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We demonstrate a finite-difference approach to complex-wavevector band structure simulation and its use as a tool
for the analysis and design of periodic leaky-wave photonic devices. With the (usually real) operating frequency and
unit-cell refractive index distribution as inputs, the eigenvalue problem yields the complex-wavevector eigenvalues
and Blochmodes of the simulated structure. In a two-dimensional implementation for transverse-electric fields with
radiation accounted for by perfectly matched layer boundaries, we validate the method and demonstrate its use in
simulating the complex-wavevector band structures and modal properties of a silicon photonic crystal waveguide,
an array-antenna-inspired grating coupler with unidirectional radiation, and a recently demonstrated low-loss
Bloch-mode-based waveguide crossing array. Additionally, we show the first direct solution of the recently pro-
posed open-system low-loss Blochmodes.We expect this method to be a valuable tool in photonics design, enabling
the rigorous analysis and synthesis of advanced periodic and quasi-periodic photonic devices. © 2015 Optical
Society of America
OCIS codes: (050.1755) Computational electromagnetic methods; (130.3120) Integrated optics devices; (130.5296)

Photonic crystal waveguides; (050.6624) Subwavelength structures.
http://dx.doi.org/10.1364/OL.40.001053

Periodic structures, such as photonic crystal microcav-
ities and waveguides [1], fiber-to-chip grating couplers
[2,3], and waveguide crossing arrays [4,5], are playing
an increasingly important role in the design of integrated
photonic circuits. With the prospect that silicon photon-
ics can enable significant advances in a number of appli-
cations, including energy efficient processor-to-memory
interconnects [6] and optical phased arrays [7], there is a
need for efficient techniques for the rigorous design of
periodic micro- and nanophotonic structures.
A natural way to design periodic photonic structures is

through band structure analysis, i.e., Bloch–Floquet
theory, using numerical solvers [8]. This approach allows
rapid efficient design of most of the properties of a peri-
odic structure through the design of a single unit cell.
Since photonic band solvers typically take as input a real
wavevector, k, absorbing or radiating structures are typ-
ically described by a computed complex-frequency and
are effectively seen as a finite-quality-factor resonator.
Furthermore, these solvers are unable to readily provide
band structure information within bandgaps where the
most natural picture involves a complex-wavevector;
yet these bandgap fields are critical to the design of struc-
tures such as photonic crystal microcavities [1].
For devices designed to operate at a particular real

driving frequency, complex-wavevector band structure
analysis, with driving frequency provided at input, is
the natural basis for physical intuition and rigorous analy-
sis [9]. This is particularly true for propagation within the
bandgaps of lossless structures (which do not appear in
real-wavevector complex-frequency analysis) and for ab-
sorbing and leaky-wave radiative structures. For example,
the optimization of grating couplers based on antenna-
array concepts [3] implies a fixed real design frequency
and optimization for radiation angle and decay rate—both
computed from the complex-wavevector.

Furthermore, in our view, the complex-wavevector
band structure picture could be particularly important
for the design and synthesis of advanced “tapered-
band-structure” devices, where unit cells with varying
parameters are concatenated, all designed at a fixed real
frequency of interest, to form a final device design. Such
quasi-periodic structures with adiabatic tapering of the
unit cell [10] have been employed to engineer high-
quality-factor photonic crystal microcavities [1] and
high-efficiency grating couplers [2]. Yet, their design has
typically involved less than ideally suited tools such as
finite-difference time-domain (FDTD) simulation or indi-
rect complex-frequency band structure methods with
analytical approximations in bandgaps [1]. Rigorous syn-
thesis techniques are lacking, and band structure analysis
appears to be inadequately adapted to date to these kinds
of photonics design problems.

Recent work has investigated complex-wavevector
band structure calculation in the context of modeling
plasmonic/polaritonic structures to account for material
absorption [11–14], as well as radiation loss through the
incorporation of absorbing domain terminations such as
perfectly matched layers [15].

In this Letter, we demonstrate a novel finite-difference
complex-wavevector band structure solver with per-
fectly-matched-layer (PML) absorbing boundaries. We
use the solver to compute the modal properties of
two-dimensional radiating periodic photonic structures
and suggest a vision for rigorous device synthesis based
on such solvers. By utilizing a finite-difference method on
a split Yee grid, our solver is robust since it is derived
from self-consistent discrete electromagnetism with
discrete conservation laws [16], enabling a complete
orthogonal basis with no spurious solutions in the formu-
lation. Furthermore, the solver’s uniform grid allows
for accurate simulation of coupled resonator physics
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due to its consistent discretization of identical elements
in the computational domain. This approach also makes
the band structure solver directly integrable with FDTD
and finite-difference waveguide mode solvers.
We first present the complex-wavevector electromag-

netic eigenvalue problem formulation and implementa-
tion of the solver with PML boundary conditions and
follow with validation of the method against an analytical
solution. Next, we analyze the modal properties and band
structures of a silicon linear photonic crystal waveguide,
a unidirectional antenna-array-inspired fiber-to-chip gra-
ting coupler [3], and a low-loss Bloch-mode waveguide
crossing array, where we demonstrate the first direct
solution of the recently proposed open-system low-loss
Bloch modes [4,5]. These examples illustrate the poten-
tial utility of a complex-wavevector band structure solver
in device design.
Starting from Maxwell’s equations, we derive the wave

equation for the transverse electric field, Ψ�x; y�, of a
two-dimensional structure,

�∂2x � ∂2y � k20n
2�x; y��Ψ�x; y� � 0; (1)

where k0 ≡ 2πf∕c ≡ 2π∕λ0 is the free-space wavenumber
(related to wavelength, λ0, and frequency, f ) and n�x; y�
is the refractive index distribution of the structure.
Notably, in our implementation, the refractive index
may be real or complex, enabling simulation of dielectric,
plasmonic, and other structures. For an index distribu-
tion that is periodic along x with periodicity a such that
n�x; y� � n�x� a; y�, Bloch’s theorem states that the
field within the periodic medium can be represented
as the product of an amplitude function periodic in xwith
the same periodicity as n, Φ�x; y� � Φ�x� a; y�, and a
plane wave that carries the crystal momentum, k,

Ψ�x; y� � eikxΦ�x; y�: (2)

Inserting Eq. (2) into Eq. (1), we obtain the wave equa-
tion for the periodic Bloch amplitude, Φ�x; y�,

�∂2x � ∂2y � i2k∂x − k2 � k20n
2�x; y��Φ�x; y� � 0; (3)

which can be solved on a single unit cell of the structure.
We then discretize this equation on the Yee interleaved
grid [16,17] using the form

�
∂̂x ~∂x� ∂̂y ~∂y� i2k

�∂̂x� ~∂x�
2

−k2�k20n
2
m;n

�
Φm;n � 0; (4)

which is a quadratic eigenvalue problem with eigenvalue
k and linear dependence on frequency (proportional to
k0). To allow solutions using standard sparse matrix tech-
niques, we factor Eq. (4) into a linear eigenvalue problem
of twice the size, using the linearization [14]

�
A B
0 I

��
Φ
kΦ

�
� k

�
0 −C
I 0

��
Φ
kΦ

�
; (5)

where I is the identity matrix and A, B, and C are matrix
representations of the following operators derived from
Eq. (4):

Â � ∂̂x ~∂x � ∂̂y ~∂y � k20n
2
m;n; B̂ � i�∂̂x � ~∂x�; Ĉ � −1: (6)

The operator to sparse matrix translation is done using
finite differences on a Yee grid [18]. The derived matrix
operator yields a complete set of modes of the discrete
system. Its sparsity allows efficient solution of the eigen-
problem near a few modes of interest using standard
sparse matrix techniques, the scaling of which is well
known [18]. Note that the complex-wavevector problem
matrix is doubled in size in comparison to the complex-
frequency problem, owing to the need to linearize.

To enable the simulation of radiating structures, we in-
troduce PML domain termination regions in transverse
coordinate y utilizing complex-coordinate stretching [19]

~y�y� � y� if �y�; (7)

f �y� � �y − yT �2u�y − yT� � �yB − y�2u�yB − y�; (8)

where the modified complex ~y coordinate is a combina-
tion of real coordinate y and an imaginary function, with
f �y� ≠ 0 in the PML region. This modification ensures a
reflectionless interface by analytic continuation of
Maxwell’s equations into the complex domain and trans-
forms outgoing radiation into exponentially decaying
waves in the PML region, thus allowing termination of
the computational domain. Although these boundaries
introduce unphysical “PML modes,” these modes are es-
sential to the PML’s function, can be easily distinguished
by their concentration of energy in the PML region, and
add no practical limitations to our method.

To validate the presented theory and implementation,
we compare numerical results obtained using the pro-
posed solver to analytical solutions derived in literature
[20]. We solve for the band structure of a two-material
quarter-wave-stack medium using both one- and two-
dimensional versions of the solver. A schematic of the
medium and comparison of the resulting numerical and
analytical band structures are shown in Fig. 1. With the
complex-wavevector solver, varying the input frequency

Fig. 1. (a) Periodic layered medium consisting of alternating
layers of two materials with refractive indices n1 and n2 and
thicknesses x1 and x2, respectively, and (b) comparison of
numerical results obtained by the one- and two-dimensional
versions of the proposed FDFD complex-wavevector solver
with the analytical solution [20] for the medium’s complex-k
band structure. Re�k� is shown in blue and Im�k� in black.
The periodic medium is a quarter-wave stack with n1 � 1.45,
n2 � 2.65, λ0 � 1.5 μm, x1 � λ0∕�4n1�, and x2 � λ0∕�4n2�.
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(proportional to the normalized free-space wavenumber,
k0a) results in a variation of the normalized wavevector,
ka, in both the real and the complex domains. In the first
branch, when Re�k� reaches a value of π∕a, the wavevec-
tor protrudes into the complex domain and bandgaps,
representing the groups of frequencies not supported
for propagation in the structure, are formed. Addition-
ally, we observe from Fig. 1(b) an excellent agreement
of numerical results obtained by both one- and two-
dimensional solvers with the analytical solution. Analyti-
cally, the structure’s bandgap size is computed to be
�Δk0a�analytical ≈ 0.634 [20], whereas both one- and two-
dimensional solvers yield �Δk0a�numerical ≈ 0.635 with
slight differences in values attributed to discretization.
Next, we use the two-dimensional solver to demon-

strate several applications of complex-wavevector
band-structure analysis. We first simulate the band struc-
ture and multiple transverse electric field profiles of a
periodic silicon photonic crystal waveguide as shown
in Fig. 2. Figure 2(b) shows a unit cell of the structure
which is periodic in coordinate x with periodicity a.
The band structure, shown in Fig. 2(c), is computed

by providing as input to the solver the normalized
frequency, k0a, and obtaining at output the complex-
wavevector, ka, values and corresponding fields. Nota-
bly, modes are computed even in bandgaps, which
traditional band solvers, with wavevector input, exclude.
Fig. 2(a) shows the crystal’s mode profile at three points
on the band structure depicting both the Bloch amplitude
unit cell field, Φ, and the full periodic structure field,
Ψ � eikxΦ. Points (1) and (2) in the figure are the first-
and second-order modes, respectively, of the structure
and exhibit conventional sinusoidal behavior. In con-
trast, at point (3), located in the photonic crystal’s
bandgap (i.e., in reflecting operation), the field, Ψ, under-
goes the expected exponential decay along the propaga-
tion direction due to the imaginary component of k. This
type of complex-wavevector simulation permits the
rigorous computation of mirror strength design curves
for the synthesis of high-quality-factor photonic crystal
microcavities. Previously, such design was carried out
using analytical circular dispersion curve approxima-
tions within the bandgap [1].

Complex-wavevector band-structure analysis is also
ideally suited to the simulation and optimization of
periodic fiber-to-chip grating couplers. Here, we simulate
the leaky-wave Bloch modes and complex-wavevector
band structure of a recently proposed unidirectionally-
radiating grating coupler design inspired by antenna
array concepts [3]. Figure 3(a) portrays the index distri-
bution of three unit cells of the structure, and Fig. 3(b)
shows the simulated Bloch modes of the grating
demonstrating its radiation properties. To achieve unidi-
rectional radiation, a two-element unit cell design is em-
ployed with each silicon tooth acting as a scatterer. The
effective scattering centers of the teeth are separated in
both x and y by about a quarter wavelength. This separa-
tion leads to constructive interference of the radiated field
in one direction and destructive interference in the other,
allowing for engineered unidirectional radiation [3].
Figure 3(b) shows that excitation from the left produces
radiation up and back from the normal only, while exci-
tation from the right produces only radiation down.
Figure 3(c) shows the computed complex-wavevector
band structure of the grating. Because of the unit cell’s
asymmetry in coordinate x, the full Brillouin zone of the
structure is simulated to obtain all supported modes, in-
cluding both (1) downward and (2) upward radiating
modes. By simulating the complex-wavevector band
structure, the radiative properties of the grating unit cell,
such as radiation efficiency, angle, and directivity, can be
rigorously computed and analyzed at desired real-
frequency driving points. The presented results indicate
that complex-wavevector band structure is the natural
formulation for developing rigorous synthesis algorithms
for sophisticated grating designs, such as specifically
tapered grating strength and focusing designs, for applica-
tions in fiber-to-chip coupling, beam forming, and phased
arrays.

Last, we demonstrate, to the best of our knowledge,
the first formal computation of a new type of open-
system Bloch mode proposed as the basis of recently
demonstrated ultra-low-loss waveguide crossing arrays
[4,5]. The concept behind this new mode is that a wave-
guide crossing array is an open system and does not have

Fig. 2. (a) Mode profiles of the Bloch amplitude unit cell field
Φ (left) and the full periodic structure field Ψ (right) for (1) the
first-order dielectric, (2) the second-order dielectric, and (3) the
bandgap modes of a periodic photonic crystal calculated using
the proposed two-dimensional numerical solver. (b) Unit cell of
the photonic crystal showing index distribution and dimen-
sions. (c) Simulated complex-k band structure of the
photonic crystal with Re�k� and Im�k� highlighted separately.
The analyzed silicon photonic crystal is situated in silica
and has square silica holes (n1 � 1.45, n2 � 3.5, a � 330 nm,
b � 700 nm, and c � 200 nm). Points analyzed in (a) are
marked on the band structure (c) in red.
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a simple light line that separates radiation from guidance.
Yet, coupling of two modes via scatterers, through an
imaginary anti-crossing due to radiative coupling, ena-
bles a low-loss Bloch state within the radiation spectrum.
Here, we formally compute, for the first time, this
low-loss leaky unidirectional breathing Bloch state.
Figure 4 shows the simulated field intensity profile of
the Bloch-mode crossing design with dimensions chosen
to achieve the low-radiation state [5]. In this example, the
computed loss per crossing (i.e., per unit cell) is
LdB � −10 log10�e−2 Im�ka�� ≈ 0.06 dB, closely matching re-
sults obtained in the initial proposal via FDTD [5]. This
complex-wavevector mode solution establishes that this
mode of propagation, after imaginary splitting, is a bona
fide leaky eigenstate of the system.
As supported by the presented examples and

discussion, we believe that complex-wavevector band
structure computation has important applications in pho-
tonics design. Our finite-difference approach is general,
rigorous, scalable, and easily interfaced with FDTD
solvers. Extension of the current two-dimensional TE

implementation to TM fields and three dimensions is
straightforward. We anticipate important applications
of this method by building synthesis techniques on top
of such band structure solvers that will enable rigorous
synthesis of advanced periodic and quasi-periodic pho-
tonic devices, including grating couplers, waveguide
crossing arrays, and photonic crystals, as well as phased
array antennas and other photonic devices.

This work was supported by the National Science
Foundation award ECCS-1128709.
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Fig. 3. (a) Three unit cells of a periodic grating coupler [3]
showing index distribution and dimensions. (b) Bloch mode
profiles of the grating at 1550 nm free-space wavelength for
(1) downward and (2) upward radiating modes solved using
the proposed FDFD complex-wavevector solver with PML
boundaries in y and periodicity in x. (c) Simulated complex-
wavevector band structure of the grating with Re�k� in blue
and Im�k� in black, HSQ and silica light lines shown, and points
analyzed in (b) marked in red.

Fig. 4. Low-loss Bloch mode profile intensity, Re�Ψ�2, of a sil-
icon waveguide crossing array in silica at 1200 nm wavelength
simulated with PMLs in y, periodicity in x, a � 2450 nm, and
b � 1150 nm displayed (a) to highlight breathing property
and (b) with scaled ordinate range to show minimal loss.
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