move Method::
Direction: Open_2

LastCommand:: Open_2
CommandRejected:: True

Method Returns::
 Failure (if fault known immediately)

If method success, then Fault
(Note: Position may not change)

Valve Command tried

If failure, Valve Fault still set

If Success on Method than Fault

Position: Moving_4
Last Command: Open_2

Fault:: Set True
Condition Updated to reflect fault

Position:: Closed_1

If Failure on method

Method Returns::
Success

If Success on Method and no Fault

If method success, valve moving

Position: Moving_4
Last Command: Open_2

Fault:: set False
Condition cleared

Position: Moving_4
Last Command: Open_2

Position: Open_2

Method Returns::
Success

Valve reached Open

This figure illustrates an
Open action, but it also

applies to a close .

Figure 45 - Valve command – Failed - Faulted

Sequence description; the above sequence details what the possible outcomes for moving a valve
that has a fault set. The valve may immediately fault, may fault again after some time or the move
may succeed. All outcomes are possible from a Client point of view. On some Servers only the last
two may be possible.

MDIS OPC UA Companion Specification Release 1.2 Page 106 of 114

A.6.8 Valve Signature Request – Completed

Valve
(DCS)

Valve
(Subsea
System)

Move Method:: Direction Open_2,
Signature requested

Valve moving

Interlock not present,
 enabled, closed

Valve Position::Moving_4
Last Command::Open_2

Valve reached open
Valve position::Open_2

Valve SignatureRequestStatus
:: Completed

Signature Request Completed

Move Method ::
Returns Successful

Figure 46 - Valve Profile Request – Completed

Sequence description; the above sequence details the valve signature request of a valve during
operation [open or close] from the subsea system level. The valve may also report Failed or Not
Available.

MDIS OPC UA Companion Specification Release 1.2 Page 107 of 114

A.6.9 Valve command – Shutdown

Valve

(DCS)

Valve

(Subsea

System)

Valve moving

Valve Position::Moving_4

Last Command::Close_1

Valve Position::Closed_1

Move method:: Direction – Close_1

Shutdown Sequence

Valve Reached Closed

Valve moving
Move Method returns

(successful)

Also if interlocks are present

Assuming “Safe” position is closed

– test may need to be changed if

Valve “Safe” postion is Open

Figure 47 - Valve command – Shutdown

Sequence description; the above sequence details the execution of a Shutdown command [Open or
Close]. The intermediate acknowledgements and states as applicable are indicated. The Shutdown
command will attempt to override all interlocks, including any non-defeatable interlock if possible

MDIS OPC UA Companion Specification Release 1.2 Page 108 of 114

Annex B Recommended Practice (Normative)

B.1 Introduction

This Recommended Practice provides guidance for use in specifying and implementing the OPC
Unified Architecture (UA) for use as a standard communication interface for use between a
Distributed Control System (DCS) and a Subsea Production Control System (SPCS) for control of
subsea equipment.

Guidance for specifying minimum requirements when implementing MDIS are provided to ensure:

• Equipment compatibility when integrating the MCS or Subsea Gateway with the DCS.

• Safe and effective operation of equipment controlled by the MCS or Subsea Gateway from
the DCS. Successful integration of the DCS with the MCS or Subsea Gateway during project
execution.

B.2 Architecture Implementation

Physical architecture, defined in Section 4, should be specified. The location of the following
minimum set of functionality, in the DCS or SPCS, is dependent on physical and “Operating
Company” requirements and should be clearly specified prior to project execution:

• Data Arbitration

• Communication Channel Selection

• SEM Control Selection

• Process Interlocks

• Product Interlocks

• Shutdown Sequences

• Automated Control Sequences

• Valve Status Validation

• Choke Position Validation

• Interfacing with the HPU

• Interfacing with the topside chemical injection system

• Validation of Valve Profiles / Signatures

While functional logic has been prescribed by MDIS; implementation of specific functionality is not
mandatory and should be specified on a project basis. As a minimum any MDIS implementation
should ensure exchange of all required information required to safely line up, start up, operate and
shutdown subsea equipment.

Interfaces with external interfaces with other third party systems (i.e. historians) and external
interfaces between SPCS and DCS for use other than for control and monitoring of subsea
equipment are not specified through the use of the MDIS OPC UA Companion Specification and
should be specified on a project basis.

B.3 Security

Encryption or application level security requirements are not required on the protocol level.

It is recommended that all encryption or application level security requirements that are specified
should be based on a network security assessment. If encryption on the protocol level is required, it

MDIS OPC UA Companion Specification Release 1.2 Page 109 of 114

is recommended to use encryption algorithms specified by OPC UA. Any advanced security features,
if implemented, should have the option to be disabled and not adversely affect system performance.

No provision for user level security is considered for the MDIS Interface. The MDIS Interface is
controller to controller communication and is not user restricted. All user level security should be
implemented in the SPCS and DCS.

B.4 Performance

To maximise efficient use of bandwidth and performance, communication should be subs cription
based, by default.

The OPC UA interface is exception driven and a publishing interval of 2 seconds or less should be
used between the SPCS and the DCS. Update rates from subsea to the SPCS is outside the scope
of MDIS and can be much longer than 2 seconds. Maximum allowable update rates for individual
controllers should be determined and based on system architecture and hardware capabilities.

Requirements should be developed on a project basis to provide sufficient bandwidth between the
SPCS and DCS to ensure all commands, issued both during normal operation and shutdowns, are
passed across the interface effectively.

Evaluation of communication performance and testing requirements should take into account any
latency or communication limitations due to physical system architecture constraints between SPCS
and the DCS. (i.e. radio communication).

B.5 Data Priority

Data prioritisation should be considered on a system level by each project and should take into
consideration functional requirements for safe and effective operation of control of subsea
equipment.

Data exchange across the interface should, unless otherwise specified be prioriti sed in the following
manner:

• High Priority: Information required for process control.

• Low Priority: Information that is not required for process control (i.e. diagnostics,
housekeeping).

B.6 Documentation

An interface specification should be developed between the SPCS vendor, DCS vendor and the
“Operating Company” prior to the implementation of MDIS. The interface specification should provide
the required fidelity to ensure all project specific requirements have been met. During the
development of this specification it is recommended to review the project check list in Section B.8.

The SPCS vendor shall maintain revision control of the UANodeSet file that is being utilised by the
project.

External interfaces (i.e. historians, condition monitoring systems, etc.) should also be specified
however are outside the scope of this specification.

B.7 Interface Testing

The MDIS communication link shall be verified between the SPCS and DCS. Testing shall include
both normal operation and failure scenarios. Redundancy and performance requirements should be
tested under full load (i.e. shutdown conditions). Time synchronisation should be verified.

Clients and Servers that have passed independent MDIS certification should require less integration
testing. Integration testing should be focused on the project configuration rather than base MDIS
functionality. It is recommended prior to any integration testing that the interface specification,
defined in Section B.6, and OPC UA UANodeSet files be finalised and agreed between SPCS and
DCS vendors as early as possible. Integration testing should only be attempted when the SPCS and
DCS software has reached an acceptable level of maturity.

MDIS OPC UA Companion Specification Release 1.2 Page 110 of 114

It is recommended that, during project execution, preliminary integration testing be performed to
validate the data exchange across the MDIS Interface off critical path, prior to full onsite integration
testing. In addition to validating data exchange, this testing should allow for verification of graphical
displays, redundancy and data prioritisation. Validation of performance and full functionality,
including shutdowns, sequences and interlocks, should be performed during full onsite integrati on
testing using the hardware that will be supplied to the project.

B.8 Project Check List

B.8.1 Introduction

This Checklist provides general guidance for use in tender and development cycles for implementing
the MDIS Interface between a Distributed Control System (DCS) and a Subsea Production Control
System (SPCS) for control of subsea equipment.

B.8.2 Front End Engineering Design (FEED)

The following checklist is ordered by decisions and activities that should be defined during
clarification and development of an MDIS interface specification interface.

Table 96 – Checklist – FEED Scope

No Item Description Comments √

1. The Operator, DCS vendor and SPCS vendor
should assign dedicated persons to develop
requirements for the interface.

Knowledge of latest MDIS Specification is
recommended.

2. Operator to schedule Kick-off or Workshop
with DCS vendor and SPCS vendor to
discuss checklist items.

3. Agree on system architecture. The Operator
shall decide which MDIS architecture
(Integrated, Interfaced or Other) is
applicable. The definition of architecture
should document where all functional logic
should reside, as per Section B.2.

4. Create an overview drawing of the hardware
and network architecture. Decide on
Interface setting (IP ranges and class).
Define hardware components on both
systems that are related for the interface.

5. DCS vendor to provide OPC Foundation
accredited Test Lab certification report (OPC
UA Client), if available, to the Operator.

6. SPCS vendor to provide OPC Foundation
accredited Test Lab certification report (OPC
UA Server), if available, to the Operator.

7. Select responsible Party (DCS or SPCS) for
implementing shutdown Sequences.

8. Select responsible Party (DCS or SPCS) for
implementing automated Sequences.

MDIS OPC UA Companion Specification Release 1.2 Page 111 of 114

No Item Description Comments √

9. Select responsible Party (DCS or SPCS) for
implementing Product Interlocks.

10. Select responsible Party (DCS or SPCS) for
implementing Process Interlocks.

11. Select responsible Party (DCS or SPCS) for
creation and managing the Product
Alarms/Warnings. Specify detail level of
product alarms (summary alarm or specific
information)

SPCS Vendor should provide diagnostic
information.

12. Select responsible Party (DCS or SPCS) for
creation and managing Process
Alarms/Warnings.

13. Define where information from redundant
physical measurements is arbitrated.

Example: Should the SPCS or DCS be
responsible for arbitrating information from
redundant pressure / temperature
transmitters that are measuring the same
process variable?

14. Define where management of redundancy in
subsea equipment is arbitrated.

Example: Should the SPCS or DCS be
responsible for assigning which SEM is
used to command valve actuation? Should
the SPCS or DCS be responsible for
assigning a “primary” or “backup” SEM?

15. Define where redundant information due to
multiple communication channels is
arbitrated.

Example: Dependent on system design a
single process sensor value might be
available through various communication
channels. Should the SPCS or DCS be
responsible for determining which value is
used for display to the operator and used
as input to interlocks and automated
sequences?

16. Define the instance model for redundant
systems

Example: Is the instance model on each
redundant channel identical or do the
instance models represent separate and
redundant pathways to subsea equipment?
See section 11 for more details.

17. Make a list of all MDIS Object types that will
utilized on the project.

Object types that are not utilized on the
project can be skipped from following
optional item selection.

MDIS OPC UA Companion Specification Release 1.2 Page 112 of 114

No Item Description Comments √

18. Operator, DCS and SPCS to select required
optional References and Methods for all
MDIS objects:
 - MDIS Discrete Instrument
 - MDIS DiscreteOut Instrument
 - MDIS Digital Instrument
 - MDIS DigitalOut Instrument
 - MDIS Instrument
 - MDIS InstrumentOut
 - MDIS Valve
 - MDIS Choke
 - Etc.

It is recommended to start discussions
assuming all objects use all mandatory and
optional References and Methods and
remove items that are not project relevant.

19. Supported arguments for the MDIS Valve
and MDIS Choke Move-Method calls should
be documented.

Available Move-Method calls are defined in
the MDIS Valve and MDIS Choke objects.

20. Faults and warning codes warning provided
in SPCS system should be defined. Specific
actions to be initiated by the DCS in the
event of a fault or warning code should be
documented.

21. Agree on standardised methodology for
naming of Objects used on the interface
(Hierarchy / Field structure)

Project specific equipment specific tag
identifiers can be used on the interface to
name equipment.

22. SPCS Vendor to prepare list of available
MDIS Aggregated Objects and Vendor
specific Subtypes of MDIS Objects.

This list should provide sufficient detail to
allow development of software by both the
DCS and SPCS provider.

23. The structure of address space across the
interface (folder structure or MDIS
Aggregated object) should be defined.

Address space structure should be clearly
documented by the SPCS vendor and be
reviewed by the DCS vendor to ensure no
incompatibility.

24. A method for time Synchronization shall be
defined.

25. FEED work should be documented to clarify
expectations during project execution.

B.8.3 Project Execution

The following checklist documents activities that should be considered during project execution.

Table 97 - Checklist - Project Execution

No Item Description Comments √

1. SPCS Vendor should create a project
specific MDIS Interface specification
for DCS.

This MDIS Interface specification should be
based on documented FEED discussions.

MDIS OPC UA Companion Specification Release 1.2 Page 113 of 114

No Item Description Comments √

2. SPCS Vendor to schedule date for
delivery of MDIS NodesetFile(s) for
DCS Vendor.

More than one date might be scheduled,
where each date would provide a NodesetFile
that includes additional object definitions.
For example, an initial NodesetFile might
contain just the first prototype of a well, and
subsequent NodesetFiles might contain a
more detailed well and then multiple
instances of the well. Also, some Objects
might include additional optional items as the
well model is finalized.

3. Schedule date for first MDIS interface
connection Test. SPCS vendor, DCS
vendor and Operator should agree on
test cases for first MDIS
interconnection test.

First interconnection test should cover test
cases such as redundancy, time
synchronization, performance, etc.

4. Check possibility/availability of an
online SPCS OPC UA MDIS Server to
support and accelerate interface
development.

Operator to support/provide infrastructure
(e.g. use own infrastructure or cloud systems)
if link between SPCS and DCS Vendor
cannot be established.

5. DCS Vendor to prepare Interface Test
procedure. Schedule review cycle for
Operator and SPCS vendor.

6. Schedule Date for final MDIS interface
connection Test (full project
configuration, including sequences and
interlocks, etc.).

B.8.4 Closeout

The following Checklist documents activities that should be completed complete as part of a project
closeout.

Table 98 - Checklist - Project Closeout

No Item Description Comments √

1. Feedback lessons learned and
improvements from project execution
to MDIS working group.

Feedback should be provided from all
parties (Operator, DCS, SPCS). Feedback
could include discussion of specification
features, feedback on this checklist, future
features that could be added to specification
etc.

MDIS OPC UA Companion Specification Release 1.2 Page 114 of 114

Annex C Alternative MDIS Applications (Normative)

C.1 Introduction

OPC UA, through the MDIS Companion Specification, has been specified as a controls
interface between the MCS and DCS. This normative guideline provides details on other potential
applications of the MDIS standard and additions to standard MDIS implementations that are outside
the original scope of MDIS. Concepts covered include:

a.) Application of OPC UA and standard objects and concepts defined within the MDIS
Companion Specification as “read only” interfaces for historian applications.

b.) Additions to OPC UA MDIS implementations that can facilitate data transfer that are not
specifically control related.

C.2 Read Only Interface

The MCS can provide “read only” interfaces to facilitate data to external databases, as specified on
a project basis. In these cases, OPC UA can be specified and use of standard objects and concepts
taken from the MDIS standard can be utilized based on project specific requirements.

To use the OPC UA interface as a “read only” interface it is recommended to that a Server be able to
indicate that all writeable points (by definition have access restriction that denies write for all users
and that no writeable ObjectType instance will exist in the address space. For all methods that allow
writing, the user access rights should indicate not executable. The Server should be configurable to
support this “read only” configuration. The server should not be able to be changed from this
configuration without a restart.

C.3 Signature File Transfer

Valve signatures are files that contain high sample rate pressure profiles recorded during individual
valve operations subsea exposed by the subsea system. There are cases where valve signatures
are required to be transferred from the SPCS to either the DCS or external historian interfaces.

A Server that supports transferring the valve signature via OPC UA shall expose a FileObject as part
of the Valve Object Instance via the HasSignature ReferenceType. The valve Signature will also be
provided in the MDIS folder under the MDISInformation Object. File formats and specific information
captured within the valve signature files are outside the scope of this specification and should be
specified on a project basis.

The items required are provided as part the individual object types. This functionality is optional and
covered in a separate profile.

	Revision history
	Revision summary
	Table Of Contents
	List of figures
	List of tables
	1 MDIS
	1.1 Introduction
	1.2 Concepts / Definitions
	1.2.1 Introduction
	1.2.2 API Standard 17F concepts
	1.2.3 MDIS Mandatory & Optional Items / Objects
	1.2.4 OPC Compliance & Certification

	1.3 OPC Definitions
	1.4 Industry Typical Abbreviations, Acronyms & Definitions

	2 Reference documents
	3 OPC UA Overview
	3.1 Introduction
	3.2 What is OPC UA?
	3.3 Basics of OPC UA
	3.4 Information Modelling in OPC UA
	3.4.1 Concepts
	3.4.2 Namespaces
	3.4.3 Companion Specifications

	4 Architectures
	4.1 Overview
	4.2 DCS Implemented Functions
	4.2.1 Main Process Responsibility
	4.2.2 Control and Monitoring of Subsea Equipment
	4.2.3 Subscriptions

	4.3 DCS or SCV Implemented Functions
	4.3.1 Introduction
	4.3.2 Data Arbitration
	4.3.3 SEM Control Selection
	4.3.4 Interlocks
	4.3.4.1 Introduction
	4.3.4.2 Process Interlocks
	4.3.4.3 Product or System Interlocks

	4.3.5 Shutdown Sequences
	4.3.6 Automated Control Sequences
	4.3.7 Determining Valve Statuses
	4.3.8 Determining / Updating Choke Calculated Position
	4.3.9 HPU Interface
	4.3.10 EPU Interface
	4.3.11 Valve Profile / Signature Validation
	4.3.12 Topsides Chemical Injection System Interface

	4.4 Subsea Controls Vendor-Implemented Functions
	4.4.1 Introduction
	4.4.2 Managing Subsea Communications
	4.4.3 Operation of Subsea Devices
	4.4.4 Handing off Process Sensor Data to DCS
	4.4.5 Configuration of Operational Parameters
	4.4.6 Handing off Valve Profiles / Signatures
	4.4.7 Calculation of Engineering Values
	4.4.8 Handing off Product Statuses
	4.4.9 Handing Off Diagnostic Information
	4.4.10 EPU Interface
	4.4.11 Subsea Control Paths / Network Routing

	5 MDIS ObjectTypes
	5.1 Overview
	5.1.1 MDISBaseObjectType
	5.1.2 MDISDiscreteInstrumentObjectType
	5.1.3 MDISDiscreteOutObjectType
	5.1.4 MDISDigitalInstrumentObjectType
	5.1.5 MDISDigitalOutObjectType
	5.1.6 MDISInstrumentObjectType
	5.1.7 MDISInstrumentOutObjectType
	5.1.8 MDISChokeObjectType
	5.1.9 MDISValveObjectType
	5.1.10 MDISAggregateObjectType
	5.1.11 MDISTimeSyncObjectType
	5.1.12 MDISInformationObjectType

	5.2 MDISBaseObjectType
	5.2.1 Overview
	5.2.2 MDISBaseObjectType Definition
	5.2.3 EnableDisable Method

	5.3 MDISDiscreteInstrumentObjectType
	5.3.1 Introduction
	5.3.2 Overview
	5.3.3 MDISDiscreteInstrumentObjectType Definition
	5.3.4 MDISDiscreteOutObjectType Definition
	5.3.5 WriteValue Method

	5.4 MDISDigitalInstrumentObjectType
	5.4.1 Introduction
	5.4.2 Overview
	5.4.3 MDISDigitalInstrumentObjectType Definition
	5.4.4 MDISDigitalOutObjectType
	5.4.5 WriteState Method

	5.5 MDISInstrumentObjectType
	5.5.1 Introduction
	5.5.2 Overview
	5.5.3 MDISInstrumentObjectType Definition
	5.5.4 MDISInstrumentOutObjectType Definition
	5.5.5 Instrument WriteValue Method

	5.6 MDISChokeObjectType
	5.6.1 Introduction
	5.6.2 Overview
	5.6.3 MDISChokeObjectType Definition
	5.6.4 Choke Move Method
	5.6.5 Choke Step Method
	5.6.6 Choke Abort Method
	5.6.7 Choke SetCalculatedPosition Method

	5.7 MDISValveObjectType
	5.7.1 Introduction
	5.7.2 Overview
	5.7.3 MDISValveObjectType Definition
	5.7.4 Move Method

	5.8 MDISAggregateObjectType
	5.8.1 Overview
	5.8.2 MDISAggregateObjectType Definition

	5.9 MDISTimeSyncObjectType
	5.9.1 Introduction
	5.9.2 Overview
	5.9.3 MDISTimeSyncObjectType Definition
	5.9.4 SetTime Method

	5.10 MDISInformationObjectType
	5.10.1 Introduction
	5.10.2 Overview
	5.10.3 MDISInformationObjectType Definition

	6 MDIS VariableTypes
	6.1 InterlockVariableType Definition
	6.2 MDISVersionVariableType Definition

	7 MDIS DataTypes
	7.1 Enumerations
	7.1.1 ChokeMoveEnum
	7.1.2 ChokeCommandEnum
	7.1.3 SetCalculatedPositionEnum
	7.1.4 SignatureStatusEnum
	7.1.5 CommandEnum
	7.1.6 SEMEnum
	7.1.7 ValvePositionEnum

	7.2 Structures
	7.2.1 MDISVersionDataType

	8 MDIS ReferenceTypes
	8.1 HasInterlock ReferenceType
	8.2 InterlockFor
	8.3 HasSignature ReferenceType

	9 MDIS AddressSpace Information
	9.2 Instance AddressSpace
	9.3 Value reporting
	9.4 UANodeSet Development
	9.5 Object Development
	9.5.1 Introduction
	9.5.2 Object Collection, Aggregation and Extension Definition
	9.5.3 Object Creation
	9.5.4 Object Aggregation Example

	10 Time Synchronisation
	11 Redundancy
	11.1 General
	11.2 OPC UA Redundancy Overview
	11.3 OPC UA MDIS Redundancy
	11.4 MDIS Minimum Requirements

	12 OPC UA MDIS Profiles and Conformance Units
	12.1 Test requirements
	12.2 ConformanceUnits
	12.2.1 Overview
	12.2.2 Server
	12.2.3 Client

	12.3 Facet
	12.3.1 Overview
	12.3.2 Server
	12.3.3 Client

	12.4 MDIS OPC UA Profiles
	12.4.1 Overview
	12.4.2 MDIS Solution Client Profile
	12.4.3 MDIS Solution Server Profile

	12.5 Equipment Certification

	13 Namespaces
	13.1 Status Codes
	13.2 Handling of OPC UA Namespaces

	Annex A Sequence Diagrams(Informative)
	A.1 Introduction
	A.2 MDIS Discrete Instrument Object Sequence Diagrams
	A.2.1 Enable Disable

	A.3 MDIS Digital Instrument Object Sequence Diagrams
	A.3.1 Enable Disable

	A.4 MDIS Instrument Object Sequence Diagrams
	A.4.1 Enable Disable
	A.4.2 Write to Setpoint
	A.4.3 Display Limits
	A.4.4 Display Engineering units

	A.5 MDIS Choke Object Sequence Diagrams
	A.5.1 Overview
	A.5.2 Move to Position – Success
	A.5.3 Move to Position – Fault
	A.5.4 Move to Position – Failure, Interlock active
	A.5.5 Abort Choke (Position)
	A.5.6 Defeat / Override Interlock (Move)
	A.5.7 Fault – No Move Operation
	A.5.8 Step Open / Close – Success
	A.5.9 Step Open / Close – Failure, choke fault
	A.5.10 Abort Choke (Step)
	A.5.11 Set Calculated Position
	A.5.12 Enable Disable Choke
	A.5.13 Defeat / Override Interlock (Step)

	A.6 MDIS Valve Object Sequence Diagrams
	A.6.1 Overview
	A.6.2 Valve command – Success
	A.6.3 Valve command – Overridden Interlock
	A.6.4 Valve command –- Interlocked not overridden
	A.6.5 Valve command – Disabled
	A.6.6 Valve command – Failed – Fault case 1
	A.6.7 Valve command – Failed – Fault case 2
	A.6.8 Valve Signature Request – Completed
	A.6.9 Valve command – Shutdown

	Annex B Recommended Practice (Normative)
	B.1 Introduction
	B.2 Architecture Implementation
	B.3 Security
	B.4 Performance
	B.5 Data Priority
	B.6 Documentation
	B.7 Interface Testing
	B.8 Project Check List
	B.8.1 Introduction
	B.8.2 Front End Engineering Design (FEED)
	B.8.3 Project Execution
	B.8.4 Closeout

	Annex C Alternative MDIS Applications (Normative)
	C.1 Introduction
	C.2 Read Only Interface
	C.3 Signature File Transfer

