
BINARY SEARCH TREE AND ITS BALANCED VERSION

HAOCHEN

1. Motivation example

In an airport with only one runway, we need to schedule the reservation of landing.

• Specify the request landing time t.
• To add t, there must be no other landing scheduled within k minutes.
• After landing, it will be removed from system.

Example 1. Example needed.

Our goal is to run the system in O(log(n)) time. If we take a close look at the problem, we know
we need to deal with some operations such as searching, comparing, inserting, deleting. The latter
two involve the whole list and therefore is quite di�erent and need to notice.

2. Simple data structure.

De�nition 2. A data structure is a collection of algorithms for storing and retrieving information.

• The operation for storing information is called updates, like insert, delete.
• The operation for retrieving info is called queries, like search, �nd_max, �nd_next.

The salient property of data structure is its representation invariant. the queries must be
correct if this property holds, and updates should preserve this property. Often, we use check when
debugging a data structure, it may cost O(n) time, more than operations to be checked, usually
O(1).

Now let's introduce some simple data structures. Some thought before is that these invented
form is usually borned for practical uses, like goals in computer tasks. So they are functionalized
just like the art form from the primative society. The con�ict between function and form is much
less con�ict than those in the architecture context. The form is itself devised to function properily.

Then how it can be related to culture? If can't, then what's the internal good?
Enough.

2.1. Stack. like stack in reality, do operation insert and delete from tail only.

2.2. Queue. Like queue in reality, do operation insert from tail and delete from start.

3. Binary search tree

Enough basics, back to our previous scheduling problem. Notice this is a sorted list, so queries
can be achieved in O(log(n)), heigth of the tree, but insert may take O(n) because of the duplication.
For other easy insert data structure like dictionary and min_heap, the check of k min takes O(n).

But a new invention comes: binary search tree (de�nition omitted).
1



BINARY SEARCH TREE AND ITS BALANCED VERSION 2

Claim 3. In (ideal) binary search tree, insert only take O(log(n)) time.
property:

• each node has: key, left pointer, right pointer, parent pointer.
• BST property: left is small, right is large.

Claim 4. proof.

But the problem is that tree in practice is not always has height log(n), in another word, balanced.
Here is a counterexample:

Example 5. suspended.

The �rst problem is to de�ne what is actually `balanced', then how to achieve balance.
One approach from predessor's work is called AVL trees devised in 1962. Basically, they invent

an operation which preserve RI, but head to balance is known as rotation.

4. AVL trees

Clarify the problem:

• To de�ne the notion balanced, we need to detect the height in local place. Speci�cally, each
node.

• we put the constraint : only allow one di�erence.
• when this produce the worst case, still in O(log(n)).

tackle the problem:
Rotation, 1,just change pointers, so O(1), 2, satisfy property
case1
case2,zigzia
Algoth:
1, BST insert
2, �x AVL constraint, change node up.
Also sort O(nlog(n))


