
with reactive-banana-0.6.0.0

Functional Reactive
Programming (FRP)

Heinrich Apfelmus

with reactive-banana-0.6.0.0

Functional Reactive
Programming (FRP)

Heinrich Apfelmus

Why?

Functional reactive programming is an
elegant method for implementing

interactive programs

• graphical user interfaces (GUI)
• animations
• digital music
• robotics

How?

variation in time as first-class value

type Behavior a = Time → a
type Event a = [(Time, a)]

The key data types are Behavior and Event.
Behavior corresponds to a „value that varies in time“.
Event corresponds to „events that occurr at certains points in time“.
I‘m going to explain how to understand them. Of course, the real implementation is abstract.

Behavior

Time

Value • position – animation
• text value – GUI
• volume – music
• physical quantity

y(t) = y0 + v0t− g
t2

2

type Behavior a = Time → a

A Behavior associates a value to each point in time.

Behavior API

instance Applicative Behavior

Functor

Applicative

instance Functor Behavior

How to program with Behaviors?
The API for Behaviors is actually very simple: they are just applicative functors.

Behavior API

pure :: a -> Behavior a
(<*>) :: Behavior (a -> b)
 -> Behavior a -> Behavior b

Functor

Applicative

at each
point in time

(<$>) :: (a -> b)
 -> Behavior a -> Behavior b

bf <*> bx =
 \time -> bf time $ bx time

Reminder on the functions associated with Functor and Applicative classes.
The most important function is the <*> operator, which is called „apply“ and applies a time-varying function to a
time-varying value, simply by applying them at each point in time.
The `pure` function constructs a value that stays constant in time.

Behavior API
a b

(*) <$> a <*> b

1

0

Double

Time Time

Time
Example task: attenuate an oscillation.

Event

Time

Value

• mous clicks – GUI
• notes – music
• collision – physics

type Event a = [(Time,a)]

An Event is a collection of values that „occur“ at particular points in time.

You can also see that event occurrences may happen simultaneously, at least in reactive-banana-0.6.

Event API
instance Functor Event

never :: Event a
unionWith :: (a -> a -> a)
 -> Event a -> Event a -> Event a

filterE :: (a -> Bool)
 -> Event a -> Event a

accumE :: a -> Event (a -> a)
 -> Event a

Functor

filter

scanl

List

zipWith

[]

How to program with Events?
The API for Events is a bit more elaborate, but is closely related to operations on lists.

Event API

filterE (> 5) x

Time

x

Time

Int

10

0

Example: filterE

Event & Behavior API
stepper :: a -> Event a -> Behavior a

stepper 2 x

Time

x

Time 2

Of course, the most interesting part about the API concerns the interaction between Behavior and Event.
The `stepper` function turns an Event into a Behavior by remembering the value. The result is a step function,
hence the name.

Event & Behavior API
(<@>) :: Behavior (a -> b)
 -> Event a -> Event b

(<@) :: Behavior b
 -> Event a -> Event b

„apply“

The <@> operator is called „apply“ and applies a time-varying function to event occurrences.
Its little brother <@ tags an Event with values from the Behavior. It is analogous to the <$ operator from
Data.Functor.

Event & Behavior API
b

b <@ e

Time

Time

e
()

Time

Visualization of the <@ operator.

Frameworks (GUI, ...)
data NetworkDescription t a

fromAddHandler import Event

fromPoll import Behavior

reactimate export Event

changes get Event from Behavior

The API discussed so far allows you to combine existing Events and Behaviors into new ones, but it doesn‘t tell you how to get them in the first
place. For this, you have to bind to external frameworks like wxHaskell. The NetworkDescription monad from the module
Reactive.Banana.Frameworks allows you to do this. It‘s not a very interesting monad, it‘s just a device for bookkeeping and I recommend that you
think of it as some sort of syntactic sugar.

